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Abstract In this study, influence of rapid thermal oxida-

tion RTO and embedding of gold nanoparticles on the

performance of porous silicon photodetector synthesised by

anodization technique were investigated. Anodization

technique was used to fabricate porous silicon photode-

tector at 10 mA/cm2 for 10 min. The structural, morpho-

logical, and photoluminescence properties of porous silicon

and gold nanoparticles were investigated. Dark and illu-

minated current–voltage I–V characteristics, linearity,

spectral responsivity, detectivity, and pulsed responsivity

of photodetector were investigated before and after RTO

and after incorporation of gold nanoparticles. The photo-

sensitivity of nano-porous silicon photodetector at 365 nm

was increased from 44 to 154 mA/W and to 200 mA/W at

10 V bias after RTO process and incorporating the gold

nanoparticles into the silicon matrix, respectively.

Keywords Porous silicon � RTO � Embedding � Gold
nanoparticles

Introduction

Ultraviolet detectors are of great importance due to their

many industrial applications, such as semiconductor devices

processing, missiles plume detection, space communication,

nuclear reactor, and ozone monitoring (Min and Kang 2001;

Monroy et al. 2001, 2003). Wide band-gap compound

semiconducting materials, such as diamond, SiC, GaN, and

AlGaN, were widely used to fabricate high sensitivity UV

detectors (Jain et al. 2000; Nanishi et al. 2003; Sang et al.

2013); these detectors are expensive and need sophisticated

fabrication technology. Wide band-gap heterojunction

detectors-based silicon have been developed to detect UV

radiation, but because the mismatch in lattice constants

between the overlay layer and silicon substrate had affecting

negatively the photosensitivity of these photodetectors

(Ding et al. 2015; Ismail 2006). Porous silicon photodetector

was used for UV detection, it has many advantages over the

other materials, such as high absorption coefficient for UV

region, it does not require anti-reflective coating and low

cost, and needs simple fabrication technology (Berger et al.

1994; Ismail 2010). The reported data revealed that the

preparation conditions like pore size, porosity, and pore

structure play major role in enhancement of its photosensi-

tivity for UV region. Recently, Lin et al. (2013) reported the

enhancement of nano-porous silicon photodetector for UV

region by rapid thermal oxidation RTO technique, the pho-

tosensitivity has been increased from 14 to 130 mA/W at

350 nm after RTO. In this work, synthesis and performance

improvement of anodized nano-porous silicon detectors for

UV region by post-rapid thermal oxidation and embedding

of gold nanoparticles into silicon matrix were investigated

and analyzed.

Experiment

Mirror-like monocrystalline Si substrates of 350 lm thick,

1–3 X cm electrical resistivity, and (111) orientations were

used. The porous layer was prepared by electrochemical etch-

ing technique. The substrates were cut into rectangles of

(1 cm 9 1 cm) areas. Anodization was carried out using a

Teflon cell with an electrolyte containing 48% HF and 99.9%

& Raid A. Ismail

raidismail@yahoo.com

1 Department of Applied Science, University of Technology,

Baghdad, Iraq

123

Appl Nanosci (2017) 7:9–15

DOI 10.1007/s13204-016-0544-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s13204-016-0544-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13204-016-0544-9&amp;domain=pdf


ethanol 1:1 by volume. The silicon samples were anodized at

current density of 10 mA/cm2 for 10 min. After anodization,

the silicon samples were washed out with deionized water for

15 min and dried under N2 ambient. RTO system was used to

oxidize the porous silicon layer at 700 �C for 90 s in static air

using bank of halogen lampswith one-side illumination. Pulsed

laser ablation technique was used to synthesise gold nanopar-

ticles by irradiating of high purity gold plate in methanol

solution by Nd:YAG laser pulses of 25 J/cm2 laser fluence; the

detail of synthesis method was presented elsewhere (Ismail

et al. 2012). Incorporating the porous silicon samples with Au

nanoparticles was carried out using the drop casting technique

after 1 h of sonication. After drop casing, the samples were

heated at 60 �C under nitrogen, Fig. 1 shows a sketch of cross-

sectional view of Au nanoparticles embedded nano-porous

silicon photodetector. Structural, morphological, and optical

properties of porous silicon and Au nanoparticles were exam-

ined by Inspect S50/FEI company scanning electron micro-

scopy, Angstrom AA 300 atomic force microscopy,

photoluminescence spectrometer (Liconix 3205N), and Shi-

madzu UV–Vis spectrophotometer. The dark and illuminated

I–V characteristics of photodetectors were investigated; the

photocurrent of the photodetectors was estimated under white

light and UV source (365 nm) illumination. The spectral

responsivity of the photodetectors before and after RTO and

incorporationwithAu nanoparticles wasmeasured in the range

of 350–900 nm using a monochromator. To calibrate the

monochromator, Sanwa silicon power meter was used for this

purpose.All the abovecharacteristicswere investigated at room

temperature. Pulsed responsivity was measured in the absence

of external bias using pulsed UV source at k = 365 nm and

storage oscilloscope of 200 MHz bandwidth.

Results and discussion

Figure 2 shows the SEM image of porous silicon before

and after RTO process, it is clear that the pores were

uniform distributed and almost have semi-circular shape

with average size of 200 nm. The porosity was estimated

and was about 80%. After oxidation, the average pore size

decreased to 85 nm and no significant alteration in pore

structure was noticed; the wall size was found to be around

33 nm.

The 3D AFM images of as-formed and oxidized porous

silicon layers are given in Fig. 3, AFM image of as-pre-

pared porous silicon (Fig. 3a) exhibits pyramid-like shape

distributed randomly over the whole porous surface. The

root mean square, RMS, of surface roughness and particles

height are decreased after RTO. The morphology of porous

layer was changed remarkably after RTO process, as

shown in Fig. 3b, the pores boundaries became clear, and

also this figure confirms that the pores have relatively

different sizes and shapes. The thickness of pore wall was

also increased after RTO. The estimated average particles’

size of porous layer before and after RTO was 50 and

25 nm, respectively.

The PL spectra of as-prepared porous silicon, oxidized

porous silicon, and Au embedded porous silicon are

Nano-porous silicon layer 

p- type silicon wafer 

Al - contact 

Au nanoparticles particles 

•••••••••••••••••••••••

Light 

Fig. 1 Schematic diagram of Au nanoparticles incorporated nano-

porous silicon photodetector

Fig. 2 SEM images of as-prepared (a) and oxidized porous silicon

(b)
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demonstrated in Fig. 4. The PL spectrum of as-prepared

porous silicon revealed that the peak intensity centred at

703 nm corresponding to energy of 1.76 eV and the PL of

oxidized porous sample exhibits the maximum intensity at

593 nm which corresponds to energy of 2.09 eV. The shift

in PL peak of oxidized sample toward short wavelengths

(blue shift of 110 nm) can be ascribed to reduction of

thickness silicon layer and due to decreasing of effective

silicon nanosized by oxidation (Song et al. 1997; Elhoui-

chet and Oueslati 2002). The PL spectrum of Au embedded

porous silicon revealed that PL peak was shifted to 515 nm

(blue shift of 188 nm) which corresponded to green light

region as well as the PL intensity has been increased after

this embedding. The origin of blue shift can be ascribed to

surface plasmon resonance SPR; this result agrees with

results reported by Tengku et al. (2013). The full width at

half maximum, FWHM, of porous PL spectrum was

increased after Au embedding. This useful shift in PL after

RTO and after embedding of Au nanoparticles can enhance

the spectral detection of porous silicon photodetectors

towards the short wavelengths.

Figure 5 shows the absorbance spectra of colloidal Au

nanoparticles; it is obvious that there are two noticeable

absorption peaks located at 302 and 500 nm due to quan-

tum confinement indicating the formation Au nanoparticles

(Tengku et al. 2013). The Au colloidal nanoparticles

solution was found to have a pink color. The morphology

of Au nanoparticles which investigated using the AFM

technique is given in Fig. 6; it has seen that all the particles

were vertically oriented. The average particles size esti-

mated from this measurement was around 45 nm. The

SEM image of Au nanoparticles deposited on porous sili-

con was illustrated in Fig. 7; the agglomeration of Au

nanoparticles to form micro-sized particles with different

shapes was noticed as shown in the inset of Fig. 7. Most of

coarse Au particles are agglomerated at silicon walls and

the nanosized Au particles are entered inside the pores of

silicon.

The EDX spectrum of Au nanoparticles deposited on

porous silicon is presented in Fig. 8, this figure confirmed

the presence of Au particles, silicon, and oxygen. The

silicon peak in EDX arises from the molecules of oxygen

trapped in pores. No traces of other elements were found in

the EDX spectrum.

The effect of Au nanoparticles embedded and oxidation

on the dark current–voltage characteristics of porous sili-

con photodetectors are depicted in Fig. 9; the quality of

junction was significantly improved after adding of Au

nanoparticles. The incorporation of Au nanoparticles

resulted in increasing the forward current and decreasing

the leakage current due to decreasing the resistivity of

porous layer. No remarkable variation in the I–V

Fig. 3 AFM images of porous

silicon surface before (a) and
after RTO (b)
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characteristics of photodetector was seen after RTO pro-

cess; slight decreasing in forward current can be ascribed to

increasing of resistivity due to oxidation cycle. The recti-
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Fig. 4 PL spectra of as-prepared porous silicon surface (a) after RTO (b) after Au nanoparticles embedding (c)
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Fig. 5 Absorbance of colloidal Au nanoparticles

Fig. 6 3D AFM image of Au nanoparticles
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fication factor (ratio of forward current to reverse current

If/Ir) of Au embedded porous silicon junction was higher

than the as-formed and oxidizing nano-porous silicon

junctions. No soft breakdown voltage was noticed at bias

\10 V. It is clearly seen that the reverse current was

decreased after Au embedding and became bias indepen-

dent. The ideality factor n of porous silicon junction was

calculated using the following equation and has found its

value was 5.1, 6, and 2.8 for as-prepared junction, oxidized

junction, and Au embedded junction, respectively:

n ¼ q

kT

DV

Dln If
Is

ð1Þ

where Is is saturation current of the junction which calcu-

lated from a semi-logarithmic relationship of forward

Fig. 7 SEM image of Au embedded in silicon matrix

Fig. 8 EDX spectrum of Au nanoparticles embedded in silicon

matrix
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Fig. 9 Dark I–V characteristics of porous silicon photodetectors
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Fig. 10 I–V characteristics of photodetectors under illumination with

a white light and b UV light
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current versus bias voltage plot (not shown here).

Decreasing the ideality factor after adding Au particles in

silicon matrix indicating an improvement in junction per-

formance arises from decreasing of structural defects and

due to decreasing the shunt resistance of porous layer.

Figure 10 shows the I–V characteristics of as-prepared,

Au embedded, and oxidized porous silicon photodetectors

under white light and UV illumination. The photocurrent

Iph has increased under white illumination from 1.08 to

1.24 and to 1.91 mA at 10 V bias after RTO and Au

embedding, respectively. This improvement can be attrib-

uted to reduction in surface states and recombination cen-

tres. The on/off ratio (Iph/Id ratio) at 10 V of as-prepared

oxidized and Au embedded porous silicon photodetectors

at 365 nm illumination was found to be 1.3, 5.1, and 8.1,

respectively. This enhancement could be attributed to

increasing the absorption coefficient of porous layer and

short diffusion length of photogenerated carriers, as well as

due to increasing the photo-induced carriers from Au to

porous silicon. The spectral responsivity plot at 10 V bias

of porous silicon photodetectors is given in Fig. 11, the

peak of response of as-prepared and oxidized photodetec-

tors was found at visible region, while the peak of response

of Au nanoparticles embedded porous silicon photodetector

was located at 365 nm with responsivity of 205 mA/W due

to increasing the light absorption by Au nanoparticles. This

value is higher than that enhanced p–n junction silicon

photodiodes and wide band-gap heterojunction-based sili-

con photodetectors (Khodami et al. 2008; Han et al. 2015;

Um et al. 2011). The shift in peak of response of pho-

todetector toward UV region after adding the Au

nanoparticles ascribed to the enhancement in UV absorp-

tion by Au nanoparticles agglomerated at silicon surface.

Decreasing of the responsivity after 750 nm is due to

absorption edge of porous silicon.

The pulsed responsivity of photodetectors at 365 nm has

been investigated, as shown in Fig. 12. The pulsed

responsivity of as-prepared porous silicon photodetector

has increased from 1.3 to 1.7 V/W and to 2 V/W at zero

bias after oxidizing and adding of Au nanoparticles,
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Fig. 11 Spectral responsivity plot of porous silicon photodetectors at

10 V bias

Fig. 12 Pulse response of porous photodetectors (a) as-prepared (b) after RTO (c) after Au nanoparticles embedding (c)
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respectively, indicating the improvement in UV photore-

sponse of the porous silicon photodetector.

This result can be explained on the basis of increasing

the depletion layer width of the junction after RTO and

embedding of Au nanoparticles.

Conclusion

In this paper, we have successfully enhanced the sensitivity

of porous silicon photodetectors for UV detection using

simple, competitive, cost-effective, and novel technique.

This technique involved two steps: post-rapid thermal

oxidation of porous silicon photodetector and incorporation

of gold nanoparticles into silicon matrix photodetector. The

rectification properties of junction have been improved

after adding of Au nanoparticles. The on/off ratio of pho-

todetectors under reverse bias was increased after oxidation

and embedding steps. The Au nanoparticles embedded

porous silicon photodetector has a peak of response at

365 nm with sensitivity higher than as-prepared and oxi-

dized nano-porous silicon photodetectors by factor 4.6 and

1.6, respectively. The pulsed responsivity of photodetectors

for UV light has improved after post RTO of porous layer

and embedding of Au nanoparticles into pores of silicon

matrix.
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