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Abstract Gold nanoparticles have been prepared suc-

cessfully using TritonX-100 inverse microemulsion at

different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03,

0.02 and 0.01 M). We have studied the effect of gold ion

concentration on the particle size, morphology, surface

area and optical properties of the gold nanoparticles. The

gold nanoparticles were characterized by X-ray diffraction,

transmission electron microscopy, UV–Visible spectros-

copy and Brunauer–Emmett–Teller surface area analysis.

X-ray diffraction studies show the monophasic nature of

the gold nanoparticles. TritonX-100 stabilized gold nano-

particles were appeared to be agglomerated at higher

concentrations (0.1 and 0.05 M) of Au3? with an average

grain size of 60 and 50 nm, respectively. Monodisperse and

uniform gold nanoparticles with well-defined morphologies

of an average grain size of 15 and 25 nm were obtained at

lower concentrations (0.01 and 0.02 M). UV–Visible

spectroscopy shows the characteristic surface plasmon

resonance peak *540 nm along with the peaks at shorter

and longer wavelengths may be due to the higher order

plasmon resonance of the gold nanoparticles. The surface

areas of the gold nanoparticles were found to be in the

range of 5.8–107 m2/g which were well in agreement with

the electron microscopic studies.
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Introduction

The basic research in nanoscience deals with the synthesis

of nanoparticles of controlled size and morphology.

Nanomaterials have attracted considerable attention in

recent years because of their fundamental properties,

organization to form superstructures and applications

(Sastry et al. 2003). The properties of the nanomaterials

originated primarily because of quantum confinement of

free electrons, large surface to volume ratio and highly

disordered arrangement of dipoles at the surface as com-

pared to their bulk counterparts (Colvin et al. 1994; Ali-

visatos 1996). The nanoparticles find applications in

optoelectronics (Colvin et al. 1994; Gracias et al. 2000),

solar cells (Kamat et al. 1998), catalysis (Valden et al.

1998), nonlinear optical (Yoffe 1993) and photoelectro-

chemical devices (Mansur et al. 1995). Among metal

nanoparticles, gold nanostructures have been extensively

investigated because of their size and shape dependant

surface plasmon related optical properties (Burda et al.

2005). Gold nanostructures exhibit applications in chemi-

cal inertness, biological compatibility, optical switches and

molecular labeling where phenomena such as Surface

Enhance Raman Scattering (SERS) can be exploited

(Niemeyer 2001). Gold nanoparticles have also been used

as contrast agents for optical coherence tomography (Chen

et al. 2005), radiosensitizers (Chithrani et al. 2010), in
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chemotherapy (Huang et al. 2006) and therapeutic agents

for photothermal cancer treatment (Takahashi et al. 2005).

Various methods based on soft chemistry route have

been reported in the literature for the preparation of

nanoparticles, such as sol–gel (Epifani et al. 2000), sono-

chemical (Wani et al. 2011; Wani and Ahmad 2013),

solvothermal (Ahmad et al. 2013; Wani et al. 2010), co-

precipitation (Gul et al. 2008), polymeric citrate precursor

route (Al-Hartomy et al. 2012) and reverse micelles or

inverse microemulsion (Wani et al. 2013) methods. During

the last two decades, considerable effort has been devoted

for the synthesis of gold nanoparticles, focusing on control

over their size, shape, solubility, stability and functionality

(Wani and Ahmad 2013). Numerous preparative methods

for gold nanoparticles have also been reported (Wani and

Ahmad 2013; Ahmad et al. 2013; Daniel and Astruc 2004;

Turkevich et al. 1951). The size of gold nanoparticles has

been controlled by varying the feed ratio of gold salt to

sodium citrate (Frens 1973). Various stabilizing reagents,

such as thiol ligands (Brust et al. 1994), polyethylene

glycol (Haba et al. 2007), polyvinyl alcohol (Tripathy et al.

2007), polyvinyl pyrollidine (Wagner and Kohler 2005),

chitosane (Huang and Yang 2004) and surfactants (Kuo

et al. 2004; Deng et al. 2005) were used to tune the size and

shape of the gold nanostructures. Few reports are also

available showing the formation of metal nanoparticles

using TritonX-100 as the surfactant in the microemulsion

system (Wani et al. 2013; Zhang and Chan 2002; Spirin

et al. 2005; Zhang and Chan 2003; Lee et al. 2002).

The major challenge in the synthesis process is to con-

trol the particle size, shape and particle size distribution of

the nanoparticles. Reverse micelles or microemulsions

have been established as an effective and versatile method

for the synthesis of various ultrafine inorganic particles

with uniform shape and controlled sized distribution (Ah-

mad et al. 2004, 2005, 2006; Ahmad and Ganguli 2004). In

this paper, we report the synthesis of gold nanoparticles

using TritonX-100 inverse microemulsions at the variable

concentrations of the gold salt precursor. The gold nano-

particles were characterized by X-ray diffraction studies

(XRD), transmission electron microscopy (TEM), UV–

Visible and Brunauer–Emmett–Teller (BET) surface area

studies.

Experimental

Materials and methods

All the reagents and chemicals were of analytical grade and

used without any further purification. The solutions were

prepared in double distilled water. To prepare gold nano-

particles at different concentrations using TritonX-100 as

the surfactant, the six sets of microemulsions of TritonX-

100/1-hexanol/cyclohexane/aqueous phase (Au3?) have

been prepared which were marked as A, B, C, D, E and F.

In each set, the aqueous phase of first microemulsion (ME-

I) contains gold metal salt, HAuCl4 (Spectrochem, India)

while the second microemulsion (ME-II) contained aque-

ous phase of NaBH4 as the reducing agent. The first series

of microemulsions (ME-I) differ in the molar concentration

of the gold metals salt (HAuCl4) whose concentration

varies as 0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M denoted as

A, B, C, D, E and F microemulsions, respectively. The

second series of microemulsions (ME-II) contains sodium

borohydride (NaBH4) of the same molar concentration.

These microemulsions were made up of the following

compositions: 30 ml of TritonX-100 (Thomas Baker) as a

surfactant, 20 ml of 1-hexanol (Spectrochem, 99 %) as a

co-surfactant, 200 ml of cyclohexane (Rankem, 99 %) as

an organic solvent and 10 ml of an aqueous phase. The two

microemulsions in each set were mixed and then stirred for

24 h during which color changes were observed and the

final color of each microemulsion is shown in Fig. 1. The

size of the TritonX-100 based reverse micelles or droplets

varies in the range 5–18 nm depending on the concentra-

tion of aqueous phase as observed in the region corre-

sponding to stable reverse micelles (Kaushik et al. 2007).

After mixing, the two reactants premicellized in two sep-

arate microemulsions are brought in contact with each

other through inter-micellar exchange reaction. The

micelles undergo numerous collisions and thereby the

reactants are exchanged, mixed, and react to form the

desired nanoparticles inside the reverse micelles. The size

of the resultant nanoparticles increases slightly due to

collision between the micelles and formation of encounter

pair and subsequent conversion in fused dimer. The surface

tension of the fused dimer becomes very high due to large

surface area and is unable to sustain its geometry. Thus, the

Fig. 1 Colors of the gold nanoparticles appeared in TritonX-100 based

inverse microemulsions at a 0.1 M, b 0.05 M, c 0.04 M, d 0.03 M,

e 0.02 M and f 0.01 M concentrations of gold salt (HAuCl4)
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fused dimer finally breaks down into two stable smaller

droplets containing the precipitated material (Ganguli and

Ahmad 2007). The solutions at the final stage were then

centrifuged and the precipitate was washed with acetone

several times to remove the surfactants and water soluble

impurities. The precipitate was finally dried in an oven at

50 �C. The experimental yield was also determined and

found to be *80 % to the theoretical yield which was

found to be low as compared to the solvothermally syn-

thesized silver nanoparticles (*98 %) (Wani et al. 2010).

Instrumentation

The X-ray diffraction studies have been carried out on

Bruker D8 advance X-ray diffractometer using Ni-filtered

Cu-Ka X-rays of wavelength (k) = 1.54056 Å. The data

were obtained at the scanning rate of 0.058/s. The raw data

obtained were subjected to the back ground correction and

Ka2 reflections were stripped off using the normal stripping

procedure. The micrographs were recorded on Technai G2

transmission electron microscope operated at an acceler-

ating voltage of 200 kV. The microscopic specimens were

prepared by adding a drop of the dispersed sample on a

porous carbon film supported on a carbon grid and dried in

oven. UV–Visible spectral studies were carried out at room

temperature on an ocean-optics lambda 25 spectropho-

tometer in the wavelength range of 200–900 nm using a

quartz cuvette. The surface area analysis of the samples at

the liquid nitrogen temperature (78 K) was recorded on the

BET surface area analyzer procured from Quantachrome

Instruments Limited (Model Nova 2000e, Make Quanta-

chrome, USA).

Results and discussion

X-Ray diffraction (XRD) studies

The phase purity of the gold nanoparticles was confirmed

by X-ray diffraction studies. Figure 2 shows the XRD

overlay plots of gold nanoparticles prepared in inverse

microemulsions using TritonX-100 as the surfactant at the

different molar concentrations of aqueous HAuCl4 solu-

tion. All the diffraction patterns correspond to the mono-

phasic nanocrystalline gold. The reflections belong to

[111], [200] and [220] planes could be satisfactorily

indexed to the pure crystalline metallic gold with face

centred cubic (fcc) structure.

Transmission electron microscopic (TEM) studies

Figures 3 and 4 show the TEM images of gold nanoparti-

cles prepared at different molar concentrations of aqueous

HAuCl4 solution. The gold nanoparticles prepared at 0.1

and 0.05 M concentrations of aqueous HAuCl4 were highly

agglomerated (Fig. 3a, b) with the average particle size of

60 and 50 nm, respectively. However, gold nanoparticles at

0.04 M (Au3?) were slightly agglomerated with an average

particle size of 40 nm (Fig. 3c). Gold nanoparticles of the

average size of 35 and 25 nm were obtained at the con-

centrations of 0.03 and 0.02 M HAuCl4 solution inside the

microemulsions as shown in Fig. 3d, e, respectively. Fig-

ure 4a, b shows the low and high magnification TEM

micrographs of gold nanoparticles prepared at 0.01 M

Au3?. As can be observed from the TEM images, the

particles are highly uniform and monodisperse with nearly

hexagonal morphology. The particles size histogram shows

that the size of the gold nanoparticles varies in the range of

5–38 nm with an average grain size of 15 nm (Fig. 4c).

The average size of the nanoparticles is well corroborated

with the high magnification TEM image as shown in

Fig. 4b. Note that the size of the gold nanoparticles

decreases with decrease in concentration of the gold salt.

Further, the extent of agglomeration was also found to be

concentration dependent and the agglomeration decreases

on decreasing the concentration of gold salt. The extent of

agglomeration at high concentration may be associated

with the high surface energy and high collision frequency

of gold nanoparticles (Antunez-Garcıa et al. 2011; Arci-

diacono et al. 2004). As the concentration of gold salt

decreases in inverse microemulsions, the number of col-

loiding gold nanoparticles decreases in a constant volume

and hence, there is a decrease in agglomeration which may

lead to the formation of monodisperse and uniform gold

nanoparticles at low concentrations.

Fig. 2 X-ray diffraction patterns of gold nanoparticles prepared at

a 0.1 M, b 0.05 M, c 0.04 M, d 0.03 M, e 0.02 M and f 0.01 M

concentrations of HAuCl4
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UV–Visible spectroscopic studies

Figure 5a–f shows the time evolution of the UV–Visible

absorption spectra of the gold nanoparticles prepared

in TritonX-100 based inverse microemulsions using

sodium borohydride as the reducing agent at different

concentrations of gold salt. Along with the main surface

plasmon absorption band located at *540 nm, a second

absorption band at longer wavelength *670 nm in

Fig. 5a–c is also observed with the progress of the reaction.

The second band, which is also called the longitudinal

dipole plasmon band, might be appeared due to the

Fig. 3 TEM images of the gold

nanoparticles prepared at

a 0.1 M, b 0.05 M, c 0.04 M,

d 0.03 M and e 0.02 M

concentrations of Au3?
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nonspherical nature of the gold nanoparticles. The second

absorption band may also arise due to nanoparticle aggre-

gation. When the particles are in close proximity, the

electromagnetic field of one particle influences its plasmon,

leading to plasmon absorption at longer wavelength

because of the collective plasmon oscillation of the

aggregated system. The frequency and intensity of the

second band depend on the degree of aggregation and

orientation of the individual particle within the aggregate

(Munro et al. 1995). The expected agglomeration could be

seen in the nanoparticles on increasing the concentration of

Au3? ions which may lead to the increase of the grain size.

The increase in the particle size due to agglomeration is

associated with the red shift of the surface plasmon reso-

nance band (Serrano et al. 2008). An absorption band

*330 nm (Fig. 5a–f) is due to presence of the absorption

of unreduced gold ions (Serrano et al. 2008), where as the

band at *400 nm may be assigned to the higher order

plasmon resonance of the anisotropic gold nanoparticles

(Kelly et al. 2003).

BET surface area studies

The BET gas adsorption method is used for the determi-

nation of the surface area of the gold nanoparticles. Fig-

ure 6 shows the BET plots of the gold nanoparticles

prepared in the TritonX-100 based microemulsions at dif-

ferent concentrations of the gold salt. The specific surface

areas of the gold nanoparticles were determined using the

multiple point BET equation as shown in Table 1. As can

be seen from the table, the specific surface area of the gold

nanoparticles increases from 5.8 to 107 m2/g as the con-

centration of the gold salt decreases from 0.1 to 0.01 M.

Thus, the surface area varies with the variation of the

particle size obtained using the TEM studies and well

corroborated with the size studies. Assuming the particles

to have a spherical shape with smooth surface and same

size, the surface area can be related to the average equiv-

alent particle size by the equation: DBET = 6,000/(q 9 Sw)

(in nm), where DBET is the average diameter of a spherical

particle, Sw represents the measured surface area of the

powder in m2/g and q is the theoretical density of gold

(19.28 g/cm3) (Wani et al. 2010; Haiss et al. 2007). The

particle size of the gold nanoparticles was then calculated

from their corresponding specific surface areas using the

above equation (Table 1). As can be seen, the particle size

decreases from 53.7 to 2.9 nm as the molar concentration

of the gold salt decreases regularly from 0.1 to 0.01 M. The

particle size obtained from the BET studies has the same

trend as obtained from the TEM studies. However, the

difference in size values of BET and TEM could be

observed which might be associated to the TEM specimen

preparation and degassing process for the measurement of

the surface area studies.

Fig. 4 TEM images of gold nanoparticles at a low magnification and

b high magnification prepared by 0.01 M (Au3?) concentration.

c Particle size histogram gives the size distribution of gold

nanoparticles using TEM
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Fig. 5 Time resolved UV–Visible absorption spectra of gold nanoparticles prepared at a 0.1 M, b 0.05 M, c 0.04 M, d 0.03 M, e 0.02 M and

f 0.01 M concentrations of Au3?
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Conclusions

Highly crystalline and monophasic gold nanoparticles were

successfully prepared in TritonX-100 based inverse mi-

croemulsions at different concentrations of Au3? ions.

TEM studies show the systematic variation in particle size

with change in concentration of gold salt inside the mi-

croemulsion. UV–Visible spectroscopy shows the charac-

teristic surface plasmon resonance peak at *540 nm. The

bands appeared at shorter and longer wavelengths of the

surface plasmon peak indicate the higher order transitions

in gold nanoparticles. The surface area studies show that

the surface area increases from 5.8 to 107 m2/g with

decrease in the concentration of gold salt from 0.1 to

0.01 M which corroborates well with the particle sizes

obtained from the TEM studies.
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