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Abstract Among the different types of metal oxides, zinc

oxide (ZnO) is a most commonly used metal oxide in a

broad variety of applications. In the present investigation, a

modified green synthesis route was used to synthesize pure

and starch-capped ZnO (ZnO/starch) quantum dots (QDs)

and studied their structural and optical characteristics. In

this study, hexagonal crystal structure was observed in both

pure and ZnO/starch QDs using X-ray diffraction tech-

nique. A spherical-shaped surface morphology was found

with the size of 5–10 nm using transmission electron

microscope technique. The interaction between ZnO QDs

and starch molecules was proved via Fourier infra-red

spectrometer technique. On the other hand, their fluores-

cence behaviors were investigated using photolumines-

cence technique, in that the ZnO/starch QDs showed an

enhanced emission behavior when compared to the pure

ZnO QDs. Further, the solar photocatalytic activity of both

the ZnO QDs was examined with the dye Rhodamine B

(RhB) at the end of 30, 60, 90, and 120 min. In this, ZnO/

starch QDs show a good and more decomposition of RhB

than pure ZnO QDs. Collectively, in the present study,

green synthesis route produced an efficient QDs (pure and

ZnO/starch) and it will be very useful for many other QDs.

The ZnO/starch QDs are suitable for decomposing the RhB

and other toxic organic dyes.

Keywords Zinc oxide � Starch � Green synthesis �
Quantum dots � Optical properties � Solar photocatalytic

activity

Introduction

In the recent research on semiconductor, nanoparticles

(NPs)/quantum dots (QDs) have become so important

because of their greater potential in opto-electronic devices

and biological applications (Coe et al. 2002; Fonoberov

and Balandin 2006; Rosenthal et al. 2011; Singh et al.

2012). The optical properties of QDs strongly depend on

the inter-dot distance which in turn is due to the quantum

size effect (Murray et al. 2000). Typically, zinc oxide

(ZnO) is a well-known semiconductor with a wide bandgap

(*3.37 eV) having unique optical and bio-compatible

properties which make it a better candidate for bio-imaging

than metal and chalcogenide NPs (Wu et al. 2008). Some

of the methods have been reported earlier for synthesizing

the ZnO nanocrystals in aqueous solution but they either

involved an alkaline media or an annealing method (Noack

and Eychmuller 2002; Jin et al. 2003; Wang et al. 2004;

Ristic et al. 2005; Sahdan et al. 2010; Xu and Wang 2011;
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Huang and Duan 2014) which makes them unsuitable for

biological applications. Further, in this case, using various

chemicals may produce toxicity which contaminate the

NPs and make them unsuitable for biological applications.

In order to use the ZnO nanocrystals for bio-applications,

the synthetic process has to meet several requirements that

should contain only bio-compatible materials or a suitable

surface capping agent with a stable colloidal solution and

many more (Li et al. 2007; Ratkovich and Penn 2009).

The chemical capping method is now extensively used

in the synthesis of NPs since the concentration of capping

molecule controls the particles size as well as protects the

particles from coagulation (Templeton et al. 2000). It can

be carried out at high or low temperature depending on the

reactants (Wing et al. 2012). Indeed, organic molecules

capped with inorganic nanostructures introduce a new type

of photophysical and photochemical properties resulting

from the combinatorial effects of organic and inorganic

phases (Wilkes et al. 1985; Levy et al. 2004). For instance,

conjugated ZnO nanostructure could extend the absorption

band up to the visible region and can play an important role

in the photocatalytic degradation which could enhance high

photocatalytic activity (Qiu et al. 2008; Sudha et al. 2013).

Many methods are available for attaching the polymer

chains onto surface of NPs, even though the polydispersed

NPs nature serves agglomeration due to lack of effective

surface passivation. In order to solve this problem, starch

molecule is used as a surface capping agent for stabilizing

the NPs and to control the particle size. Previous studies

suggest that the starch is used as one of the best candidates

in ‘‘green’’ capping agents, and a bio-compatible, bio-

degradable material and renewable polymer. And also it

adopts right-handed helical conformation in aqueous

solution, in which the extensive number of hydroxyl groups

can facilitate the complexation of metal ions to the

molecular matrix (Wei et al. 2004; Babu et al. 2013).

Therefore, it provides stable surface passivation and/or

protection to prevent the aggregation of particles (Rav-

eendran et al. 2006; Engelbrekt et al. 2009). Nowadays

semiconductor NPs are used for photocatalytic degradation

of toxic organic compounds due to their unique functions

(Hoffmann et al. 1995; Ullah and Dutta 2008). In this case,

ZnO has been widely used because of their photoactive in

the near-UV areas and need of less power of solar light

(Hong et al. 2009; Ali et al. 2013).

Dyes are extensively used in the textile industry and the

wastewater effluents containing dyestuffs such as non-

fixed dyes, fluorine dyes and azo dyes and their degra-

dation products from these textile industries are one of the

major pollutants of the aquatic environment because of

their huge volume of production from industries, slow

biodegradation and decoloration, and toxicity to various

biological organisms (Byrappa et al. 2006; Kyung et al.

2005; Zhang 2012). In recent years, available techniques

are not completely removed and degraded from the dif-

ferent types of dyes. Therefore, the removal of such dyes

from the aquatic system is extremely important and

remains a challenge (Bunhu et al. 2011). For instance,

Rhodamine B (RhB) is a xanthene dye which is widely

used as a colorant in textiles and food stuffs, and also in

water tracer fluorescent. It causes many health-related

harmful effects such as irritation to the skin, eyes and

respiratory tract. It produces carcinogenicity, reproductive

and developmental toxicity, neurotoxicity and chronic

toxicity to humans and animals (Jain et al. 2007). Con-

sequently, the present study was aimed to develop an easy,

environment friendly and cost-effective ZnO QDs by a

‘‘green’’ synthesis route using starch as capping agent.

More importantly, the photoluminescence (PL) and pho-

tocatalytic activities in RhB dye of both pure ZnO and

ZnO/starch QDs were investigated.

Materials and methods

Chemicals

All chemicals used were of standard analytical grade (AR)

and not further treated. Zinc acetate (Zn(CH3COO)2),

sodium hydroxide (NaOH) and starch are the precursors

with the solvent of double distilled water (DDW). RhB dye

was used for photocatalytic degradation study. The detailed

sample preparation techniques are described as follows.

Preparation of QDs

For the synthesis of ZnO QDs, 0.05 mol of Zn(CH3COO)2

solution was freshly prepared to which freshly prepared

NaOH (base solution) was slowly added in drops till the pH

reaches 10. The mixture solution was stirred vigorously

until a white color colloidal solution was formed. Further,

the solution was treated under ultrasonic condition for

stabilization of particles. Finally, the solution was stored

without any annoyance so that the particles get sedimented.

The sedimentation was washed several times for removing

the unreacted compounds and then it was centrifuged at

10,000 rpm for 20 min. After that, the particles were sep-

arated from the solution and then dried in vacuum desic-

cator. Further, collected crystal sample was oxidized

through annealing treatment and grinded well. Finally, a

white color ZnO powder was obtained and used for further

analysis. For ZnO/starch QDs, the same procedure was

performed but the capping agent of starch (as monolayer)

was added in drops into the Zn(CH3COO)2 solution before

changing the pH value. Finally, the prepared samples were

analyzed under various characterization techniques.
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Preparation of photocatalysts

For photocatalysis analysis, 0.03 mol of RhB dye was

dissolved in 50 ml of DDW and stirred well under dark

condition. Then, 9 mg/50 ml of each QD sample was dis-

persed in the dye solution and stirred well to make a

complex formation between QDs and dye. The catalytic

sample solutions were taken in the petri dishes and then

placed them under solar light for degradation. The whole

experiment was done under solar light environment con-

dition (Wu et al. 2012). The each irradiated sample was

collected between the specific time intervals of 30 min

such as 30, 60, 90 and 120 min and then used for UV

absorption measurement to know the decomposition

effects.

Results and discussion

Structural analysis

In this study, both pure ZnO QDs and ZnO/starch QDs

have shown the hexagonal crystal structure confirmed

through XRD patterns (Fig. 1a, b) of powder XRD tech-

nique (X’pert PRO model) with CuKa radiation

(k = 1.54809 Å
´

) at room temperature. The hexagonal

(wurtzite) crystal nature is in close agreement with the

standard values (JCPDS card: 36-1451). In the case of

ZnO/starch QDs, no major change was observed due to the

effect of starch because of its chemical composition

(Djokic et al. 2008), but a slight variation was observed in

the peak broadening and intensity. The peak broadening

clearly indicates the formation of small sized particles than

that of ZnO QDs (Choi et al. 2003). Finally, Debye-

Sherrer’s formula was used to estimate the crystalline size

(D; average particle size) (Cullity 1978) of both the QD

samples which were 15 and 10 nm, and their calculated

lattice constant values which were 2.4741 and 2.4636 Å,

respectively.

TEM (model: JEM-2010) images of both the pure and

ZnO/starch QDs were presented in Fig. 2a, b, respectively.

A spherical-shaped particle nature was observed in the

ZnO QDs whose size was nearly 5–10 nm (image a), where

slightly elongated particles with little agglomeration were

also observed which may be due to the powder samples

embedded on the copper-coated grid (Klaumunzer et al.

2014). Whereas in the case of ZnO/starch QDs, it shows

spherical-shaped particle nature but cluster-like surface

morphology was observed because ZnO QDs are embed-

ded inside the polymer-like starch matrix (image b). Hence,

it clearly shows the formation of monodispersed particles

and we confirm that this was due to the capping effect of

starch molecule. A similar type of morphology was

observed as early in the starch-capped CdSe nanostructures

(Oluwafemi 2009) and this report highly supports the

results of this TEM results. The calculation of particle size

was difficult due to its clustered morphology. Conse-

quently, it may be approximately ±5 nm and, therefore, we

confirmed that the size of the both of the QDs lies in QDs

scale region. The elemental composition of ZnO and ZnO/

starch QDs was confirmed using energy dispersive X-ray

analysis (EDAX) technique (model: FEI Quanta 200). In

this study, Fig. 3a and b shows the EDAX spectrum of pure

ZnO and ZnO/starch QDs. From this analysis, it is con-

firmed that the presence of elements and their corre-

sponding composition values were found to be Zn66O34 and

Zn96O4, respectively. In the case of ZnO/starch QDs, an

unknown peak (* symbol indicated in figure) was observed

and we believed the presence of starch molecule on it

which is responsible for the formation of monodispersed

particle nature.

The chemical structure and interaction between the ZnO

QDs and starch molecule were confirmed using KBr mode

Fourier infra-red spectrometer (FTIR) spectrum (model:

Bruker Tensor-27). The FTIR spectrum of pure ZnO QDs

(a), ZnO/starch QDs (b) and starch molecule (c) was given

in Fig. 4a–c, respectively. In this study, the broad band

located between 400 and 550 cm-1 was attributed due to

the Zn–O stretching mode and the other bands are corre-

sponding to the stretching vibration of O–H bond and

1,410 cm-1 was due to asymmetric and symmetric

stretching vibration of carbonyl group (COO–Zn coordi-

nation) (Jiang et al. 2008). For the comparison purpose,

starch molecule FTIR spectrum was recorded. Naturally,

starch molecule contains many of O–H functional groups

(Tomasik and Schilling 2004), further these are easy to

bind with the metal surface. The major peaks at
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Fig. 1 XRD patterns of pure ZnO QDs (a) and ZnO/starch QDs (b)
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1,150 cm-1 (C–O–H group), 1,080 and 1,016 cm-1 (C–O–

C group) were due to the anhydroglucose ring of starch and

2,930 cm-1 was characteristic of C–H stretching associ-

ated with ring methane hydrogen atoms (Ma et al. 2009;

Zamari et al. 2012). And other peaks are corresponding to

766 cm-1 (C–C stretching), 860 cm-1 (C–C, CH2

deformation), 1,428 cm-1 (CH2 bending), 1,646 cm-1 (O–

H bending of water absorbance) and 2,930 cm-1 (CH2

deformation and C–O–O stretching), respectively. In case

of starch-capped ZnO QDs, the appearance/disappearance

(** symbol indicated in the graph) and shifting (* symbol

indicated in the graph) of peaks confirm the bond formation

between ZnO QDs and soluble starch molecule, where

covalent bond was not formed between ZnO QDs and

starch molecule which was confirmed from the previous

report (Vigneshwaran et al. 2006).

Optical analysis

In the present study, Fig. 5 shows the UV absorption

spectrum (UV–VIS–NIR spectrophotometer, Shimatzu

3600 model) of pure ZnO (a) and ZnO/starch (b) QDs, the

direct band to band transition has occurred and their cal-

culated corresponding bandgap energy values was

approximately 3.8 eV (320 nm) calculated using E = hc/k
formula. A similar observation was also found by the

previous reports (Irimpan et al. 2007; Klingshirn 2007),

which hold well with our results. In the case of ZnO/starch

QDs, a little red shift and enhanced absorption was

observed in the peak position when compared with ZnO

Fig. 2 TEM images of pure

ZnO QDs (a) and ZnO/starch

QDs (b)

Fig. 3 EDAX spectrum of pure

ZnO QDs (a) and ZnO/starch

QDs (b)

500 1000 1500 2000 2500 3000 3500 4000

14
10

* *
*

**

29
30

10
16 11

50

c

b

a

T
ra

n
sm

it
ta

n
ce

 (
%

)

Wavenumber (Cm-1)

Fig. 4 FTIR spectrum of pure ZnO QDs (a), ZnO/starch QDs (b) and

starch (c)
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QDs. Therefore, it is believed that this shift was due to the

encapsulation effect of starch molecule around the ZnO

crystals and it might be a reason for the formation of

cluster-like morphology (Mercedes et al. 2006) which goes

well with our TEM results (clustered morphology in ZnO/

starch QDs).

The PL emission behaviors of both pure ZnO and ZnO/

starch QDs were measured by spectrofluorometer (Spe-

crofluoromax-4 model) and excited at 325 nm (Fig. 6a, b).

From the pure ZnO QDs, we observed a violet emission

peak at 365 nm assigned near band-edge emission arising

from the recombination of trapped electron–hole pairs and

additionally an oxygen vacancy-related visible green

emission band at 550 nm was also observed. These emis-

sion behaviors are believed that whenever quantum con-

finement takes place their bandgap nature changes from

indirect to direct bandgap (Sun et al. 2008; Hu and Chen

2008; Yang et al. 2008). Usually, bulk ZnO does not show

this much of luminescence behavior because of their

indirect bandgap nature (Studenikin et al. 2000). When

having direct bandgap for capped/doped materials, wider

PL is possible, whereas from the ZnO/starch QDs, we have

observed an interesting broad blue emission spectrum from

violet to green region, maximum at 440 nm which is due to

the recombination electrons being trapped in random sur-

face holes. In this case, near band-edge and oxygen

vacancy-related emission behaviors are quenched due to

the surface passivation and thus enhanced the blue emis-

sion because small sizes of ZnO QDs are formed inside the

starch matrix (Malik et al. 2014) (see TEM result of ZnO/

starch QDs). Our opinion is that this type of blue emission

behavior is an interesting one. In this case, so far a few

reports were documented in relation to ZnO/starch NPs.

This emission nature might be attributed due to the smaller

particles that adhered together to form elongated particles

(Vigneshwaran et al. 2006; Chandramouleeswaran et al.

2007; Prasad et al. 2010). Further, color emissions of these

QDs were confirmed through fluorescence images under

UV light source using fluorescence microscope (Fig. 7a,

b).

Photocatalysis analysis

The photocatalytic activity of both the QDs was charac-

terized by the degradation activity of RhB dye. In the

photocatalysis process, UV light-absorbed QDs promote

the electrons from valance band (VB) to conduction band

(CB) and the outcome of this process is a region of positive

charge holes (h?) in the valance band (VB) and negative

charge electrons (e-) in the conduction band (CB) as

ZnO + ht ! ZnO ðhþ
VB + e�CBÞ

The leaving holes in the VB react with the hydroxylated

surface to produce �OH radicals which are the most potent

oxidizing agents and the degradation rate confirms the

potency of the �OH radical. The photo-generated electrons

react with the molecular oxygen (O2) to produce

superoxide radical anions (�O�
2 ) and then photo-generated

holes react with water to produce hydroxyl (�OH) radicals.

These reactive radicals are then responsible for the

degradation of organic compounds with QDs (Turchi and

Ollis 1990; Pouretedal et al. 2010). In this study, at the end

of each interval time, the color difference in the irradiated

dye solution of both pure and ZnO/starch QDs was

observed and it confirms degradation of RhB dye,

whereas no observable dye degradation in RhB dye

solution was found after irradiation. Therefore, we

conclude that the effect of degradation was due to the

presence of QDs in the RhB dye solution under solar light

environment (Fig. 8 a–d). In this case, the absorption

spectrum for solar photocatalytic activity of both the pure

ZnO and ZnO/starch QDs was presented in Fig. 9a, b,

respectively. The absorption spectrum of RhB dye was

measured first and it shows the maximum absorption in the

visible region which is at 550 nm and also a minimum

absorption in the UV region. Further, all the irradiated

samples show a higher photocatalytic activity around

550 nm (Nagaraja et al. 2012) where their absorption

intensity decreases slowly with increase in the irradiation

time which indicates the degradation of the dye (Ali et al.

2013). Due to the formation of more free-radical from

small size of QDs, a higher degradation effect was

observed in the ZnO/starch QDs corresponding to that of

pure ZnO QDs (Qiu et al. 2008).
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The photodegradation comparison spectrum was plotted

as a relation between irradiation time and absorption

intensity in Fig. 9c. The degradation percentage of the dye

was determined (Fig. 9d) in terms of change in maximum

absorption intensity before and after irradiation and it was

calculated using the following formula (Khayyat et al.

2012).

D %ð Þ ¼ A0 � Atð Þ
A0

� 100

where D is the degradation efficiency of dye or dye

removal efficiency (in percentage), A0 is the absorption of

dye maximum before irradiation (in 0 min) and At is the

absorption of dye maximum after irradiation (t in minutes).

These results confirm the red shift in UV absorption

spectrum (Fig. 5a, b) and also support the decrement of

bandgap energy corresponding to the samples results

without photocatalytic action. Hence, the results show less

degradation efficiency (approximately 11 %) even though

we have achieved ZnO/starch QDs photodegradation of

dye under solar light environment because this type of

photodegradation can be suitable to remove the contami-

nation from the river water. But this degradation efficiency

will be increased with increased irradiation time and also it

may show increased degradation rate. The results of this
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Fig. 7 Fluorescence images of

pure ZnO QDs (a) and ZnO/
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Fig. 8 Photographic images for solar photodegradation of RhB dye

before irradiation (a), RhB dye after irradiation (120 min) (b), pure

ZnO QDs with RhB after irradiation (120 min) (c) and ZnO/starch

QDs with RhB after irradiation (120 min) (d)
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study indicate that the photocatalytic activity of ZnO:starch

QDs was much higher than that of pure ZnO QDs. Simi-

larly, Shi et al. (2011) and Zhang (2013) found a very good

photocatalytic degradation of RhB dye with TiO2 NPs.

Conclusions

In the present investigation, a modified precipitate green

synthesis route was used to prepare the pure ZnO and

ZnO/starch QDs because of its mild, simple and efficient

green route for producing the QDs. In this study, the XRD

results show the hexagonal crystal structure and TEM

images indicate 5–10 nm spherical-shaped particles. Fur-

ther, the FTIR studies confirm the interaction between

ZnO QDs and starch molecule. In the PL analysis, an

interesting strong and broad blue emission was observed

in ZnO/starch QDs which is entirely different from the

pure ZnO QDs. And also, the solar photocatalytic activity

of the ZnO/starch QDs shows the enhanced degradation of

the RhB dye. Consequently, the results of the present

study are concluded that a modified precipitate green

synthesis route is a valuable method for the synthesis of

both the pure ZnO and ZnO/starch QDs. Among these

QDs, ZnO/starch QDs have a potential photocatalytic

degradation of RhB dye compared to the pure ZnO QDs

and it may be useful for variety of dyes present in the

effluent discharged from various industries. However,

more detailed studies on these aspects are needed and to

be elucidated.
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