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Abstract In this study, poly ethyleneimine (PEI)/Titania

(TiO2) multilayer film on quartz tubes have been success-

fully fabricated via a layer-by-layer (LbL) self-assembly

method. Scanning electron microscopy (SEM) and Bru-

nauer-Emmett-Teller (BET) surface area analysis were

carried out for characterization of the layers on quartz tube.

The SEM pictures showed that the film surface is smooth

and uniform. The BET characterization verified the for-

mation of multilayer thin film. The photocatalytic activity

of the PEI/TiO2 multilayer deposited on the quartz tubes

was evaluated in the treatment of raw petroleum refinery

wastewater (PRW) under UV light irradiation in three

annular photocatalytic reactors. This study examined the

impact of initial chemical oxygen demand (COD) con-

centration, H2O2 concentration, pH and reaction time on

the PRW treatment and the results were used to generate

both a response surface methodology (RSM) model and an

artificial neural network (ANN) model. Maximum COD

removal (98 %) was achieved at the optimum conditions

(initial COD concentration of 300 mg/l, hydrogen peroxide

concentration of 8.8 mM, pH of 5 and reaction time of

120 min). A comparison between the model results and

experimental data gave a high correlation coefficient

(RANN
2 = 0.9632, RRSM

2 = 0.943) and showed that two

models were able to predict COD removal from PRW by

PEI/TiO2/UV process. However, ANN model was superior

to RSM model with higher value of coefficient of deter-

mination (0.9632ANN [ 0.94RSM) and the lower root mean

square error (RMSE) (3.377AAN \ 3.569RSM). The average

percentage error for ANN and RSM models was 0.18 and

0.73, respectively, indicating the superiority of ANN in

capturing the nonlinear behavior of the system. It was clear

that the best networks were able to predict the experimental

responses more accurately than the multiple regression

analysis.
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Introduction

The petroleum refinery and petrochemical industries are

two of the largest industries in Iran [8]. Wastewater gen-

erated by petroleum industries is very complex, and

includes several inorganic and organic components, such as

emulsified oil, sulfides, ammonia, cyanides and especially

phenol and phenolic derivatives [41]. Due to the nature of

the pollutants included in petrochemical and oil refinery

wastewater, its treatment is a challenging issue and several

different physical–chemical, mechanical and even biolog-

ical conventional treatment processes have been tested for

its restoration in the past.

A wide diversity of procedures, such as API separators,

specific biological systems, ultra-filtration, fenton and

photo fenton processes [8], absorption [39] and other

methods [34, 36] have been used for the reduction of

chemical oxygen demand (COD), total petroleum hydro-

carbon (TPHs), biochemical oxygen demand (BOD5) and

many others in the effluent with some success.

Although these conventional techniques have been

commonly used, there are several drawbacks [31]. The

main drawback of these techniques relates to the disposal

of the spent contaminated activated sludges, generation of

toxic by-products, severe operation conditions (e.g., high

temperature and high pressure) and the slow reaction rates,

which mean higher energy consumption and expensive

running cost.

In the last decade, advanced oxidation processes (AOPs)

including heterogeneous (i.e., semiconductors such as TiO2

and ZnO in the presence of UV light) and homogenous

(i.e., Fenton’s reagent, H2O2 and ozone) processes have

gained the interest of researchers for the elimination of

dangerous organic pollutants from various wastewaters

[19]. Among AOPs, TiO2 has been widely used because of

its various merits such as low toxigenicity, relative low

cost, favorable band gap energy, high chemical stability

and activity [37].

In previous studies, the majority of experiments to date

have used small TiO2 particles suspended in the discon-

tinuous slurry photoreactors. However, these reactors have

many practical and economical disadvantages related to the

filtration and reuse of the catalyst and also the inefficient

illumination of the particles, resulting in an actually higher

operating cost and lower reactivity, respectively.

Moreover, recent studies have raised concerns about the

potential toxicity of titanium dioxide nanoparticles. Con-

sequently, many research efforts have been dedicated to the

development of immobilized systems following different

approaches, synthesis routes and support materials [1, 26].

Catalyst can be immobilized with various procedures such

as, sputtering, dip coating, sol–gel synthesis, and chemical

vapor deposition method, spin coating, etc. Among these

techniques, the layer-by-layer self-assembling (LBL-SA)

method that was pioneered by Decher [24], is a simple and

effective method for constructing organic/inorganic films

via alternate deposition of components (polyelectrolytes or

nanoparticles) with opposite electrical surface charge or

hydrogen-bonding groups from dilute solutions [10].

The conventional ‘‘one-factor-at-a-time’’ approach is

laborious and time consuming. Moreover, it seldom guar-

antees the determination of optimal conditions. These

limitations of a single factor optimization process can be

overcome by using empirical methods. Recently, response

surface methodology (RSM) and artificial neural network

(ANN) methods have been used jointly for both modeling

and optimization purposes in environmental studies.

Response surface methodology is a series of experi-

mental design, analysis, and optimization techniques that

originated in the work by Box and Wilson in 1951 [6]. The

main idea of response surface methodology is to optimize

an unknown and noisy function by means of simpler

approximating functions that are valid over a small region

using designed experiments. By moving the operating

conditions of a process using a sequence of experimental

designs, process improvement is achieved. Response sur-

face methodology has important applications in industrial

designing, developing, and improving existing product. It

also can be useful for the formulation of new products. It

defines the effect of the controlling or independent vari-

ables, alone and in combination on the response, in the

processes [3, 7, 20, 21, 23, 27, 33, 40].

With the interdisciplinary development of modern

computational technologies, artificial neural networks

(ANNs), as typical artificial intelligence (AI) algorithms,

have become an attractive approach for modeling highly

complicated and nonlinear system [12, 38, 43]. The ANN

can be described as a group of simple processing elements

called neurons arranged in parallel layers that are fully

interconnected by weighted connections. One of the most

important characteristics of neural networks is learning.

Artificial neural networks have two operation modes,

training mode and normal mode [30]. In training mode,

adjustable parameters of the networks are modified. In

normal mode, the trained networks are applied for simu-

lating the outputs [30].

An ANN attempts to learn the relationships between the

input and output data sets in the following way: during the

training phase, input/output data pairs, called training data,

are introduced into the neural network. The difference

between the actual output values of the network and the
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training output values is then calculated. The difference is

an error value which is decreased during the training by

modifying the weight values of the connections. Training is

continued iteratively until the error value has reached the

predetermined training goal [22].

It is believed that ANN would require much more num-

ber of experiments (number of patterns) than RSM to build

an efficient model. But in fact, the ANN can also work well

even with relatively less data, if the data are statistically

well distributed in the input domain, which is the case with

DOE. This experimental data of RSM should be sufficient to

build effective ANN model. There are few case studies

available in the literature where models were developed by

RSM and ANN using same DOE; and ANN models have

consistently worked better than RSM [5, 12, 17].

The major advantages of ANN compared to RSM are (1)

it does not need a prior specification of appropriate fitting

function and (2) ANN is capable of universal estimation,

i.e., ANN can estimate nearly all types of nonlinear func-

tions such as quadratic functions, where RSM is suitable

only for quadratic estimations [9].

In this study, poly (ethyleneimine) (PEI)/titania (TiO2)

multilayer film on quartz tubes was assembled through the

layer-by layer (LbL) self-assembly method and were

applied in PRW treatment and characterization methods

were carried out for determination of the morphology and

roughness of the prepared thin films on quartz tube. Then

ANN and RSM have been used to compare the perfor-

mances of the statistical- and artificial intelligence-based

optimization techniques. The predictive models given by

RSM and ANN have also been compared for their exper-

imental and predicted response factor values, lower root

mean square error (RMSE), average error percentage

(Er %), and coefficients of determination (R2).

Experimental

Materials

The chosen catalyst of TiO2, mainly anatase (90 % anatase

and 10 % rutile, Degussa P 25) with a particle size

of 30 nm and Cationic poly (ethyleneimine) (PIA,

MW = 7.5 9 105 g/mol) were both purchased from

Aldrich and used as-received (Sigma, St. Loius, MO,

USA). Hydrogen peroxide (30 %, v/v) was obtained from

Merck Co. (Darmstadt, Germany). Sulfuric acid and

sodium hydroxide (Merck Co. Darmstadt, Germany)

solutions were used to adjust the pH of wastewater sam-

ples. For dipping solutions of the LBL-SA method,PIA

polymers were dissolved in DI water to the concentration

of 0.01 M. The pH of the solution was also adjusted with

HCl and NaOH to the required pH.

Preparation of multilayered film by the LbL technique

Quartz tubes were cleaned by immersing them in the

mixture of methanol and concentrated HCl (1:1) for 30 min

and then in the piranha solution (70/30 v/v of concentrated

H2SO4 and 30 % H2O2) to create negatively charged sur-

faces for 24 h. The substrate was finally rinsed several

times with DI water and then dried with N2 flushing. To

make a doping solution for the LBL-SA process, TiO2

nanoparticles were dispersed in DI water (pH 8) to yield a

0.1 % wt. transparent solution in which TiO2 nanoparticles

had a negatively charged surface [31].

Layer-by-layer self-assembled thin films were fabricated

by sequential deposition of oppositely charged polymer

and TiO2 nanoparticles at room temperature. For a single

nanoparticle layer in the film, for example, a negatively

charged substrate was sequentially dipped in a cationic PEI

(0.01 M) and then in ananionic TiO2 solution (0.1 wt. %),

yielding a (PEI/TiO2) thin film. By controlling this dipping

sequence, LBL-SA thin films of PEI/TiO2 (PEI/TiO2) n-1

were fabricated with a desired number of TiO2 nanoparticle

layers (n). For each layer, the substrate was dipped into the

solution for 15 min, and washed by distilled water, and

then dried in the temperature of 100 �C.

Photoreactor configuration

Figure 1 shows the experimental setup of the photoreactor

for the treatment of PR Win continuous mode operation.

This photoreactor was equipped with three thin gap annular

photocatalytic reactors in series with the working volume

of 2,850 ml [total liquid volume of each of photoreactor

was 950 ml excluding volume of the quartz tube (40 tubes

in each of the reactor) inside the photoreactor]. The UV

lamps (22 cm body length and 16 cm arc length) were

mercury 400 W (200–550 nm) lamps. The UV lamp was

installed in the inner quartz tube of each reactor and was

totally immersed in the reactor. Therefore, the maximum

light utilization was achieved. At first, PRW flow flowed

sequentially through each annular reactor one by one by

means of peristaltic pump from the wastewater reservoir

and subsequently discharged to the settling tank. Hydrogen

peroxide was added to the first reactor at a certain con-

centration. This photoreactor was operated under room

temperature (22 ± 2 �C). The air was introduced into the

each reactor with a bubble air diffuser at the bottom of the

each reactor, and the air flow rate was controlled with an

air flow-meter connected to blower (aeration rate, 4 l/min).

The laboratory tests were accomplished using the pre-

treated refinery wastewater samples (after flotation and

coagulation). PRW was randomly collected from an oil

refinery plant located in the city of Kermanshah, Iran. The

COD and BOD5 of the PRW sample were about 750 ± 60
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and 300 ± 26 mg/l, respectively, and it was diluted to the

required initial concentrations. Other specifications were

pH: 6.7, turbidity: 115 NTU, phenol concentration: 96 mg/l

and total dissolved solids: 645 mg/l. The concentrations of

chemical oxygen demand (COD) and BOD were determined

by using standard methods [4].

Characterization of the PEI/TiO2 multilayer film

A surface morphology of PEI/TiO2 thin films was studied

by scanning electron microscopy using a Philips XL30

microscope at an accelerating voltage of 20 kV. After

oven-drying of the thin film for 12 h, the sample was

coated with a platinum layer using an SCDOOS sputter

coater (BAL-TEC, Sweden) in an argon atmosphere.

Subsequently, the sample was scanned and photomicro-

graphs were obtained. Also the surface properties of PEI/

TiO2 thin films were visualized using an atomic force

microscope (Mobile S, Nanosurf, Switzerland). Explorer

atomic force microscopy was in the noncontact mode,

using high resonant frequency (F0 170 kHz) pyramidal

cantilevers with silicon probes having dynamic force.

N2 adsorption/desorption isotherms (BET) at 77 K were

measured on Belsorp mini II (Bel Japan). Samples were

placed in a tube under N2 atmosphere and then outgassed for

2 h at 80 �C prior to the measurements. X-ray diffraction

(XRD) patterns of samples were recorded using EQUINOX

diffractometer (Inel Company) operating with a Cu anode

and a sealed X-ray tube. The 2h scans were recorded at

several resolutions using CuKa radiation of wavelength

1.548 Å in the range of 20–80 with 0.05 step size.

Predictive modeling and optimization methods

Artificial neural network

A typical neural network structure used in this study is

shown in Fig. 2. As shown in the figure, the ANN structure

consists of an input layer (independent variables), hidden

layer (hidden) and output layer (dependent variables), so

that these layers are connected together by connections

with different weights.

The task of the hidden layer makes a connection

between input and output layer. One or more neurons can

be putted in the hidden layers. Network with a hidden layer

is capable of deriving the nonlinear equations from pre-

sented data belong to that.

The topology of an artificial neural network is deter-

mined by the number of its layers, number of nodes in each

layer and the nature of transfer functions. The most

important step in the development of the model probably is

optimization of ANN topology. We used three layered

feed-forward back propagation neural network (4:5:1) for

modeling of COD removal (Fig. 2).

In this study, input variables to the feed-forward neural

network were as follows: initial COD conc. (mg/l),

hydrogen peroxide (mM), pH and reaction time (min). The

percentage of COD removal was chosen as an experimental

response or output variable. The training parameters and

the range of the data used for ANN in this investigation are

listed in Tables 1 and 2, respectively.

In this work, we tested different numbers of neurons,

from 2 to 10, in the hidden layer. Each topology was

repeated three times to avoid random correlation due to the

random initialization of the weights. Table 3 demonstrates

Initial COD conc. (mg/l)

Hydrogen peroxide (mM)

pH

Reaction time (min)

Weights

Bias

Hidden layer

Weights

Output  layer
Input  layer

COD removal, %Bias

Fig. 2 The ANN optimized

structure in three layered feed—

forward back propagation

neural network for COD

removal modeling

Table 1 ANN training parameters

Parameter Value

Number of input nodes 4

Number of hidden neurons 5

Number of output node 1

Learning rule Levenberg–Marquardt

Number of epochs 1,000

l 0.001

Table 2 Model variables and their ranges. (the range of the data used

for ANN)

Variable Range

Input layer

Initial COD conc.(mg/l) 300–800

Hydrogen peroxide (mM) 2.2–15.4

pH 1.5–10.5

Reaction time (min) 45–135

Output layer

COD removal 33.2–98
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the relation between the network error and the number of

neurons in the hidden layer. The root mean square error

(RMSE) and the sum of squared error (SSE) were used as

the error function. RMSE and SSE measure the efficiency

of the network according to the following equation:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 yi;predic � yi;exp

� �2

n

s

ð1Þ

SSE ¼
X

n

i¼1

yi;predic � yi;exp

� �2 ð2Þ

Also in Table 3, we see the correlation coefficient which

represents the ratio between the data predicted by the

neural network and real data:

R2 ¼ 1 �
Pi¼n

i¼1 yi;predic � yi;exp

� �2

Pi¼n
i¼1 yi;exp � ym

� �2
ð3Þ

where n is the number of data point, yi;predict the network

prediction, yi;exp experimental response, ym average actual

and i is an index of data. We can see that the performance

of the network stabilized after inclusion of an enough

number of hidden units just about eleven. As can be seen

from Table 3, the root mean square error and the sum of

squared error are minimum just about five neurons. The

highest correlation coefficient for the network was five

hidden neurons, which was 0.9632 with the RMSE of

0.03377 and SEE of 0.03144. The R2 value is in reasonable

agreement with the ‘‘Radj
2 ’’ values of 0.9619, showing a

very good agreement between the predicted and actual

data.

Response surface methodology

RSM is an empirical statistical modeling technique

employed for multiple regression analysis using quantita-

tive data obtained from properly designed experiments to

solve multivariate equations simultaneously [23, 28, 29].

A central composite experimental design (CCD) for

independent variables involving four numerical factors:

initial COD concentration (a), initial H2O2 concentration

(b), pH (c) and reaction time (d) were used. The indepen-

dent variable selected for the optimization was COD

removal. Regression analysis was performed on the data

obtained from the experiments. After conducting the

experiments, the relationship between the dependent and

independent variables was calculated using the following

equation [2, 15, 18, 19, 44]:

Table 3 Effect of the number of neurons in the hidden layer on the

performance of the neural network

Number of hidden neurons R2 Radj
2 RMSE SSE

2 0.5369 0.5204 0.07893 0.1754

3 0.6797 0.6682 0.1051 0.3094

4 0.7635 0.7551 0.06705 0.1259

5 0.9632 0.9619 0.03377 0.03144

6 0.929 0.9215 0.04548 0.05794

7 0.5754 0.5603 0.08869 0.2202

8 0.676 0.6644 0.09395 0.2472

9 0.4575 0.4381 0.1184 0.3925

10 0.7991 0.7919 0.06959 0.1356

Table 4 Estimated regression coefficients and corresponding to ANOVA results from the data of central composite design experiments before

elimination of insignificant model terms

Model

terms

Coefficient

estimate

Standard

error

Sum of squares

(SS)

Degree of freedom

(DF)

Mean square

(MS)

F value Prob [ F

A -9.08 1.87 1,689.42 1 1,689.42 66.28 \0.0001 Significant

B 3.78 1.12 292.61 1 292.61 11.48 0.0041 Significant

C -8.12 1.12 1,350.68 1 1,350.68 52.99 \0.0001 Significant

D 5.85 1.12 701.85 1 701.85 27.54 \0.0001 Significant

A2 -2.72 1.12 84.12 1 84.12 3.30 0.05 Significant

B2 -5.10 1.50 295.57 1 295.57 11.60 0.0039 Significant

C2 -11.92 1.50 1,616.36 1 1,616.36 63.41 \0.0001 Not significant

D2 -1.45 1.50 24.00 1 24.00 0.94 0.3472 Not significant

AB 5.08 1.50 412.09 1 412.09 16.17 0.0011 Significant

AC -3.95 1.26 249.64 1 249.64 9.79 0.0069 Significant

AD -0.65 1.26 6.76 1 6.76 0.27 0.6141 Not significant

BC 1.70 1.26 46.24 1 46.24 1.81 0.1980 Not significant

BD -0.30 1.26 1.44 1 1.44 0.056 0.8153 Not significant

CD -2.32 1.26 86.49 1 86.49 3.39 0.05 Significant
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Y ¼ b0 þ biXi þ bjXj þ biiX
2
i þ bjjX

2
j þ bijXiXj þ . . .

ð4Þ

where, Y, i, j, b, X are chosen process response, linear

coefficient, quadratic coefficient, regression coefficient and

coded independent variables, respectively. Model terms are

chosen or neglected based on the probability of error

(P) value with 95 % confidence level. The results obtained

from CCD were entirely examined by means of analysis of

variance (ANOVA) by Design Expert software Table 4.

Data preparation

ANN model is good as interpolating data, but not extrap-

olating. Therefore, to achieve a valid ANN model, the data

selected for training should cover the full range of input

random variables. However, selection of appropriate

algorithms and transfer functions is essential to design a

suitable ANN model; otherwise, the output results will be

unreliable. Transition function of Tausig has been used in

the hidden layer and transition function of linear has been

used in output layer.

Since the sigmoidal transfer function was used in the

hidden layer, before the training, it is better that inputs and

targets are scaled to always be in a specified range.

Therefore, all data input (Yi) in the area of 0.1–0.9 is

normalized as follows (Ynorm):

Ynorm ¼ 0:8
Yi � Yi;min

Yi;max � Yi;min

� �

þ 0:1 ð5Þ

where Yi,min and Yi,max are extreme values of Yi [42]. After

the training of the network, all output reverted to its ori-

ginal scale and then the response predicted by the empirical

results were compared to experimental design.

Results and discussion

PEI/TiO2 multilayer film characterization

The LbL-TiO2 thin films were characterized by SEM and

AFM to evaluate the surface morphology and the effec-

tiveness of the multilayer assembly technique.

Figure 3a, b shows the top view surface morphology of

PEI/TiO2 thin films that were examined by scanning elec-

tron microscope. A close view surface of the film shows a

flat and dense surface morphology of polyelectrolytes and

distributed TiO2 nanoparticles embedded in the film.

Figure 3c showed the N2 adsorption/desorption iso-

therms for thin film. This adsorption isotherm is apparently

classified as the type III isotherm [14]. On the other hand,

for this kind of isotherm the gradient once decreased

around 0.1–0.3 of P/P0 and then increased from 0.7 to 1.0

of P/P0. These results suggest the presence of at least two

steps of pore filling, one at very low P/P0 associated with

the pores of molecular dimensions for effectively trapping

the light into the inner layers and the other at a 0.7–1.0 of

P/P0 associated with pores involving quasi-multilayer for-

mation that proved the formation of PEI/TiO2 thin films

which was our purpose [35]. The XRD results of coated

TiO2 before and after coating did not show any significant

changes in the structure of photocatalysts as a consequence

of the coating and calcination processes (Fig. 3d).

The PEI/TiO2 multilayer thin films were further exam-

ined by AFM to determine the surface roughness. Fig-

ure 3e shows the image for a thin film sample. It was from

topography scan forward that the roughness of the film was

around 120 nm. With an increase in the number of multi-

layers, the roughness of some parts of the surface amplified

because of farther deposition of TiO2 in these sites, which

is due to the increase in the amount of TiO2 deposited per

each layer.

Predictive modeling with ANN

The design of experiments, which is used for training the

network and respective experimental removal percentages

is given in Table 5.

ANN-based process model was developed using the

most popular feed-forward ANN architecture namely,

multi-layer perceptron (MLP) with logistic sigmoidal

function. The MLP network has four input nodes repre-

senting independent variables and one output node repre-

senting the COD removal (%). The data partitioning as

training set and test had been done to avoid over training

and over parameterization. The training cycle was per-

formed for varying numbers of neurons in the hidden layer

and also for various combinations of ANN-specific

parameter like learning rate, random initialization. The

generalization capacity of the model was ensured by

selecting the weights resulting in the least test set RMSE.

Figure 3 shows a comparison between calculated and

experimental values of the output variable for data set by

using neural network model. Plot in this figure has corre-

lation coefficient of 0.951 and indicates the reliability of

the model.

The generalization and predictive capabilities of both

RSM and ANN were compared. ANN model was superior

to RSM mode with higher value of coefficient of determi-

nation (0.9632ANN [ 0.94RSM) and lower root mean square

error (RMSE) (3.377AAN \ 3.569RSM). Desai et al. [9] have

also reported the average percentage error for ANN and

RSM models and the CC after employing ANN with genetic

algorithm approach for optimization of fermentation pro-

cess parameters, the results indicating the superiority of

ANN in capturing the nonlinear behavior of the system.
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Response surface methodology

To examine the combined effect of four different inde-

pendent variables, on COD removal, a central composite

factorial design of 24 = 16 plus 6 centre points and

(2 9 4 = 8) star points leading to a total of 30 experiments

were performed. Second-order polynomial equation was

used to correlate the independent process variables, with

COD removal. The second-order polynomial coefficient for

each term of the equation determined through multiple

regression analysis using the Design Expert. The same

DoE, which used in ANN-based model development, was

Fig. 3 SEM images: a 20 kV, 920 K, b 20 kV, 950 K, c N2 adsorption/desorption isotherms for the PEI/TiO2 multilayers thin film, d X-ray

diffraction patterns of samples and e AFM image
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also used to build the RSM model. The results were ana-

lyzed by using ANOVA, i.e., analysis of variance suitable

for the experimental design. The results are shown in

Table 4. The Model F-value of 66.28 implies that the

model is significant. Model F-value is calculated as ratio of

mean square regression and mean square residual. Model

P value (Prob [ F) is very low (0.0001). This resignifies

the significance of the model [9].

The P values were used as a tool to check the signifi-

cance of each of the coefficients, which, in turn, are nec-

essary to understand the pattern of the mutual interactions

between the test variables. The corresponding P values,

along with the coefficient estimate, are given in Table 4.

Comparison of RSM and ANN

Predictive capabilities

The ANN and RSM model were compared for DoE, using

which the both models were prepared. The comparison was

made on the basis of various parameters such as average

percentage error, RMSE and R2. Korany et al. [16] com-

pared experimental and predicted response factor values,

mean of squares error (MSE), average error percentage

(Er %) and squared coefficients of correlation (r2). Their

results showed that the best networks were able to predict

the experimental responses more accurately than the

Table 5 Central composite design (CCD) matrix of independent variables and their corresponding experimental and predicted values

No Variables Response

Factor 1 initial COD conc.

(200–800 mg/l)

Factor 2 hydrogen peroxide

(2.2–15.4 mM)

Factor 3

pH(1.5-10.5)

Factor 4 reaction time

(45–135 min)

Experimental RSM

predicted

ANN

predicted

COD

removal

(%)

1 500 8.8 6 90 91 90.24 87.43

2 500 8.8 6 45 81.5 78.19 81.76

3 200 8.8 6 90 98 97.74 97.22

4 500 2.2 6 90 72 73.10 71.45

5 700 13.2 9 120 59.5 61.03 59.54

6 500 15.4 6 90 89.1 84.44 88.93

7 500 8.8 6 90 80.7 90.24 87.43

8 700 4.4 9 120 44 40.53 42.38

9 700 4.4 3 120 68 72.71 68.07

10 700 13.2 3 120 87.2 86.42 86.95

11 500 8.8 6 90 89 90.24 87.43

12 300 4.4 9 120 77 78.03 81.94

13 300 13.2 9 60 75.5 70.49 75.98

14 700 13.2 9 60 50 55.88 50.09

15 500 8.80 1.5 90 75 75.60 77.07

16 300 13.2 9 120 74.7 78.24 74.97

17 300 4.4 3 60 78 76.17 79.66

18 500 8.8 6 90 86 90.24 87.43

19 500 8.8 6 90 93.5 90.24 87.43

20 300 4.4 9 60 66 69.08 65.69

21 300 13.2 3 60 65 70.77 67.96

22 700 4.4 9 60 33.2 34.18 22.73

23 500 8.8 6 90 95 90.24 87.43

24 300 13.2 3 120 89.1 87.82 89.81

25 500 8.8 6 135 96 95.75 98.53

26 700 4.4 3 60 58.3 57.06 60.07

27 700 13.2 3 60 73.3 71.97 71.92

28 300 4.4 3 120 98 94.42 99.71

29 500 8.8 10.5 90 55.4 51.24 56.45

30 800 8.8 6 90 73.8 70.50 73.90
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multiple regression analysis. The predicted values by ANN

as well RSM model are tabulated in Table 5.

Figure 4 shows the comparative parity plot for ANN and

RSM predictions for DoE. The MLP-based model had fit-

ted the experimental data with an excellent accuracy. This

higher predictive accuracy of ANN can be attributed to its

universal ability to approximate non-linearity of the sys-

tem, whereas RSM only restricted to second-order poly-

nomial. The comparative values average percentage error,

RMSE and R2 were given in Table 6.

Sensitivity analysis

As shown in Table 4, the model term of (A) has the largest

coefficient (9.03) which indicates that COD concentration

is the most dominating factor. This model term has sig-

nificant effect on the system compared to other interac-

tions. ANN being a black box model, it does not give such

insights of the system directly. Black-box neural network

model are allowed to acquire the relationships that exist

between important variables and was used to predict the

system variables. Except for a small network, it is almost

impossible that the models describe the equations in the

short-term and easily. Subsequently, the practical imple-

mentation of artificial neural networks is difficult. Desai

et al. [9] found that ANN is equally efficient in sensitivity

analysis and interestingly quite comparable to the coeffi-

cient of first-order terms in the quadratic RSM equation.

However, the nature of the black-box for ANN, one can

perform sensitivity analysis for neural networks with dif-

ferent input variables on the results obtained from the

model [32]. But there are numerous methods available

which give the sensitivity analysis of the system using the

inherent nature of ANN. Using Eq. 5, the effect of each

input variable on the output variable modeling matrix was

obtained by the network weight [11].
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where Ij is the relative importance of the jth input variable

on the output variable, Ni and Nh are the numbers of input

and hidden neurons, respectively; W’s are connection

weights, the superscripts ‘i’, ‘h’ and ‘o’ refer to input,

hidden and output layers, respectively; and subscripts ‘k’,

‘m’ and ‘n’ refer to input, hidden and output neurons,

respectively.

Effect of the variables studied

To gain a better understanding of the interaction effects of

variables on COD removal efficiency, two and three

dimensional contour plots for the measured response were

formed based on the model (Eq. 4). Figure 5a shows the

plots of the model for variation in COD removal as a

function of initial COD concentration and reaction time for

H2O2 concentration of 8.8 mM and initial pH of 6. It can

be seen from Fig. 5a that the percentage of COD removal

decreases as the initial concentration of the COD increases.

The percentage removal was gradually decreased from

101.64 % (with standard deviation of 4.92) to 71.8 % as

the COD concentration increased from 300 to 700 mg/l.

This can be explained in terms of either saturation of the

limited number of accessible active sites on the photocat-

alyst surface that leads to a decrease in degradation effi-

ciency, or poisoning (deactivation) of the active sites of the

catalyst.

Three dimensional (3D) response surface and contour

plots for COD removal as a function of initial H2O2 con-

centration and reaction time are presented in Fig. 5b. Such

plots present the function of two variables, maintaining all

others at the fixed levels (usually Xi = 0). It could be seen

from the figure that the degradation efficiency has

increased by increasing the H2O2 concentration up to

8.8 mM and then declined as H2O2 loading increased.

The effects of the pH and reaction time on the COD

removal are shown in Fig. 5c. The examination of the

figure shows that the pH of the emulsion has a crucial

effect on performance. A reverse impact of the pH on COD

removal was observed as the variable increased (Fig. 5c).

As shown in this figure, an increase in pH (from 3 to 6)

C
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al
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M
od
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 p
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di
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),
 %

COD removal (Experimental), %

Fig. 4 RSM and ANN predicted vs. experimental data

Table 6 Comparison of predictive capacity of RSM and ANN

Parameters RSM ANN

RMSE 3.569 3.377

R2 0.94 0.9632

Radj
2 0.91 0.9619

Average % error 0.73 0.18
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increases COD removal, while further increment in the

variable (from 6 to 9) decreased the response. So, the

optimum pH for COD removal was found to be in the range

of 4.5–6. The pH-effect is related to the point of zero

charge (pzc) of TiO2 at pH 6.2 and charge of organic

maters in different pH [25]. In acidic media (pH\6.2), the

surface of TiO2 is positively charged, whereas it is nega-

tively charged under alkaline conditions (pH [6.2).

Since the majority of organic maters in PRW are

phenol and phenolic derivatives being negatively charged

due to the OH groups which are ionized in water, their

electrostatic attraction to the TiO2 surface is favorable in

acidic solution and forbidden in alkaline media due to the

columbic repulsion between the negatively charged sur-

face of TiO2 and the organic molecules. From Fig. 5a–c,

it can be seen that the most desirable operating conditions

were initial COD concentration of 300 mg/l, H2O2 con-

centration of 8 mM, pH of 5 and reaction time of

120 min.

Conclusion

Poly ethyleneimine (PEI))/titania (TiO2) multilayers films

deposited on quartz tubes with smooth and uniform mor-

phology were fabricated by LbL electrostatic self-assembly

method. The LbL TiO2 thin film was characterized by SEM

and BET analyses. SEM images indicated that the film

surface is smooth and uniform. The BET characterization

method proved the multi-layer preparation. In continuation,

the advantages of artificial neural network in comparison

with response surface methodology were shown. By using

central composite design, the number of required experi-

ments was obtained. The predictive and generalization

capabilities of both RSM and ANN were compared using

separate dataset. The correlation coefficients for ANN and

RSM were 0.96 and 0.94, respectively. The modeling

capability of ANN has shown its superiority over RSM

with comparative less value of RMSE and average per-

centage error.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original
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