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Abstract
To find novel classes of potential fuel additives of multivalent activity, particularly antioxidants, a series of recently synthe-
sized ethyl-6-amino-5-cyan-methyl-4-aryl-4H-pyran-3-carboxylates have been investigated using model oxidative reactions. 
The compounds studied appear to be prospective inhibitors of hydrocarbons oxidation. Some of them are antioxidants of 
combined action, breaking the chains of the oxidative reactions with cumene peroxide radicals and catalytically decompos-
ing cumene hydroperoxide.
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Introduction

Resistance to oxidation is one of the most important per-
formance characteristics of fuel and lubrication materials 
since many undesirable processes occurring in machines and 
mechanisms are associated with the formation of different 
oxidation products [1]. Therefore, the design of novel anti-
oxidants of a higher efficiency represents an urgent challenge 
in the chemistry of additives.

The oxidation of hydrocarbons is  known to  
be a radical-chain and degenerate-branched process, 
which s imply can be represented as  fol lows: 

To inhibit this process, one should employ the com-
pounds that would quickly react with the forming radicals 
 (R* or  RO2

*) or destroy the hydroperoxide without generat-
ing other free radicals [2].

Since the antioxidant properties of additives are due to 
the presence of certain functional groups in their composi-
tion, the investigations into the synthesis and mechanism 
of the antioxidant action of organic compounds containing 
two or more functional groups in the molecule, which allow 
combining various types of antioxidants in one structure, is 
of undoubted research and practical interest [3].

On the basis of the foregoing, we conducted studies on 
the synthesis, study of the mechanism of action, as well as 
the relationship between the structure and the effectiveness 
of the antioxidant action of sulfur-containing polyfunctional 
antioxidants [4].

When choosing sulfur-containing polyfunctional antioxi-
dants, we proceeded from combining the properties of two 
types of antioxidants in the molecule of the compound: an 
antioxidant that effectively breaks oxidation chains by reac-
tion with peroxide radicals, and an antioxidant that decom-
poses hydroperoxides. As you know, the first type of anti-
oxidants includes mainly phenols and aromatic amines, and 
the second type—sulfides. Therefore, they initially synthe-
sized and investigated compounds containing a sulfide sulfur 
atom in a molecule in combination with phenolic frag-

ments—phenolsulfides [5]:

OH

SR
I

R

The mechanism of the antioxidant action of sulfur-
containing antioxidants was studied using the well-known 
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kinetic method, the essence of which is to study the key reac-
tions that determine the inhibitory effect of antioxidants: the 
termination of oxidation chains in the reaction with peroxide 
radicals and the decomposition of hydroperoxides. Isopro-
pylbenzene (cumene) was used as a model hydrocarbon, the 
oxidation mechanism of which has been studied in detail 
[6, 7].

Studies have shown that the studied antioxidants inhibit 
the initiated oxidation of cumene by reacting with cumyl 
peroxide radicals. At the same time, these sulfur-contain-
ing antioxidants are at the level of known alkylphenol 

Thus, the study of the antioxidant properties of phe-
nolsulfides showed that they are antioxidants of combined 
action: they terminate oxidation chains by reaction with per-
oxide radicals and catalytically destroy hydroperoxides into 
molecular products.

Further, phenol sulfides were synthesized and investigated, 
in which a sulfur atom is combined with one phenolic frag-
ment (monophenol sulfides) [8–11] and with two phenolic 
fragments (bisphenol sulfides) [12–16], which differ in the 
relative position of the sulfur atom and hydroxyl groups, the 
number substituents in the benzene ring of the phenol frag-
ment and the nature of the substituent at the sulfur atom:  

antioxidants in terms of the effectiveness of the termination 
of oxidation chains by reaction with peroxide radicals.

The presence of a sulfide fragment in the molecules of 
the synthesized antioxidants suggested their interaction 
with hydroperoxides. The very first studies of the reaction 
of phenolsulfides with cumyl hydroperoxide showed that 
their activity in the decomposition of hydroperoxides is 
incomparably higher than that of sulfides and other types 
of hydroperoxide breakers. It was found that phenolsulfides 
catalytically decompose hydroperoxides: one phenol sulfide 
molecule decomposes tens of thousands of hydroperoxide 
molecules.

 
OH

(CH2)nSR

CH3 (n = 0, 1)

OH

(CH2)nSR
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OH OH
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In addition, compounds were synthesized and investi-
gated in which a sulfur atom is combined with an aniline 

fragment—aminosulfides [17]: R- CH - CH2 - NH

SR

As well as compounds in which phenol sulfide and ami-
nosulfide fragments are combined—aminophenol sulfides 

[18]:

S - CH2 - CH - NH

SH

S - CH2 - CH - NH

SH

HO
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All of these compounds also turned out to be antioxidants 
with a combined effect.

In order to search for new antioxidants with a combined 
effect, a number of nitrogen-sulfur-containing compounds 
have been synthesized—thiourea derivatives [19–20] nitro-
gen-sulfur-containing heterocyclic compounds [21–22], 
which also turned out to be antioxidants with a combined 
effect.

In the present work, we have studied a series of recently 
synthesized, earlier unknown ethyl-6-amino-5-cyan-methyl-
4-aryl-4H-pyran-3-carboxylates as potential polyfunctional 
multivalent fuel additives. Mechanism of their action was 
investigated and relationship between structure and effi-
ciency of their antioxidant activity was estimated.

When selecting compounds for the study, it was assumed that 
the molecules should combine the properties of two types of 
antioxidants. The first one should effectively break the oxidation 
chains via the reaction with peroxide radicals, and the second one 
should decompose hydroperoxides. As is known, the first type of 
antioxidants includes mainly phenols and aromatic amines, and 
the second type consists of polyfunctional compounds.

Previously, antioxidants of combined action were found 
among thiourea derivatives and polyfunctional heterocycles.

Results and discussion

Chemistry

Multicomponent domino reactions have become a useful 
method in the field of environ-mental and organic synthesis, 
which is due to their compliance with the requirements of 
green chemistry [22–26]. Polyfunctional substitute benzo-γ-
pyrans synthesized by this method are important heterocyclic 
compounds. It has also been established that some 2-amino-
4H-pyranes are important photoactive materials [27].

For the study, we have chosen eight representatives of 
the recently synthesized classes of ethyl-6-amino-5-cyan-
methyl-4-aryl-4H-pyran-3-carboxylate compounds 1–8 as 
the antioxidant of combined action (Scheme 1).

All compounds are synthesized by original straight-
forward methods from available starting materials. When 
selecting the compounds for the study, we consider that if 
some of them would show promising performance charac-
teristics, the synthetic procedures might be easily scaled up.

Given the important features of multifunctional 
4H-pyran has, it is natural that there are many synthetic 
attempts to achieve the goal by applying simple reaction 

Scheme 1  Synthesized compounds 1–8 
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strategies. Given the successful application of these com-
pounds in a different field, the synthesis of their optical 
isomers on the basis of enantioselective synthesis is one 
of the most pressing issues (Table 1).

Given the successful application of 4H-pyran has in a 
different field, which contain different functional groups, 
we have synthesized them. Various aromatic aldehydes, 
acetic acid ether and malonnitrile were used as the object 
of research. Optically active α-amino acid (L-glutamic 
acid.) were used as chiral organic catalysts. The course of 
the reaction and the purity of the obtained substance were 
monitored by NTX chromatography. The scheme of the 
reaction is as follows (Scheme 2):

Antioxidant activity

The study of cumene auto-oxidation in the presence of com-
pounds 1–8 has shown that they effectively inhibit this pro-
cess. The kinetic curves of auto-oxidation at 110 °C in the 
presence of compounds 1–8 are shown in Fig. 1, and the 
values of auto-oxidation induction period are given in Table.

To establish the mechanism of the antioxidant action of 
the synthesized compounds, the kinetics of their reaction 
with cumene peroxide radicals and cumene hydroperoxide 
(CHP) has been investigated.

To evaluate the ability of the studied compounds 1–8 
to break the oxidation chains via the reaction with cumene 

Table 1  The values of the 
induction time of cumene 
autooxidation in the presence of 
the synthesized compounds 1–8, 
as well as the kinetic parameters 
of their reaction with cumene 
peroxide radicals and cumene 
hydroperoxide
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peroxide radicals, the oxidation of cumene was initiated by 
azodiisobutyronitrile (AIBN) at 60 °C in the presence of 
these inhibitors. In all experiments, the concentration of the 
initiator was 2·10–2 mol/l, and content of the inhibitor was 
5·10–4 mol/l. It was found that all studied compounds, to 
one degree or another, inhibited the initiated oxidation of 
cumene (Fig. 2):

Using the value of the induction time (τ) of the initi-
ated cumene oxidation, the stoichiometry coefficient ƒ was 
calculated. The latter is equal to the number of oxidation 
chains breaking under the action of one inhibitor molecule 
and products of its conversion:

where �ind. is induction time, Wi is initiation rate,  [InH]0 is 
initial concentration of the inhibitor.

To determine the value of the rate constant of the inter-
action of inhibitor with cumene peroxide radicals (к7), 
the kinetic curves of the initiated oxidation of cumene 
were transformed from Δ[O2]-τ coordinates to Δ[O2]−1-
τ−1coordinates. Using the slope of the straight line

f =
� ⋅ wi

[lnH]
0

it was found that

where:  k2 = 1,51  mol−1.  s−1, [RH] = 7,17  mol−1.  s−1 [18].
The values of the kinetic parameters of the reaction of 

the synthesized compounds with cumene peroxide radicals 
are given in Table.

To evaluate the ability of the synthesized compounds 
1–8 to decompose CHP, the reaction of cumene hydrop-
eroxide with inhibitors has been implemented at 110 °C 
in chlorobenzene under nitrogen atmosphere (at this tem-
perature, CHP is thermally stable). The studies have shown 
that the inhibitors, which contain a sulfur atom in the mol-
ecule, effectively decompose CHP (Fig. 3). Moreover, one 
molecule of the studied inhibitors is capable of decompos-
ing several thousand CHP molecules, that is, the reaction 
has a catalytic character.

tg� =
fk

7
[InH]

0
(

k
2
[RH]Wi

)

k
7
=

tg�k
2
[RH]Wi

f .[InH]
0

Fig. 1  Kinetic curves of cumene 
auto-oxidation in the presence 
of the synthesized compounds: 
T = 110 °C,  VO2 is a volume of 
oxygen (ml), τ is a time (min); 
[InH] = 0  (1I) [InH] = 1–2-3–4-
5–6-7–8 = 5·10–4 mol/l

Scheme 2.  Synthesis of ethyl-
6-amino-5-cyan-methyl-4-aryl-
4H-pyran-3-carboxylates (1–8) 

Ar= - C6H5 (1), p-CH3C6H4 (2), p-CH3OC6H4 (3), p-FC6H4 (4), p--ClC6H4 (5), p-BrC6H4

(6), -C6H4-OH (7), p-NO2 C6H4 (8); Kat = L-glutamic acid.
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The number of CHP molecules ( � ), decomposed under 
the action of one molecule of the studied compounds, was 
calculated by the formula:

where [CHP]
0
 and [CHP]∞ are the initial and final concentra-

tion of CHP, respectively;[InH]
0
 is the initial concentration 

of the antioxidant.
It is found that for all compounds, the reaction with 

CHP is of the first order both in terms of antioxidant and 
CHP, and the initial reaction rate of the catalytic decom-
position of CHP follows the equation:

v =
[CHP]

0
− [CHP]∞

[InH]
0

w
0
= K[InH]

0
⋅ [CHP]

The values of the rate constant of CHP decomposition 
under the action of the studied compounds (K) and cata-
lytic factor ( � ) are given in Table.

The Table also contains values of the induction time 
( � ) of cumene autooxidation in the presence of the syn-
thesized compounds, as well as the kinetic parameters of 
their reaction with cumene peroxide radicals and cumeme 
hydroperoxide.

As shown from Table, all the studied compounds, except 
for compound 3, exhibit quite high antioxidant properties 
and surpass the well-known antioxidant like ionol (2,5-di-
tert-butyl-4-methylphenol) in terms of antioxidant activity.

Compounds 5, 6 and 1 possess the highest antioxidant 
activity. The latter is likely due to the fact that these com-
pounds suppress peroxide radicals and very effectively 
break the oxidation chains. In addition, unlike ionol, they 
efficiently decompose hydroperoxides into molecular prod-
ucts. In the reaction with peroxide radicals, the stoichi-
ometry coefficient (f) for these compounds is ~ 4, i.e. one 
molecule of these compounds breaks about four oxidation 
chains, while one molecule of ionol breaks only 2 oxidation 
chains. The reaction rate constant with peroxide radicals for 
these compounds is also higher than that for ionol.

Conclusion

In conclusion, a specially selected range of heterocyclic 
compounds (1–8), prospective multivalent fuel antioxidants 
of a new type, has been synthesized. The composition and 
structure of the compounds have been proved by modern 
physical–chemical methods.

Fig. 2  Kinetic curves of 
initiated cumene oxidation in 
the presence of synthesized 
compounds 1–8: T = 60ºC;  VO2 
is the volume of oxygen (ml), τ 
is the time (min.), [InH] = 0 (1’) 
[InH] = 5·10–4 mol/l = 1–8 

[CHP] mol/l [CHP] mol/l

Fig. 3  Kinetic curves of decomposition of CHP a under the action 
of compound 7  [InH](IV) = 5.10–4 mol/l  at110°C, initial concentration 
of [CHP] = 0.34  mol/l, τ is time (min). b under the action of com-
pound 1  [InH](IV) = 5.10–4  mol/l at 110  °C, initial concentration of 
[CHP] = 0.37 mol/l, τ is time (min)
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It is established that these compounds are effective inhibi-
tors of hydrocarbon oxidation. The mechanism of their anti-
oxidant action involves the breaking of the oxidation chains 
via the reaction with peroxide radicals, and (for some com-
pounds) catalytic decomposition of hydroperoxides into 
molecular products.

Materials and methods

Measurements

1H  and13C NMR spectra were recorded in  CDCl3 using 
a Bruker Avance 400 NMR spectrometer (400.13 and 
100.6 MHz, respectively). The 1H chemical shifts (δ) were 
referenced to HMDS (0.05 ppm) in DMSO and the residual 
deuterated solvent, the 13C chemical shifts were expressed 
with respect to the deuterated solvent (77.10  ppm for 
DMSO). Coupling constants in hertz (Hz) were measured 
from one-dimensional spectra and multiplicities were abbre-
viated as following: br (broad), s (singlet), d (doublet), dd 
(doublet of doublets), m (multiplet). The chemical shifts 
were recorded in ppm, coupling constants (J) in Hz. IR 
spectra were obtained on a Varian 3100 IF-IR spectrometer 
(400–4000  cm−1, KBr pellets or films). All spectra are given 
in Supporting Information (SI).

Experimental

Synthesis of e thy l‑6 ‑am ino ‑5‑ cya n‑m eth yl‑ 4‑a ryl ‑4H 
‑py ran ‑3‑carboxylates (1–8)

The corresponding aldehyde (5  mmol), malonnitrile 
(5.5 mmol), acetoacetic ether (5 mmol), 0.5 mmol opti-
cally active α-amino acid is taken as a catalyst in the flask. 
8–10 ml of glycerin is used as a solvent. The reaction is 
carried out in a magnetic stirrer at room temperature. The 
resulting reaction product is filtered and recrystallized in 
ethanol.

Ethyl 6‑amino‑5‑cyano‑2‑methyl‑4‑phenyl‑4H‑pyran‑3 
carboxylate (1)

IR (KBr): 3402.49  (NH2), 3329.96  (NH2), 2972.32 (C–H), 
2190.34 (C≡N), 1692.10 (C=O), 1652.27, 1609.54, 1375.88, 
1259.12, 1120.31, 1062.19   cm−1. 1H-NMR (400  MHz, 
DMSO-d6) δ = 1.21–1.30 (3H,  CH3, t), 2.50 (3H,  CH3, s), 
3.81–4.05 (2H,  CH2, q), 4.60 (H, CH, s), 6.26 (2H,  NH2, 
s), 7.67–7.88 (5H, H-Ar, m) ppm. 13C-NMR (100 MHz, 
DMSO-d6): δ = 12.53, 15.37, 55.53, 61.81, 108.85, 119.22, 
125.51, 125.72, 127.53, 127.78, 142.85, 152.53, 154.37, 
166.85 ppm.

Ethyl 6‑amino‑5‑cyano‑2‑me‑
thyl‑4‑(p‑tolyl)‑4H‑pyran‑3‑carboxylate (2)

1H-NMR (400 MHz, DMSO-d6) δ = 1.31–1.35 (3H,  CH3, t), 
2.12 (3H,  CH3, s), 2.35  (CH3, s), 3.93–4.05 (2H,  CH2, q), 
4.44 (H, CH, s), 6.83 (2H,  NH2, s), 7.07–7.57 (4H, H-Ar, d, 
d) ppm. 13C-NMR (100 MHz, DMSO-d6): δ = 14.59, 17.61, 
21.43, 38.13, 58.36, 61.48, 107.31, 119.58, 128.36, 135.99, 
141.51, 155.63, 159.87, 165.71 ppm.

Ethyl 6‑amino‑5‑cyano‑4‑(4‑methoxyphenyl)‑2‑me‑
thyl‑4H‑pyran‑3‑carboxylate (3)

1H-NMR (400 MHz, DMSO-d6) δ = 1.31–1.35 (3H,  CH3, 
t), 2.12 (3H,  CH3, s), 3.74  (CH3, s), 3.93–3.4 (2H,  CH2, q), 
4.44 (H, CH, s), 6.83 (2H,  NH2, s), 6.91–7.10 (4H, H-Ar, d, 
d) ppm. 13C-NMR (100 MHz, DMSO-d6): δ = 14.59, 17.61, 
38.45, 55.25, 56.48, 61.64, 108.25, 114.30, 119.58, 130.90, 
136.73, 155.38, 157.85, 159.72, 165.25 ppm.

Ethyl 6‑amino‑5‑cyano‑4‑(4‑fluorophenyl)‑2‑me‑
thyl‑4H‑pyran‑3‑carboxylate (4)

1H-NMR (400 MHz, DMSO-d6) δ = 1.13–1.24 (3H,  CH3, 
t), 2.46 (3H,  CH3, s), 4.02–4.07 (2H,  CH2, q), 4.34 (H, CH, 
s), 6.91 (2H,  NH2, s), 7.12–7.43 (4H, H-Ar, d, d) ppm. 13C-
NMR (100 MHz, DMSO-d6): δ = 13.81, 17.61, 37.93, 56.81, 
61.48, 107.31, 115.77, 119.14, 130.90, 139.45, 155.72, 
159.12, 159.26, 165.14 ppm.

Ethyl‑6‑amino‑4‑(4‑chlorophenyl)‑5‑cyano‑2‑me‑
thyl‑4H‑pyran‑3‑carboxylate (5)

IR (KBr): 3409.17  (NH2), 3332.69  (NH2), 2979.48 (C–H), 
2193.69 (C≡N), 1693.41 (C≡O), 1650.55, 1609.34, 
1489.39, 1335.42, 1266.26, 1174.09, 1120.47  cm−1. 1H-
NMR (400 MHz, DMSO-d6) δ = 1.01–1.09 (3H,  CH3, t), 
2.50 (3H,  CH3, s), 3.81–4.03 (2H,  CH2, q), 4.28 (H, CH, 
s), 6.26 (2H,  NH2, s), 7.29–7.52 (4H, H-Ar, d, d) ppm. 13C-
NMR (100 MHz, DMSO-d6): δ = 14.33, 17.37, 38.18, 58.53, 
61.65, 107.85, 118.82, 128.54, 128.72, 130.53, 130.78, 
131.51, 141.88, 155.55, 158.67, 165.85 ppm.

Ethyl 6‑amino‑4‑(4‑bromophenyl)‑5‑cyano‑2‑me‑
thyl‑4H‑pyran‑3‑carboxylate (6)

IR (KBr): 3408.10  (NH2), 3330.18  (NH2), 2979.27 (C–H), 
2194.09 (C≡N), 1689.50 (C≡O), 1645.77, 1608.19, 
1483.62, 1374.06, 1262.54, 1180.44, 1068.31  cm−1. 1H-
NMR (400 MHz, DMSO-d6) δ = 1.31–1.39 (3H,  CH3, t), 
2.29 (3H,  CH3, s), 3.88–4.00 (2H,  CH2, q), 4.55 (H, CH, 
s), 6.96 (2H,  NH2, s), 7.29–7.89 (4H, H-Ar, d, d) ppm. 13C-
NMR (100 MHz, DMSO-d6): δ = 14.39, 17.33, 38.15, 58.42, 
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61.54, 107.84, 119.15, 131.25, 131.51, 143.58, 156.50, 
159.25, 165.41 ppm.

Ethyl 6‑amino‑5‑cyano‑4‑(4‑hydroxyphenyl)‑2‑me‑
thyl‑4H‑pyran‑3‑carboxylate (7)

1H-NMR (400 MHz, DMSO-d6) δ = 0.84–0.89 (3H,  CH3, 
t), 2.25 (3H,  CH3, s), 3.77–3.87 (2H,  CH2, q), 4.24 (H, CH, 
s), 6.59 (2H,  NH2, s), 6.71–6.90 (4H, H-Ar, d, d), 9.09 (OH, 
s) ppm. 13C-NMR (100 MHz, DMSO-d6): δ = 14.25, 17.00, 
37.52, 58.29, 61.48, 107.87, 115.31, 119.15, 131.24, 136.61, 
155.14, 156.77, 159.20, 164.92 ppm.

Ethyl 6‑amino‑5‑cyano‑2‑methyl‑4‑(4‑nitrophenyl)‑4H‑pyra
n‑3‑carboxylate (8)

1H-NMR (400 MHz, DMSO-d6) δ = 1.13–1.24 (3H,  CH3, 
t), 2.40 (3H,  CH3, s), 3.94–4.01 (2H,  CH2, q), 4.28 (H, CH, 
s), 6.88 (2H,  NH2, s), 7.50–8.11 (4H, H-Ar, d, d) ppm. 13C-
NMR (100 MHz, DMSO-d6): δ = 14.84, 17.61, 38.47, 58.05, 
61.48, 107.91, 119.58, 124.03, 127.03, 144.60, 150.69, 
155.74, 159.68, 165.58 ppm.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13203- 021- 00278-8.
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