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of ZnO–CeO2 nanoparticles in wet oxidation of wastewater
containing chlorinated compounds
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Abstract Here we report the catalytic property of ZnO–CeO2

nanoparticles towards oxidative degradation of organic pollu-

tants present in industrial wastewater. The catalysts were pre-

pared by co-precipitation method without using any surfactant.

The physicochemical properties of catalysts were studied by

XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX

techniques. The characterization results confirmed the forma-

tion of porous ZnO–CeO2 nanocatalysts with high surface area,

pore volume and oxygen vacancies. ZnO–CeO2 nanocatalysts

exhibited appreciable efficiency in CWAO of industrial

wastewater under mild conditions. The Ce40Zn60 catalyst was

found to be most efficient with 72% color, 64% chemical

oxygen demand (COD) and 63% total organic carbon (TOC)

removal. Efficient removal of chlorophenolics (CHPs, 59%)

and adsorbable organic halides (AOX, 54%) indicated the

feasibility of using ZnO–CeO2 nanocatalysts in degradation of

non-biodegradable and toxic chlorinated compounds.

Keywords ZnO–CeO2 � Catalysis � Porous � Oxygen

vacancy � Wet air oxidation

Introduction

The discharge of industrial wastewaters is continuously

contaminating our water resources. The increasing envi-

ronmental concerns have awakened industries to minimize

the pollution load from wastewater. Various treatment

methods have been studied to remove the pollutants from

industrial wastewater (Richardson 2007; Robinson et al.

2001). Catalytic wet air oxidation (CWAO) has received

considerable interest, as it mineralizes the organic con-

taminants into biodegradable intermediates or innocuous

compounds by utilizing the mild oxidant, i.e., air or oxy-

gen. Various noble metals, metal oxides and their combi-

nations have been extensively studied as heterogeneous

catalysts in CWAO. Qin et al. (2001) investigated the noble

metal catalysts (Pt, Pd, Ru) supported on Al2O3 or acti-

vated carbon for CWAO of p-chlorophenol. Complete

conversion of p-CP and 97.9% TOC reduction was

obtained with Pt/AC catalyst at 180 �C and 2.6 MPa.

Pintar et al. (2001) studied the CWAO of acidic and

alkaline kraft bleaching plant effluents over TiO2, ZrO2,

Ru/TiO2 and Ru/ZrO2. Ru doped catalysts exhibited more

than 99% TOC removal at 190 �C and 5.5 MPa. Xu et al.

(2006) reported up to 93% COD removal during CWAO of

phenol in presence of Cu0.5-xFexZn0.5Al2O4. In spite of

extensive research, the application of CWAO is limited due

to severe operating conditions. Therefore, still there is the

need of cost-effective, active and stable catalyst for CWAO

of industrial wastewater under mild reaction conditions.

During CWAO, high temperature and pressure enhances

the reaction rate and improves the oxygen solubility.

Therefore, the catalyst with high reactivity and good oxy-

gen buffering can serve as a suitable candidate. The rapid

growth of nanotechnology offers great opportunity to

develop the next-generation catalyst for wastewater treat-

ment (Ghasemzadeh et al. 2014; Anjum et al. 2016). The

high activity, mobility in solution, specific surface areas,

stability and easy separation from reaction mixture, make

them the ultimate candidate for catalysis (Khin et al. 2012;

Xia et al. 2016). CeO2 gained considerable attention as an

oxidative catalyst due to its oxygen storage and release

capacity (Gupta et al. 2010). The interaction of CeO2 with
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low valent element strongly enhances its redox property,

which leads to the promoted oxidation efficiency (Anush-

ree and Kumar 2015a; Arena 2014). We have selected

ZnO–CeO2 by taking its wide catalytic applications in

consideration (Habibi and Fakhrpor 2016; Faisal et al.

2011; Assal et al. 2017). Here we investigate the potential

of ZnO–CeO2 nanoparticles toward oxidative abatement of

pollutants present in paper industry wastewater. The cat-

alytic activity was evaluated for the removal of chemical

oxygen demand (COD), biochemical oxygen demand

(BOD5), total organic carbon (TOC), adsorbable organic

halides (AOX) and various chlorophenolic compounds

(chlorophenols, chlorocatechols, chloroguaiacols, chlor-

ovanilins, chlorosyringols, and chlorosyringaldehydes).

Experimental

Wastewater sample

The paper industry wastewater was collected from the

outlet of primary clarifier. Paper industry wastewater is

characterized by significant amounts of pollutants, includ-

ing chlorinated compounds, fatty acids, tannins, stilbenes,

resin acids, lignin and its derivatives, sulfur and its com-

pounds, etc. (Vepsäläinen et al. 2011; Catalkaya and Kargi

2008). The chlorinated compounds present in the paper

industry wastewater are toxic in nature and are collectively

estimated as AOX. Some of the chlorinated compounds

have been classified as priority pollutants by EPA, US

(Kozak et al. 1979).

Materials and methods

The starting materials for catalyst preparation were of

analytical grade. 1M H2SO4 solution was used to adjust the

pH of wastewater. Chlorophenolics standards were

obtained from Aldrich and Helix Biotech Corporation.

Analytical grade acetic anhydride was used after double-

distillation. Acetone/water (10:90) solution was used for

the preparation of standard stock solution of individual

chlorophenolics.

The physicochemical parameters of wastewater were

determined according to standard APHA procedures

(Clesceri et al. 1998). COD indicates the equivalent

amount of oxygen, required to chemically oxidize the

organic compounds in wastewater. It was measured by

closed reflux titrimetric method, using a mixture of chro-

mic (K2Cr2O7) and sulfuric acids. BOD5 measures the

biodegradable fraction of organic load. It was determined

by measuring the dissolved oxygen (DO) before and after

incubation of samples at 20 �C for 5 days. TOC is the

amount of carbon found in organic load of wastewater.

TOC values were determined through a TOC analyzer

(TOC-L CPH, Shimadzu) based on catalytic combustion

oxidation of organic carbon to CO2. The analysis was

carried out through the difference method, where the dif-

ference between total carbon (TC) and total inorganic

carbon (IC) gave the TOC value. AOX indicates the

amount of chlorined compounds adsorbable to activated

carbon. The AOX analyzer (Dextar, Thermo Electron

Corporation) was based on combustion ion chromatogra-

phy, where the electrochemical titration method was uti-

lized for quantification of halogens as AOX. Color values

were assessed by a UV–Vis spectrophotometer (SPEKOL

2000, Analytic Jena) at 465 nm. The values were calcu-

lated from the calibration curve made between absorbance

and color units for different concentrations of standard Pt–

Co solution. CHPs analysis was done by GC–MS (Trace

GC Ultra DSQ, Thermo) furnished with a capillary column

(TR-5). The procedure suggested by Lindstrom and Nordin

(1976) was followed for the extraction of CHPs from

wastewater. CHPs were first recognized by the NIST

library and then retention times were verified by injecting

the pure standard solutions (Choudhary et al. 2015).

Synthesis of catalysts

ZnO–CeO2 nanocatalysts with Zn:Ce mole ratio of 80:20,

60:40, 50:50, 40:60 and 20:80 were prepared by a facile co-

precipitation method. 1M Zn(NO3)2�6H2O and Ce(NO3)3-

6H2O solutions were mixed according to specific ratios,

and the solution was stirred at 70 �C for 15 min. 0.5M

NaOH was added drop-wise to attain the pH value of 10.

The resulting solution was stirred for 2 h and the washed

precipitates were dried overnight at 110 �C to obtain the

hydroxide precursors. The oxides were obtained after cal-

cination of these hydroxide precursors at 400 �C for 4 h

under air atmosphere.

Characterization of catalysts

The catalysts were characterized by various spectroscopic

and non-spectroscopic techniques. The phase identification

was done by XRD (Bruker AXS D8) with Cu Ka radiation

(k = 0.15 nm) as primary beam, at a scan rate of 2� min-1.

Diffraction patterns were compared with the JCPDS files.

The crystallite size was assessed by X-ray line broadening

from the Scherrer equation. FT-IR spectra of samples were

recorded on a spectrophotometer (PerkinElmer, C91158)

operating at a resolution of 4 cm-1. XPS analysis was

carried out on a spectrometer (ULVAC-PHI 5000 Versa

Probe II) equipped with monochromatic Al-Ka source

(hm = 1486.6 eV). Raman spectra were recorded on a

spectrometer (Renishaw Invia) at an excitation wavelength
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of 514 nm. N2-sorption isotherms were recorded on a gas

sorption analyzer (Quantachrome ASiQwinTM). The

specific surface area was calculated by BET equation and

the pore size distribution (PSD) was determined by DFT,

which were included in ASiQwin software. The morphol-

ogy of samples was studied by FE-SEM (Quanta, 20 kV)

and TEM (Tecnai G2 STWIN, 200 kV). Elemental analysis

of samples was carried out by EDX (51 XMX 1005

Oxford) coupled with FE-SEM microscope chamber.

Activity testing of catalysts

The oxidative degradation of organic pollutants in

wastewater was carried out in a glass reactor at 1 atm,

catalyst dose 1 g L-1, pH 4, temperature 90 �C and reac-

tion time 2 h (Anushree and Kumar 2015b). The wastew-

ater and the weighed amount of catalyst were loaded into

the reactor followed by oxygen introduction through a gas

inlet. After the experiment, the catalyst was recovered by

centrifugal separation and the supernatant liquid was ana-

lyzed for various physicochemical parameters.

Results and discussion

XRD analysis

The diffraction pattern of catalysts are presented in Fig. 1.

CeO2 displayed the pattern of cubic phase with reflections

at 2h value of 28.5�, 33�, 47.4� and 56.3� corresponding to

(111), (200), (220) and (311) crystal planes, respectively

(JCPDS 81-0792) (Anushree and Kumar 2015b). ZnO

exhibited the reflections for tetragonal phase at 31.8�,
34.5�, 36.3�, 47.6�, 56.7�, 63�, 66.5�, 68.1�, 69.2�, 72.8�
and 77.2� corresponding to (100), (002), (101), (102),

(110), (103), (200), (112), (201), (004) and (202) respec-

tively (JCPDS 79-0205). There was no diffraction peak for

ZnO up to zinc content of 20 mol%, indicating the incor-

poration of ZnO within ceria lattice. Further increase in Zn

content exhibited the peaks for ZnO phase, indicating that a

part of ZnO was inserted into the ceria lattice and another

part was precipitated as a separate phase onto CeO2 sur-

face. The broader and less intense peaks for ZnO–CeO2

indicated the decreased crystallite size. The crystallite size,

lattice parameters estimated from the broadening of (111)

and (101) diffraction of CeO2 and ZnO are listed in

Table 1.

The crystallite size of CeO2 was significantly decreased

with increase in Zn content. This decrease indicated the

role of Zn2? towards inhibition of CeO2 crystal growth,

which is consistent with the previous report (Lin et al.

2015a). The lattice parameter of CeO2 was found to be

5.417 Å, which decreased to 5.357 Å for Ce80Zn20. The
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Fig. 1 XRD pattern of ZnO–CeO2 catalysts

Table 1 Properties of ZnO–CeO2 catalysts

Sample Crystallite size (nm)a Lattice parameter (Å)a Average aggregate size (nm)b Specific surface area

(m2/g)c
Total pore volume (m3/g)c

CeO2

CeO2 10.6 5.417 45 ± 1.4 20 0.089

Ce80Zn20 6.8 5.357 41 ± 1.7 54 0.204

Ce60Zn40 6.2 5.382 30 ± 5.4 65 0.105

Ce50Zn50 6.1 5.387 18 ± 2.3 90 0.110

Ce40Zn60 5.6 5.373 16 ± 2.1 104 0.247

Ce20Zn80 5.3 5.393 18 ± 0.9 106 0.202

ZnO – – 40 ± 1.9 35 0.164

a XRD
b FE-SEM micrographs
c N2-sorption
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overall trend of decrease in lattice parameter is in good

correlation with the experimental study by Ramasamy and

Vijayalakshmi (2015). The decreased lattice parameter can

be ascribed to the smaller ionic radius of Zn2? in com-

parison to Ce4? (Le Gal and Abanades 2012).

Raman analysis

Raman spectroscopy was carried out to understand the

structural changes in CeO2 nanocrystals due to Zn addition,

and to characterize the oxygen vacancies (Fig. 2). CeO2

nanoparticles exhibited a strong peak at 462 cm-1, corre-

sponding to symmetric breathing mode (F2g) of oxygen in

fluorite structure of CeO2 (Jha et al. 2016). The Ce80Zn20

nanocatalyst exhibited an additional band at 600 cm-1,

related to the oxygen vacancies due to the presence of Ce3?

in CeO2 lattice (Lin et al. 2015b). The intensity ratio of the

bands at 600 and 462 cm-1 (I600/I462) was found to be 0.07,
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Fig. 2 Raman spectra of catalysts
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Fig. 3 XPS spectra of Ce40Zn60

catalyst a Ce3d, b Zn 2p, c O1s
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which is in good correlation with the previous study (Bao

et al. 2008). ZnO exhibited the bands at 330 cm-1 (E2

high–E2 low), 437 cm-1 (E2 high), and 658 cm-1 (E2

low ? B1 high). Small peaks at 380 and 583 cm-1 were

the characteristics of high density of common oxygen

defects in ZnO (Pal et al. 2014). On the basis of Raman
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spectroscopy, it can be concluded that zinc doping intro-

duces oxygen vacancies into the CeO2 lattice.

XPS analysis

The oxidation states of metal ions in Ce40Zn60 nanocatalyst

were investigated by XPS analysis. Figure 3 depicts the Ce

3d, Zn 2p and O1s XPS spectra deconvoluted using a peak

fitting process. Ce 3d XPS spectra exhibited eight fitted

peaks with two multiplets (u and v) corresponding to 3d5/2

and 3d3/2 spin-orbital components (Burroughs et al. 1976).

Six main components characteristic of Ce4? were observed

at the binding energies of 880.6, 887.3, 896.5, 899, 906.7

and 915.7 eV corresponding to v, v00, v¢¢¢, u, u00 and u¢¢¢,
respectively. Peaks for v� (879.6 eV), v0 (884.4 eV), u�
(879 eV) and u0 (900.7 eV) components evidenced the

presence of Ce3? (Bera and Anandan 2014).

Atomic fraction of Ce3? calculated from the integrated

peak areas ratio of Ce3? to the total of Ce4? and Ce3?

(Babu et al. 2009), was found to be 26%. Zn 2p3/2 spectra

presented a peak at 1020.9, corresponding to the presence

of Zn2? in ZnO lattice (Das and Mondal 2014). O1s spectra

exhibited three peaks. First peak centered at 528.8 eV was

related to the structural/lattice oxygen (63.9%). Peak at

531.6 eV indicated the presence of adsorbed surface oxy-

gen as OH ions (12.7%). The additional peak at 530.5 eV

was related to the supercharged oxygen (O2
-) near oxygen

vacant sites at the surface (23.3%). This particular peak

evidenced the oxygen storage/release capacity of the

nanocatalyst (Kullgren et al. 2013).

N2-sorption analysis

The surface area and porosity of catalysts was investigated

by N2-sorption measurements and the related BET surface

area and pore volume of all catalysts are summarized in

Table 1. All ZnO–CeO2 catalysts exhibited higher surface

than the single metal oxides, which increased from 54 to

106 m2/g with the increasing Zn content. This increase can

be related to the decreased crystallite size, as indicated by

XRD. Figure 4a presents the adsorption–desorption iso-

therm of Ce40Zn60 catalyst, where the presence of hys-

teresis loop indicated the presence of mesopores. During

adsorption, the inflection was observed at high relative

pressure, which represents the capillary condensation of

nitrogen during the filling of secondary pores. The des-

orption isotherm resulted into a narrow hysteresis at P/

Po[ 0.5, indicating the irregular pore structure (Anushree

and Kumar 2016). It is evident from isotherm that the

aggregation of non-porous primary spherical particles

resulted into the secondary pores (Hannach et al. 2014).

Pore size distribution, confirmed the presence of disordered

mesopores, with size ranging from 3 to 7 nm (Fig. 4b).

FE-SEM and TEM analysis

Figure 5a–g presents the FE-SEM micrograph of catalysts,

and the aggregate size ranges assessed from micrographs

are reported in Table 1. The CeO2 particles were aggre-

gated in the average size of 45 nm. With increasing Zn

content the aggregate size was considerably decreased and

achieved the minimum value of around 16 nm. TEM

micrograph of Ce40Cu60 along with its SAED pattern is

shown in Fig. 5h. TEM micrograph clearly revealed the

presence of mesopores, formed by aggregation of particles.

Estimated from figure, the average particle size of Ce40-

Zn60 was found to be 6 nm, which is in accordance with

XRD results.

Catalytic activity studies

Wastewater was analyzed for various physicochemical

parameters, i.e., COD, BOD, color, AOX, TOC, CHPs, and

their average values are listed in Table 2. The average

value of COD, Color, AOX and TOC removal in presence

of ZnO–CeO2 nanocatalysts is presented in Fig. 6. CeO2

Table 2 Average value of physicochemical parameters of

wastewater

Parameter Value

COD (mg L-1) 914

BOD5 (mg L-1) 242

TOC (mg L-1) 188

Color (mg Pt–Co L-1) 3004

AOX (mg L-1) 17.4

CHPs (lg L-1) 472

BOD5/COD 0.264

Fig. 6 Average COD, color, AOX and TOC removal
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exhibited the low abatement profile with 48% color, 28%

COD, 23% TOC and 21% AOX removal. Addition of ZnO

increased the catalyst activity, with maximum removal of

64% COD, 72% color, 54% AOX and 63% TOC over

Ce40Zn60 catalyst. Paper industry wastewater presented a

low Biodegradability index (BI = BOD5/COD) of 0.264

which was enhanced up to 0.423 after CWAO in presence

of Ce40Zn60 nanocatalyst. According to earlier reports a BI

value of 0.4 is required for the complete biodegradation of

wastewater (Chamarro et al. 2001). Thus, CWAO was

efficient in converting the non-biodegradable compounds

into easily biodegradable compounds. The treatment effi-

ciency of Ce40Zn60 nanocatalyst was further established for

the chlorophenolics (CHPs) removal. GC–MS analysis

(Table 3) of wastewater indicated the presence of total 25

CHPs. These compounds were categorized as chlorophe-

nols (CP), chloroguaiacols (CG), chlorocatechols (CC),

chlorosyringols (CS) and chlorosyringaldehydes (CSA),

according to their chemical family. Out of these CP con-

tributed the highest portion of 80.75%, followed by CG

(18.03%), CC (0.77%), CS (0.25%) and CSA (0.21%)

(Fig. 7a). Based on chlorine atom substitution (Fig. 7b),

CHPs were classified as mono-chlorophenolics (MCHPs,

13.21%), di-chlorophenolics (DCHPs, 40.21%), tri-

chlorophenolics (TCHPs, 46.54%), tetra-chlorophenolics

(TeCHPs, 0.01%) and penta-chlorophenolics (PCHPs,

0.05%). Overall 59% removal of CHPs was attained after

CWAO, with 62.7% CP, 43.9% CG, 22.1% CC, 54.1% CS

and 100% CSA removal (Fig. 8a). The PCHPs removal

was 100%, followed by TCHPs (73.3%), DCHPs (38%),

MCHPs (33.2%) and TeCHPs (32.3%) (Fig. 8b). More-

over, 2,3-DCP, 2,6-DCSA, 2,4,6-TCP and PCP were not

detected after treatment, indicating their complete degra-

dation during CWAO.

Recently, Ovejero et al. (2007) investigated the CWAO

of phenol over Platinum supported on multiwalled carbon

nanotubes (MWCNTs), and reported 94% phenol and 80%

TOC conversion at 2 MPa and 200 �C. Yang et al. (2015)

reported complete removal of phenol at 155 �C and

2.5 MPa over MWCNTs functionalized by O3. Morales-

Torres et al. (2011) tested the Pt/ACs in CWAO of aniline,

and achieved complete removal at 200 �C and 5 MPa. In

present study, 64% COD, 72% color, 63% TOC, 54% AOX

and 59% CHPs removal was obtained during CWAO of

paper industry wastewater over Ce40Zn60 nanocatalyst at

90 �C and 0.1 MPa (1 atm). Also, there was an appreciable

increase in BI from 0.264 to 0.423. Therefore, the mild

Table 3 Average concentration of CHPs in paper industry wastew-

ater before and after CWAO

S. no. Name of compound Before After % Removal

1. 3-CP 14.5 11.9 17

2. 4-CP 5.9 5.1 15

3. 2,6-DCP 29.9 18.3 39

4. 2,5-DCP 78.8 34.4 56

5. 2,4-DCP 33.4 14.6 56

6. 3,4-DCP 0.3 0.2 30

7. 2,3-DCP 0.2 ND 100

8. 2,4,5-TCP 212.7 55.3 74

10. 2,3,5-TCP 3.6 1.5 58

11. 2,4,6-TCP 0.08 ND 100

12. 2,3,4-TCP 1.4 0.8 40

13. PCP 0.2 ND 100

14. 4-CG 41. 9 24.6 41

15. 4,5-DCG 41.6 22.1 47

16. 4,6-DCG 0.5 0.5 3

17. 3,4,6-TCG 0.3 0.8 36

18. 3,4,5-TCG 0.1 0.06 31

19. 4,5,6-TCG 0.3 0.1 58

20. TeCG 0.4 0.3 32

22. 3,5-DCC 3.6 2.8 22

24. TCS 1.2 0.5 54

25. 2,6-DCSA 1.0 ND 100

Total 471.9 193.3 59

ND not detected

(a) (b)Fig. 7 Percentage of CHPs in

wastewater, according to

a chemical family, b attached

chlorine atom
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experimental conditions tried in our study seem to be

advantageous.

Role of catalyst in CWAO

Based upon above characterization results and the mecha-

nisms suggested in literature (Moreno et al. 2010), it could

be concluded that Ce4? is easily reduced to Ce3?, which is

the main active site. The reactant is adsorbed to the catalyst

surface and gets oxidized by the interface lattice oxygen,

generating oxygen vacancy at the interface. Next, the

gaseous O2 fills up the oxygen vacancy, forming adsorbed

active oxygen species which can react with another reac-

tant molecule. Figure 9 gives a graphical presentation to

the role of ZnO–CeO2 catalyst in CWAO.

Conclusion

The ZnO–CeO2 nanocatalysts prepared by the co-precipi-

tation method exhibited good performance in CWAO of

paper industry wastewater under mild conditions. Physic-

ochemical characterizations of catalysts depicted the

favourable role of Zn in textural and structural modifica-

tions of CeO2. Catalytic activity was improved by the

complementary effect between zinc and ceria. The com-

bination of CeO2 and ZnO in 40:60 molar ratios allowed

the highest removal efficiency. Presence of oxygen

vacancies, small size of particles, high surface area and

high pore volume justified the efficiency of ZnO–CeO2

nanocatalysts in removal of organic pollutants.
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