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Abstract Mathematical model for peristaltic flow of

nanofluid between eccentric tubes is investigated through a

porous medium. Assumptions of long wavelength and low

Reynolds number are carried out to observe the intestinal

flow. The flow is considered to be unsteady and incom-

pressible. Analytical solutions are evaluated through ho-

motopy perturbation method. The expression of pressure

rise is obtained through numerical integration whose data is

presented in table. The problems under consideration are

made dimensionless to reduce the complication of the

analysis and to merge the extra parameters. All the

emerging parameters affecting the flow phenomenon are

discussed graphically. Trapping bolus scheme is also pre-

sented through streamlines for various pertinent quantities.

Keywords Heat and mass transfer � Peristaltic flow �
Nanofluid � Eccentric cylinders � Porous medium �
Analytical solutions � Homotopy perturbation method

Introduction

Nanotechnology has immense contribution in industry since

materials of nanometer dimensions exhibit incomparable

physical and chemical characteristics. Water, ethylene glycol

and oil are common examples of base fluids used for the

nanofluid phenomenon. Nanofluids have their enormous

applications in heat transfer, such as microelectronics, fuel

cells, pharmaceutical processes, and hybrid-powered engines,

domestic refrigerator, chiller, nuclear reactor coolant, grind-

ing and space technology, etc. They explore enhanced thermal

conductivity and the convective heat transfer coefficient is

counter balanced to the base fluid. Nanofluids have attracted

the attention of many researchers for new production of heat

transfer fluids in heat exchangers, in plants and in automotive

cooling significations, due to their extensive thermal proper-

ties. A large amount of literature is available which deals with

the study of nanofluid and its applications (Yoo et al. 2007;

Manca et al. 2012; Wang and Mujumdar 2007). The process

of peristalsis is widely used in evaluating swallowing of food

through the esophagus, chyme motion in the gastrointestinal

tract, vasomotion of small blood vessels, capillaries and

arterioles, urine transport from kidney to bladder and a toxic

liquid transportation in the nuclear industry, etc. Most of the

industrial used fluids have non-Newtonian characteristics and

have been investigated by many researchers (Shukla and

Rahman 1998; Naz et al. 2008; Hameed and Nadeem 2007;

Xu et al. 2006; Patel and Timol 2009).

In the field of fluid mechanics, peristalsis has obtained the

central place in the minds of many researchers, modelers,

scientists, engineers and mathematicians due to their large

amount of applications in chemical industries, nuclear reac-

tors, physiology and biomedical apparatus, etc. Studies

relating the peristaltic flow of various Newtonian and non-

Newtonian fluid models have been investigated by many
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researchers (Srinivas and Kothandapani 2008; Sobh et al.

2010; Tripathi 2011a, b; Mekheimer and Abdelmaboud

2008). Mekheimer et. al. (2013) have analyzed the mathe-

matical model of peristaltic transport through an eccentric

cylinders. Influence of lateral walls on peristaltic flow in a

rectangular duct has been investigated by Reddy et al. (2005).

The idea of nanofluid in peristalsis has been explored by some

of the researchers. Nadeem and Maraj (2012) have derived

the mathematical analysis for peristaltic flow of nanofluid in a

curved channel with compliant walls under the constraints of

long wavelength and low Reynolds number. Recently, Na-

deem et al. (2013) have presented the effects of heat and mass

transfer on peristaltic flow of a nanofluid between eccentric

cylinders. To the best of authors’ information, peristaltic flow

of nanofluid through eccentric cylinders having porous

medium has not been yet analyzed.

Keeping in mind the applications of nanofluid in peri-

stalsis, the major intention of this paper is to extend the work

of Nadeem et al. (2013) for the unsteady peristaltic flow of

nanofluid between eccentric cylinders through porous space.

The governing equations are simplified through the dimen-

sionless process and the approximations of low Reynolds

number and long wavelength. Analytical solutions are eval-

uated for the velocity, temperature and nanoparticle con-

centration with the help of homotopy perturbation method.

Numerical data are obtained for the pressure rise expression

using the numerical integration. The possible physical effects

of all the emerging parameters are carried out through

drawing graphs of various quantities. Trapping bolus phe-

nomenon is also presented through streamlines.

Mathematical structure of the problem

Let us analyze the peristaltic pumping characteristics of an

unsteady and incompressible nanofluid between two ver-

tical eccentric tubes through a porous space. The geometry

of the flow is arranged such that the inner tube is inductile

but moving with the constant velocity V along its length

and the outer flexible tube is examining a peristaltic wave

traveling down its walls. The inner tube has radius d but we

are looking to discuss the motion to the center of the outer

tube. The center of the inner tube is now at the position

r ¼ �; z ¼ 0; where r and z are coordinates in the cross

section of the pipe as shown in Fig. 1. Then the boundary

of the inner tube is described by r1 ¼ d þ � cos h; where �

is the eccentricity parameter of the inner tube position.

Further, we consider that boundary of the inner tube is at

temperature T0 and the outer tube is kept at temperature T1.

The nanoparticle concentrations are described as C0 and C1

at the walls of inner and outer cylinders, respectively.

The boundaries of the inner and outer walls are

respectively described as (Mekheimer et al. 2013):

r1 ¼ d þ � cos h;

r2 ¼ a þ b cos
2p
k
ðz � ctÞ

� �
;

where d and a represent the radii of the inner and outer

tubes, b is the amplitude of the wave, k shows the wave-

length, c implies the propagation velocity and t is the time.

The law of conservation of mass, momentum, energy

and nanoparticle concentration for an incompressible

nanofluid through a porous medium are described as

(Nadeem et al. 2013):

divV ¼ 0; ð1Þ

qf

dV

dt

� �
¼ �rp þ ldivVþqfga T � T0ð Þ

þ qfga C � C0ð Þ � l
k1

V; ð2Þ

qcð Þf

dT

dt

� �
¼ r � KrT

þ qcð Þp DB rC � rTð Þ þ DT

T0

rT � rTð Þ
� �

; ð3Þ

Fig. 1 The simplified model of geometry of the problem
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dC

dt
¼ DBr2C þ DT

T0

r2T ; ð4Þ

where qf is the density of the incompressible fluid, k1

denotes the permeability of the porous medium, ðqcÞf is the

heat capacity of the fluid, ðqcÞp gives effective heat

capacity of the nanoparticle material, K implies thermal

conductivity, g stands for constant of gravity, l is the

viscosity of the fluid, d/dt gives the material time

derivative, p is the pressure, C denotes the nanoparticle

concentration, DB is the Brownian diffusion coefficient and

DT is the thermophoretic diffusion coefficient. The velocity

vector for the current problem is described as V ¼
ðw; 0; uÞ: We incorporate the following dimensionless

quantities

p0 ¼ a2

lck
p; u0 ¼ u

c
; w0 ¼ k

ac
w; V 0 ¼ V

c
; z0 ¼ z

k
;

r0 ¼ r

a
; h0 ¼ h; t0 ¼ c

k
t; / ¼ b

a
;

�0 ¼ �

a
; k0 ¼ k1

a2
; Re ¼ qfca

l
; d0 ¼ d

a
; �h ¼ T � T0

T1 � T0

;

r ¼ C � C0

C1 � C0

; Pr ¼
l

qfa
; Sc ¼

l
qfDB

;

d0 ¼
a

k
; Br ¼

qfgaa2

lc
C1 � C0ð Þ;

Gr ¼
qfgaa2

lc
T1 � T0ð Þ; Nb ¼

sDB

af

C1 � C0ð Þ;

Nt ¼
sDT

T0af

T1 � T0ð Þ; af ¼
K

qcð Þf

; s ¼
qcð Þp

qcð Þf

: ð5Þ

where /, Re, d0, Pr, Nb, Nt, k, Gr and Br represent

amplitude ratio, Reynolds number, dimensionless wave

number, Prandtl number, Brownian motion parameter,

thermophoresis parameter, porosity parameter, local

temperature Grashof number and local nanoparticle

Grashof number, respectively. After including the above

non-dimensional parameters and considering the

approximations of long wavelength ðk ! 1Þ and low

Reynolds number ðRe\\1Þ; the dimensionless governing

equations ðafter ignoring primesÞ for nanofluid in porous

space take the concluding form as:

ow

or
þ w

r
þ ou

oz
¼ 0; ð6Þ

o2u

or2
þ 1

r

ou

or
þ 1

r2

o2u

oh2
þ Brr þ Gr

�h � u

k
¼ op

oz
; ð7Þ

o2�h
or2

þ 1

r

o�h
or

þ 1

r2

o2�h

oh2
þ Nb

o�h
or

or
or

þ 1

r2

o�h
oh

or
oh

� �

þ Nt

o�h
or

� �2

þ 1

r2

o�h
oh

� �2
 !

¼ 0; ð8Þ

o2r
or2

þ 1

r

or
or

þ 1

r2

o2r

oh2
þ Nt

Nb

o2�h
or2

þ 1

r

o�h
or

þ 1

r2

o2�h

oh2

� �
¼ 0:

ð9Þ

The non-dimensional boundaries will take the form as:

r1 ¼ d þ � cos h; r2 ¼ 1 þ / cos 2p z � tð Þ: ð10Þ

The corresponding dimensionless boundary conditions are

described as:

u ¼ V at r ¼ r1; u ¼ 0 at r ¼ r2; ð11Þ
�h ¼ 0 at r ¼ r1; �h ¼ 1 at r ¼ r2; ð12Þ
r ¼ 0 at r ¼ r1; r ¼ 1 at r ¼ r2: ð13Þ

Solution of the problem

We use homotopy perturbation method (He 2006;

Rafiq et al. 2010; Saadatmandi et al. 2009) to solve

the above non-linear, non-homogeneous and coupled partial

differential equations (7)–(9). The deformation equations for

the given problems are described as:

ð1 � qÞ L eu½ � � L eu0½ �ð Þ

þ q L eu½ � þ 1

r2

o2eu
oh2

þ BrX þ GrH � eu
k
� op

oz

� �
¼ 0;

ð14Þ

ð1 � qÞ L H½ � � L eh0

h i� �

þ q L H½ � þ 1

r2

o2H

oh2
þ Nb

oH
or

oX
or

þ 1

r2

oH
oh

oX
oh

���

þNt

oH
or

� �2

þ 1

r2

oH
oh

� �2
 !!

¼ 0;

ð15Þ

ð1 � qÞ L X½ � � L �r0½ �ð Þ

þ q L X½ � þ 1

r2

o2X

oh2
þ Nt

Nb

o2H
or2

þ 1

r

oH
or

þ 1

r2

o2H

oh2

� �� �

¼ 0: ð16Þ

We assume L ¼ 1
r
o
or

r o
or

� 	
as the linear operator. Let us

consider the following initial guesses for u; �h and r

eu0 ¼ V logðrÞ � logðr2Þð Þ
logðr1Þ � logðr2Þ

; eh0 ¼ logðr1Þ � logðrÞ
logðr1Þ � logðr2Þ

¼ er0:

ð17Þ

Now we describe

euðr; h; z; qÞ ¼ u0 þ qu1 þ � � �
Hðr; h; z; qÞ ¼ �h0 þ q�h1 þ � � �
Xðr; h; z; qÞ ¼ r0 þ qr1 þ � � �

ð18Þ

Utilizing the perturbation on embedding parameter q, we

have the following system of equations.
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Zeroth order system

L u0½ � � L eu0½ � ¼ 0; ð19Þ
u0 ¼ 0; at r ¼ r2; u0 ¼ V ; at r ¼ r1; ð20Þ

L �h0


 �
� L eh0

h i
¼ 0; ð21Þ

�h0 ¼ 1; at r ¼ r2; �h0 ¼ 0; at r ¼ r1; ð22Þ
L r0½ � � L er0½ � ¼ 0; ð23Þ
r0 ¼ 1; at r ¼ r2; r0 ¼ 0; at r ¼ r1: ð24Þ

First order system

1

r

o

or
r
ou1

or

� �
þ 1

r2

o2u0

oh2
þ Brr0 þ Gr

�h0 �
u0

k
¼ op

oz
; ð25Þ

u1 ¼ 0; at r ¼ r2; u1 ¼ 0; at r ¼ r1; ð26Þ

1

r

o

or
r
o�h1

or

� �
þ 1

r2

o2�h0

oh2
þ Nb

o�h0

or

or0

or
þ 1

r2

o�h0

oh
or0

oh

� �

þ Nt

o�h0

or

� �2

þ 1

r2

o�h0

oh

� �2
 !

¼ 0; ð27Þ

�h1 ¼ 0; at r ¼ r2; �h1 ¼ 0; at r ¼ r1; ð28Þ

1

r

o

or
r
or1

or

� �
þ 1

r2

o2r0

oh2
þ Nt

Nb

o2�h0

or2
þ 1

r

o�h0

or
þ 1

r2

o2�h0

oh2

� �
¼ 0;

ð29Þ
r1 ¼ 1; at r ¼ r2; r1 ¼ 0; at r ¼ r1: ð30Þ

According to the scheme of HPM, the final solutions (using

q ! 1 in Eq. 18) for velocity u, temperature �h and

concentration r can be directly written as:

u¼V log r=r2ð Þ
log r1=r2ð Þ þ

1

8kr2
1r3

29

�
6Brkr11þ6Grkr11þ4Brkr22

�4k
op

oz
r22þ4Grkr22:þ4k

op

oz
r2r23�4Brkr2r24

�4Grkr2r24þ6Brkr25þ6Grkr25þ6r11V þ4r2r23V

�4r2r24V þ6r25V �12Brkr2r12d
2�12Grkr2r12d

2

þ4Brkr2r15d
2þ4Grkr2r15d

2�12k
op

oz
r2r15d

2

�12r2r12Vd2�8r2r15Vd2� 1

4ðr2�dÞ

�
16Brkr13

þ16Grkr13�16k
op

oz
r13� :16Brkr17�16Grkr17

þ16k
op

oz
r17þ16k

op

oz
r14r2�16k

op

oz
r18r2�24Brkr2

2r20

�24Grkr2
2r20þ24Brkr2r21þ24Grkr2r21þ24Brkr2r30

þ24Grkr2r30�24Brkr2
2r31�24Grkr2

2r31þ16r14r2V

�16r18r2V �24r2
2r20V þ24r2r21V þ24r2r30V

�24r2
2r31Vþ48Brkr12r2

2d
3þ48Grkr12r2

2d
3

�48Brkr15r2
2d

3�48Grkr15r2
2d

3þ48k
op

oz
r15r2

2d
3

þ48Brkr16r2
2d

3þ48Grkr16r2
2d

3�48k
op

oz
r16r2

2d
3

þ48r12r2
2Vd3�48Brkr12r2d

4�48Grkr12r2d
4

�48k
op

oz
r15r2d

4þ48k
op

oz
r16r2d

4�48r12r2Vd4

�48r15r2Vd4þ48r16r2Vd4

�
�4Brkr11logr

�4Grkr11logr�4r11V logrþ8Brkr2r12d
2logr

þ8Grkr2r12d
2logrþ8r2r12Vd2logrþ 1

4ðr2�dÞrr29

�
�

16k
op

oz
r21þ16Brkr2

2r26þ16Grkr2
2r26�16k

op

oz
r2

2r26

þ24Brkr27þ24Grkr27�24Brkr2
2r28�24Grkr2

2r28

þ16k
op

oz
r30þ16Brkr2

2r32þ16Grkr2
2r32�16k

op

oz
r2

2r32

�24Brkr33�24Grkr33þ16r21Vþ24r27V�24r2
2r28V

þ16r30V�24r33V�32Brkr12r2
2d

2�32Grkr12r2
2d

2

�32r12Vd4þ24Brkr2
2d

2logr1þ24Grkr2
2d

2logr1

þ32k
op

oz
r12r2

2d
2þ24r2

2Vd2logr1

�
�8Brkr11logr2

�8Grkr11logr2þ12k
op

oz
r11logr2þ4r11V logr2

!
; ð31Þ

�h ¼ log r1=rð Þ
log r1=r2ð Þ � log

r

r2

� �
log

r

r1

� �
Nb þ Ntð Þ�2 log rð Þ2

��

þ 4 � 3Nb � 3Ntð Þ�2 log rð Þ log r2ð Þ þ 12 Nb þ Ntð Þ
� d2 log r2ð Þ2þ 9Nb þ 9Nt � 8 � 4 log rð Þ�2 log r2ð Þ2

þ 8�2 log r2ð Þ3þ4d� cos h log
r2

r1

� �� �2

� ð6Nb þ 6Nt � log rð Þ þ 2 log r2ð Þ � log r1ð ÞÞ
� 4�2 log rð Þ log d þ � cos hð Þ þ Nb þ Ntð Þ�2 log r log r1

� 24 Nb þ Ntð Þd2 log r2ð Þ log r1ð Þ þ 12 � 15Nb � 15Ntð Þ
� �2 log r2ð Þ log r1ð Þ þ 8 log r � 20 log r2ð Þ�2 log rð Þ
� log r2ð Þ log r1ð Þ þ 12 Nb þ Ntð Þd2 log r1ð Þð Þ2

þ 7Nb þ 7Nt � 4ð Þ�2 log r1ð Þð Þ2þ 16 log r2ð �4 log rr1Þ
� �2 log r1ð Þð Þ2�2 cos 2h ðNb þ NtÞ log rð Þð 2

� ð8 þ 3Nb þ 3NtÞ log r2ð Þ2þ3ð4 þ 3Nb þ 3NtÞ
� log r2 log r1 � ð4 þ 5Nb þ 5NtÞ log r1ð Þð Þ2

þ log rð Þðð4 � 3Nb � 3NtÞ log r2ð Þ þ ð�4 þ Nb þ NtÞ

� log r1ð Þð ÞÞÞÞÞ= 24ðr1Þ2
log

r2

r1

� �� �4
! 
; ð32Þ
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r ¼ 1

6Nbr1
2ðlog r2 � log r1Þ3

ðNb þ NtÞ�ðlog r � log r2Þð

� � cos 2h � 1ð Þþð ð�þ d cos hÞðlog r2 � log r1ÞÞ
� ðlog r � log r1Þðlog r � 2 log r2 þ log r1ÞÞ

þ log r1=rð Þ
log r1=r2ð Þ : ð33Þ

The instantaneous volume flow rate �Q is given by:

�Q ¼ 2p
Zr2

r1

rudr: ð34Þ

The mean volume flow rate Q over one period is given as

(Mekheimer et al. 2013):

Qðz; tÞ ¼
�Q

p
� /2

2
þ 2/ cos 2p z � tð Þ½ � þ /2 cos2½2p z � tð Þ�:

ð35Þ

Now we can evaluate pressure gradient qp/qz by solving

Eqs. (34) and (35) and is elaborated as:

op

oz
¼ �24Brkpr3

1r12 � 24Grkpr3
1r12 þ 21Brkpr4

1r12

�
þ21Grkpr4

1r12 � 96kQr15 þ 12Brkpr4
1r15

þ 12Grkpr4
1r15 � 12Brkpr4

1r16 � 12Grkpr4
1r16

þ 36Brkpr2
1r12r2 þ 36Grkpr2

1r12r2 � 21Brkpr4
1r12r2

� 21Grkpr4
1r12r2 þ 96kQr15r2 � 12Brkpr4

1r15r2

� 12Grkpr4
1r15r2 þ 12Brkpr4

1r16r2 þ 12Grkpr4
1r16r2

� 36Brkpr2
1r12r2

2 � 36Grkpr2
1r12r2

2 þ 24Brkpr3
1r12r2

2

þ 24Grkpr3
1r12r2

2 þ 24Brkpr2
1r15r2

2 þ 24Grkpr2
1r15r2

2

� 16Brkpr3
1r15r2

2 � 16Grkpr3
1r15r2

2 � 12Brkpr12r3
2

� 12Grkpr12r3
2 þ 15Brkpr12r4

2 þ 15Grkpr12r4
2

� 12Brkpr15r4
2 � 12Grkpr15r4

2 � 3Brkpr12r5
2

� 3Grkpr12r5
2 þ 4Brkpr15r5

2 þ 4Grkpr15r5
2

� 12kpr2
1r34 þ 12kpr2

1r2r34 þ 12kpr2
2r34 � 12kpr3

2r34

þ 24kpr2
1r35 � 24kpr2

1r2r35 þ 24Brkpr36 þ 24Grkpr36

� 24Brkpr2
2r36 � 24Grkpr2

2r36 þ 24kpr2
1r37

� 24kpr2
1r2r37 � 36Brkpr2

1r38 � 36Grkpr2
1r38

þ 21Brkpr4
1r38 þ 21Grkpr4

1r38 þ 12kpr2
1r39

� 12kpr2
1r2r39 � 12kpr2

2r39 þ 12kpr3
2r39 � 21Brkpr40

� 21Grkpr40 þ 36Brkpr2
1r41 þ 36Grkpr2

1r41

þ 12Brkpr42 þ 12Grkpr42 � 15Brkpr43 � 15Grkpr43

þ 3Brkpr44 þ 3Grkpr44 � 96kQr46 � 24Brkpr2
1r47

� 24Grkpr2
1r47 þ 16Brkpr3

1r47 þ 16Grkpr3
1r47

þ 12Brkpr48 þ 12Grkpr48 � 4Brkpr49 � 4Grkpr49

� 72kpr2
1r50 þ 16pr3

1r50 þ 16kpr3
1r50 � 12pr4

1r50

þ 8pr3
2r50 þ 8kpr3

2r50 � 48kpr2
1r12V � 24pr3

1r12V

þ 32kpr3
1r12V þ 21pr4

1r12V þ 120kpr2
1r15V

� 16pr3
1r15V � 16kpr3

1r15V þ 24pr4
1r15V

� 72kpr2
1r16V � 12pr4

1r16V þ 36pr2
1r12r2V

� 21pr4
1r12r2V þ 24pr2

1r15r2V � 96kpr2
1r15r2V

� 24pr4
1r15r2V þ 72kpr2

1r16r2V þ 12pr4
1r16r2V

� 36pr2
1r12r2

2V þ 24pr3
1r12r2

2V � 12pr12r3
2V

þ 16kpr12r3
2V � 8pr15r3

2V � 8kpr15r3
2V þ 15pr12r4

2V

� 3pr12r5
2V þ 24pr36V � 32kpr36V � 24pr2

2r36V

� 36pr2
1r38V þ 48kpr2

1r38V21pr4
1r38V � 21pr40V

þ 24kpr41V þ 36pr2
1r41V þ 12pr42V � 40kpr42V

� 15pr43V þ 3pr44V � 24pr2
1r46V þ 48kpr2

1r46V

þ 12pr4
1r46V þ 192kpðr2 � 1Þr45/ cos 2pðz � tÞ

þ 48kpðr2 � 1Þr45/
2 cos 4pðz � tÞ þ 96kQlog r3

2

	
=

4kpðr1 � r2Þ2
�

ð�1 þ r2Þ 3r2
1 þ 2r1ð�2 þ r2Þ

�

þð�2 þ r2Þr2Þlog
r1

r2

log r2ð Þ2

�
: ð36Þ

The parameters ðrij; i ¼ 1; 2; 3; 4; 5; j ¼ 0; 1; 2; 3; . . .; 9Þ
appeared in the above expressions are defined as follows:

r11 ¼ r2d2ðlog r1Þ2; r12 ¼ log r1r2; r13 ¼ r2
2d

3ðlog r2Þ3;

r14 ¼ d4ðlog r2Þ3; r15 ¼ log r1ðlog r2Þ2;

r16 ¼ðlog r1Þ2
log r2; r17 ¼ r2

2d
3ðlog r1Þ3; r18 ¼ d4ðlog r1Þ3;

r19 ¼ d3ðlog r1Þ3; r20 ¼ d3ðlog r2Þ2;

r21 ¼d4ðlog r2Þ2; r22 ¼ r2d2ðlog r1Þ3; r23 ¼ d2ðlog r2Þ3;

r24 ¼ d2 log rðlog r2Þ2; r25 ¼ r2d2ðlog r2Þ2;

r26 ¼d2ðlog r2Þ2; r27 ¼ d4 log r2; r28 ¼ d2 log r2;

r29 ¼ log
r2

r1

� �
; r30 ¼ d4ðlog r1Þ2; r31 ¼ d3ðlog r1Þ2;

r32 ¼d2ðlog r1Þ2; r33 ¼ d4 log r1; r34 ¼ V log r1;

r35 ¼ Vðlog r1Þ2; r36 ¼ r3
1ðlog r2Þ2; r37 ¼ Vðlog r1Þ3;

r38 ¼r2ðlog r2Þ2; r39 ¼ V log r2; r40 ¼ r4
1ðlog r2Þ2;

r41 ¼ r2
2ðlog r2Þ2; r42 ¼ r3

2ðlog r2Þ2; r43 ¼ r4
2ðlog r2Þ2;

r44 ¼r5
2ðlog r2Þ2; r45 ¼ log

r1

r2

� �
ðlog r2Þ2; r46 ¼ r2ðlog r2Þ3;

r47 ¼ r2
2ðlog r2Þ3; r48 ¼ r4

2ðlog r2Þ3;

r49 ¼r5
2ðlog r2Þ3; r50 ¼ Vðlog r2Þ3:
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The pressure rise Dp in non-dimensional form is defined as:

Dp ¼
Z1

0

op

oz
dz: ð37Þ

It is found by numerical integration using the mathematical

software Mathematica.

Results and discussions

To establish the nanofluid characteristics through a porous

space, we analyzed the unsteady and incompressible peri-

staltic flow of nanofluid between two eccentric tubes hav-

ing different radii enclosing the porous medium. Analytical

solutions are carried out with the help of homotopy per-

turbation technique. The expression for pressure rise is

evaluated numerically to examine peristaltic pumping

whose variation can be observed in Table 1. All the

parameters in the problem are made dimensionless by

suitable transformations. In the present section, we dis-

cussed the physical behavior of all the pertinent parameters

on the distributions of velocity, temperature and nanopar-

ticle concentration. Figures 2, 3, 4 and 5 represent the

pressure rise variation for various emerging parameters.

The pressure gradient profiles are displayed in Figs. 6, 7, 8

and 9. The effects of various physical quantities on the

profiles of velocity, temperature and nanoparticles are

shown in Figs. 10, 11, 12, 13, 14, 15 and 16. Trapping

bolus behavior of the intestinal flow is described through

streamlines, as shown in Figs. 17, 18 and 19.

Figure 2 indicates that pressure rise Dp is decreasing

with local temperature Grashof number Gr, while it

increases for the amplitude ratio / in the retrograde

pumping Dp [ 0;Q\0ð Þ and gives reverse variation in

the peristaltic pumping ðDp [ 0; Q [ 0Þ and augmented

pumping ðDp\0; Q [ 0Þ regions. One can observe from

Fig. 3 that pressure rise is increasing with the increase in

local nanoparticle Grashof number Br and peristaltic

pumping occurs in the region. Q 2 ½0; 0:5Þ From Fig. 4,

it can be noticed that peristaltic pumping rate is directly

varying with the porosity parameter k. Figure 5 suggests

that pumping rate is inversely proportional to the

radius d.

Figure 6 reveals the pressure gradient variation dp
dz

for the

porosity parameter k and flow rate Q. It can be seen that

pressure gradient is increasing with the increase in the

magnitude of k but opposite relation is observed with the

flow rate Q. It is also noted here that pressure gradient

curves are varying uniformly with both the porosity of the

space and the flow rate. From Fig. 7, we found that there is

inverse change in pressure profile with local nanoparticle

Grashof number Br and local temperature Grashof number

Gr. Figure 8 implies that increase in the velocity V results

in decreasing the amplitude of pressure gradient curves,

while there is a direct relation between the distance

parameter � and the change in pressure dp
dz

One can explain

the variation of pressure gradient dp
dz

for the amplitude ratio

/ and the radius d from Fig. 9. It is very obvious from this

Table 1 Variation of pressure rise Dp for fixed h¼0:8; d¼0:1;
Br ¼0:2;Gr ¼0:1; t¼0:3;Nb ¼0:5;Nt ¼0:2; �¼0:1;V ¼0:3

Q Dp for k = 0.5,

/ = 0.1

Dp for k = 1,

/ = 0.1

Dp for k !
1;/ ¼ 0:1

-1.0 0.527163 0.797414 1.067660

-0.9 0.450834 0.721085 0.991332

-0.8 0.374505 0.644755 0.915003

-0.7 0.298175 0.568426 0.838674

-0.6 0.221846 0.492096 0.762344

-0.5 0.145516 0.415767 0.686015

-0.4 0.069187 0.339438 0.609685

-0.3 -0.00714 0.263108 0.533356

-0.2 -0.08347 0.186779 0.457027

-0.1 -0.15980 0.110450 0.380697

0.0 -0.23613 0.034120 0.304368

0.1 -0.31246 -0.04220 0.228039

0.2 -0.38878 -0.11853 0.151709

0.3 -0.46511 -0.19486 0.075379

0.4 -0.54144 -0.27119 -0.00094

0.5 -0.61777 -0.34752 -0.07727

0.6 -0.69410 -0.42385 -0.15360

0.7 -0.77043 -0.50018 -0.22993

0.8 -0.84676 -0.57651 -0.30626

0.9 -0.92309 -0.65284 -0.38259

1.0 -0.99942 -0.72917 -0.45892

Gr 0.2

Gr 0.8

Gr 0.5

=0.1

=0.2

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Q

p

Fig. 2 Variation of pressure rise Dp with / and Gr for fixed

h ¼ 0:8; d ¼ 0:1; Br ¼ 0:1; k ¼ 0:5; t ¼ 0:3; Nb ¼ 0:5; Nt ¼ 0:2;
� ¼ 0:3; V ¼ 0:1

738 Appl Nanosci (2014) 4:733–743

123



Br 0.1

Br 1.5

Br 0.8

=0.1

=0.3

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Q

p

Fig. 3 Variation of pressure rise Dp with / and Br for fixed

h ¼ 0:8; d ¼ 0:1; Gr ¼ 1; Nb ¼ 0:1; k ¼ 0:5; t ¼ 0:3; Nt ¼ 0:5; �¼ 0:3;
V ¼ 0:1
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Fig. 4 Variation of pressure rise Dp with / and k for fixed

h ¼ 0:8; d ¼ 0:1; Gr ¼ 0:1; Nb ¼ 0:1; Br ¼ 0:1; t ¼ 0:3; Nt ¼ 0:5;
� ¼ 0:3; V ¼ 0:1
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Fig. 5 Variation of pressure rise Dp with / and d for fixed

h¼ 0:8; Br ¼ 0:1; Gr ¼ 2; Nb ¼ 0:1; k ¼ 0:5; t ¼ 0:3; Nt ¼ 0:5; �¼ 0:3;
V ¼ 0:2

k=0.5

k=0.7

k=0.6
Q=0.3

Q=0.6

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

z

pd
zd

Fig. 6 Variation of pressure gradient dp/dz with k and Q for fixed

� ¼ 0:3; t ¼ 0:01; Br ¼ 0:3; d ¼ 0:1; V ¼ 0:1; h ¼ 0:8; / ¼ 0:1;
Gr ¼ 0:5; Nb ¼ 0:1; Nt ¼ 0:5

Br 0.1

Br 0.3

Br 0.2

Gr 0.1

Gr 0.7

0.0 0.2 0.4 0.6 0.8 1.0

2.2
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1.8
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z
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Fig. 7 Variation of pressure gradient dp/dz with Br and Gr for fixed

� ¼ 0:3; t ¼ 0:01; k ¼ 0:5; d ¼ 0:1; V ¼ 0:1; h ¼ 0:8; / ¼ 0:1; Q ¼ 2;
Nb ¼ 0:1; Nt ¼ 0:5
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Fig. 8 Variation of pressure gradient dp/dz with � and V for fixed

k = 0.5, t = 0.01, Br = 0.1, d = 0.1, Q = 2, h = 0.8, / = 0.1, Gr =

1, Nb = 0.1, Nt = 0.5
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Fig. 9 Variation of pressure gradient dp/dz with / and d for fixed

�¼ 0:3; t ¼ 0:01; Br ¼ 0:1; Q ¼ 2; V ¼ 0:2; h¼ 0:8; k ¼ 0:5; Gr ¼ 0:2;
Nb ¼ 0:1; Nt ¼ 0:5

k=0.1

k

k=0.2

Q=0.3

Q=0.9

0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

r

u

Fig. 10 Variation of velocity profile u with k and Q for fixed

� ¼ 0:3; Nt ¼ 0:5; Nb ¼ 0:1; t ¼ 0:3; d ¼ 0:1; Br ¼ 0:3; Gr ¼ 1;
z ¼ 0; V ¼ 0:1; h ¼ 0:8; / ¼ 0:1
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Fig. 11 Variation of velocity profile u with Gr and Br for fixed

� ¼ 0:3; Nt ¼ 0:5; Nb ¼ 0:1; t ¼ 0:1; d ¼ 0:1; k ¼ 0:1; Q ¼ 2; z ¼ 0;
V ¼ 0:1; h ¼ 0:8; / ¼ 0:1
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Fig. 12 Variation of velocity profile u with � and V for fixed

Gr = 1, Nt = 0.5, Nb = 0.1, t = 0.3, d = 0.1, k = 0.1, Q = 1, z = 0,

Br = 0.3, h = 0.8, / = 0.1
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Fig. 13 Variation of temperature profile �h with � and / for fixed

d = 0.1, t = 0.3, Nb = 0.4, Nt = 0.2, z = 0, h = 0.8, k = 0.1
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Fig. 14 Variation of temperature profile �h with Nb and Nt for fixed

d ¼ 0:1; t ¼ 0:3; � ¼ 0:1; / ¼ 0:1; z ¼ 0; h ¼ 0:8; k ¼ 0:1
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figure that pressure gradient is decreasing with the radius d
throughout the flow domain but has opposite behavior with

the amplitude ratio in the regions z 2 ½0; 0:3Þ [ ð0:8; 1�:

The profile of velocity u for the parameters k and Q can

be analyzed from Fig. 10. It can be observed here that

velocity profile is diminished with the increase in porosity

parameter k, but it rises up with the flow rate Q. It can be

predicted from Fig. 11 that velocity is changing directly

with the increase in local nanoparticle Grashof number Br

and local temperature Grashof number Gr and also it

remains uniform throughout the flow. Figure 12 denotes

that axial velocity distribution u is increasing with the

increase in constant velocity V of the inner annulus but for

distance parameter �; it gives same behavior in the domain

r 2 ð0:6; 1:1Þ and reverse variation in the remaining part.

The variation of temperature distribution h against the

amplitude ratio / and distance � is displayed in Fig. 13. It

is depicted here that temperature curves are getting lower

with � and /. Figure 14 concludes that temperature profile

is rising up with the increase in Brownian motion param-

eter Nb and thermophoresis parameter Nt. It can be seen

from Fig. 15 that concentration of the nanoparticles gets

the same variation with � and / as observed in the case of

temperature profile. Figure 16 discloses that nanoparticle

concentration is increasing with thermophoresis parameter

Nt but decreases with Brownian motion parameter Nb.

Trapping bolus phenomenon for local nanoparticle

Grashof number Br is shown in Fig. 17. It is illustrated here

that circulating boluses are reduced in the sense of numbers

but expanded in size with the increase in Br. The variation

of trapping boluses with the local temperature Grashof

number Gr is shown in Fig. 18, and it is observed from this

graph that the behavior of boluses is similar to that expe-

rienced in the previous figure. However, the influence of

porous space on the variation of trapping bolus phenome-

non can be examined through Fig. 19 and it is observed

that number of boluses increases with the increase in

numerical values of porosity parameter k, while boluses are
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Fig. 15 Variation of nanoparticle concentration r with / and � for

fixed d = 0.1, Nb = 0.4, Nt = 0.2, z = 0, h = 0.8, t = 0.3, k = 0.1

Nt 0.1

Nt 0.9

Nt 0.5

Nb 0.1

Nb 0.3

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r

Fig. 16 Variation of nanoparticle concentration r with Nb and Nt for

fixed d ¼ 0:1; � ¼ 0:1; / ¼ 0:1; z ¼ 0; h ¼ 0:8; t ¼ 0:3; k ¼ 0:1
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Fig. 17 Streamlines for different values of Br a for Br = 0.3, b for Br = 0.9, c for Br = 2. The other parameters are

� ¼ 0:1; V ¼ 0:1; t ¼ 0:1; k ¼ 0:3; h ¼ 0:8; / ¼ 0:1; Q ¼ 1; d ¼ 0:1; Nt ¼ 0:5; Nb ¼ 0:1; Gr ¼ 0:6
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contracted in dimensions, indicating that more porous the

medium the bolus reduces its volume to pass through.

Concluding remarks

We have analyzed the mathematical model of peristaltic

flow of an unsteady nanofluid between eccentric tubes

having porous space. All the results are obtained analyti-

cally and discussed the contribution of various emerging

parameters graphically. However, the data for the pressure

rise are obtained by numerical treatment whose variation

has been prescribed in table. Following are the main results

evaluated in this investigation.

1. The peristaltic pumping rate increases with the

increase in local nanoparticle Grashof number Br and

porosity parameter k, but reverse behavior is observed

for local temperature Grashof number Gr and radius of

the inner tube d.

2. In peristaltic pumping and copumping regions, pres-

sure rise is inversely proportional to amplitude ratio /,

while in retrograde pumping it increases with /.

3. With the increase in values of porosity parameter

k, change in pressure becomes large but it diminishes

with Q, Gr, d, Br, V and �; while direct relation is seen

between pressure gradient and amplitude ratio / at the

corners as compared with the central part of the

domain.

4. The presence of porous medium results in decreasing

the velocity of the nanofluid, while the more values of

flow rate Q, Gr, Br and V results in rising up the profile

of velocity. However, the distance parameter � reduces

the velocity of the flow in left part of the domain and

lifts up in the remaining area.
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Fig. 18 Streamlines for different values of Gr a for Gr = 0.6, b for Gr = 0.9, c for Gr = 1.5. The other parameters are

� ¼ 0:1; V ¼ 0:1; t ¼ 0:1; k ¼ 0:3; h ¼ 0:8; / ¼ 0:1; Q ¼ 1; d ¼ 0:1; Nt ¼ 0:5; Nb ¼ 0:1; Br ¼ 0:3
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Fig. 19 Streamlines for different values of k a for k = 0.1, b for k = 0.4, c for k = 0.9. The other parameters are

� ¼ 0:1; V ¼ 0:1; t ¼ 0:1; Br ¼ 0:3; h ¼ 0:8; / ¼ 0:1; Q ¼ 1; d ¼ 0:1; Nt ¼ 0:5; Nb ¼ 0:1; Gr ¼ 1
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5. Temperature distribution is varying inversely with �

and /, but direct relation is seen for Brownian motion

parameter Nb and thermophoresis parameter Nt.

6. The effect of Nt; � and / on nanoparticle concentration

is similar to that of temperature profile but Nb leaves

the inverse impact on the nanoparticle concentration.

7. Trapping boluses are reduced in numbers but enlarge

their dimensions with the numerical increase in Br and

Gr, but totally opposite scene is measured for the

variation of porosity parameter k.
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