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Abstract The effect of oxygenate additives, water and

methanol, to the feed on the performance of industrial Pt–

Sn/c-Al2O3 catalyst in dehydrogenation of propane was

studied by neural network modeling. Because of the

complex nature of the system and very low levels of

oxygenate addition, neural networks were employed as an

efficient and accurate tool to obtain the behavior of the

system. Dehydrogenation reaction was carried out in a

fixed-bed quartz reactor in the temperature range of

575–620 �C. Steady state modeling was performed in three

different levels of oxygenate addition, and conversion and

selectivity at different levels. The optimum amounts of

water and methanol for reaction temperatures of 575, 600

and 620 �C were found to be 83.60, 125.40 and

139.34 ppm, respectively, for water and 9.98, 24.94 and

49.88 ppm for methanol by neural network method. The

neural network-based optimum was compared with that

obtained from experimental data. In this case, various

architectures have been checked using 70 % of experi-

mental data for training of artificial neural network (ANN).

Among the various architectures multi layer perceptron

network with trainlm training algorithm was found as the

best architecture. Temperature and water or methanol

amount for the present constituents in the feed were net-

work input data. Output data were conversion, selectivity

to propylene and yield of propylene. Comparing the

obtained ANN model results with 30 % of unseen data

confirms ANN excellent estimation performance. The

influence of different operating conditions on the accuracy

of the results was also investigated and discussed. The

propylene yields, however, passed a maximum at the

optimum levels of oxygenates coincided with a substantial

reduction of coke formation as well. The modeling results

were accurate with \0.9 % error.

Keywords Propane dehydrogenation � Pt–Sn/c-Al2O3 �
Oxygenates � Catalyst modifiers � Coke formation �
Artificial neural network

Introduction

Dehydrogenation of light alkanes to the corresponding

alkenes is growing because of growing demand for lower

alkenes for the production of polymers, polygas chemicals

and oligomers as gasoline blending stocks additives [1, 2].

Propane dehydrogenation (PDH) has been considered as an

alternative route for production of propylene. The reaction

is a highly endothermic and equilibrium limited requiring

relatively high temperatures and low pressures to achieve

high propylene yields [3]:

C3H8 , C3H6 þ H2 DH0
298 ¼ 124 kJ/mol ð1Þ

The reaction is generally operated at 525–625 �C near

atmospheric pressures over supported platinum or chromia

catalysts. Despite the simple chemistry, the reacting system

is very complex due to occurrence of several side reactions
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and rapid catalyst deactivation. The commercial

technologies differ in the catalyst formulation, reactor

design, heat supply, and method of catalyst regeneration.

Pt–Sn/c-Al2O3 catalyst exhibits a high activity and

selectivity to propylene in PDH [4, 5]. Promoting effects of

Sn on Pt/c-Al2O3 have been described in terms of its role as

a poison for acid sites on the alumina support as well as

enhanced mobility of adsorbed hydrogen and increased

dispersion of Pt on the support [6–9]. Side reactions

including hydrogenolysis and cracking result in the for-

mation of lower hydrocarbons which impact catalyst per-

formance [10].

Deactivation of Pt–Sn/c-Al2O3 by coke depositions in

the dehydrogenation is an important operation problem [11,

12]. The carbonaceous deposits on catalyst surface can be

removed by treatment with oxygen or steam. Some tech-

nologies use hydrogen or steam as diluents to reduce coke

formation and elongate catalyst lifetime.

Steam can serve as catalyst modifier when added in low

levels to the feed stream [13–15]. Recently, Barghi et al.

[13] performed the kinetic modeling of PDH in presence of

oxygenated additive over industrial Pt–Sn/c-Al2O3 in

which the effect of water addition in low level on coke

formation was mathematically investigated. Pt-based cat-

alysts are poisoned by high level of oxygenate by various

mechanism. Oxygenates deplete chlorine, essential for re-

dispersion of sintered platinum during catalyst regeneration

in continuous catalyst regeneration (CCR) plant, from the

catalyst and increase the selectivity to carbon oxides. When

used in appropriate levels, however, they could exhibit

beneficial effects on catalyst performance without percep-

tible adverse effects [16]. Nevertheless, very few investi-

gations have reported the effect of oxygenates and its

interaction mechanism in catalytic dehydrogenation of

light alkanes [16, 17].

The neural network, which arose from attempts to model

the functioning of the human brain, appears to be useful in

the study of dehydrogenation reaction. It seems to be a

promising tool to solve modeling problems in cases where

the governing mechanisms cannot be formulated due to

insufficient knowledge. Models based on artificial neural

network (ANN) exhibit the rule-following behavior with-

out containing any explicit representation of those rules

that is the main feature of the neural network approach,

which results in its wide range of applications. In recent

years, the concept of neural networks (NNs) has gained

wide popularity in many areas of chemical engineering

such as dynamic modeling of chemical processes [18, 19],

catalyst design [20], estimation of catalyst deactivation,

reaction modeling [21, 22], modeling of chemical reactors

[23] and modeling of complex chemical processes [24].

Applying ANN for modeling can render pre-mentioned

problems and facilitate the forecasting of catalyst activity.

Based on our literature survey, there was no attempt on

ANN modeling of catalyst performance for dehydrogena-

tion reactions. In this paper, we have demonstrated the use

of ANN in prediction of the performance of commercial

Pt–Sn/c-Al2O3 catalyst in the presence of oxygenate

additives, namely water and methanol, in PDH. Further-

more, the results of the modeling have been compared with

the experimental data.

Materials and methods

A laboratory scale tubular flow fixed-bed quartz reactor

was used for the PDH experiments. The inside diameter of

the reactor was 13 mm, the length of the reactor was

90 cm, and the commercial Pt–Sn/c-Al2O3 catalyst was

loaded in the middle section of the reactor in between two

layers of quartz particles. The catalyst loading was 1 g. All

experiments were conducted at weight hourly space

velocity (WHSV) of 2/h and hydrogen to propane ratio, H2/

HC, of 0.8 that are typical of industrial conditions. PDH

was performed at 575, 600 and 620 �C near atmospheric

pressure (0.8 bar) with different amounts of water in the

feed. The product samples were analyzed 3 h after the start

of the run when stable conditions were achieved. Product

samples were then analyzed hourly up to 7 h after the start

of the run. Details of the experimental procedures and

analyses are reported elsewhere [25].

Water and methanol were introduced to the reactor feed

stream using a syringe pump. The exit gasses were ana-

lyzed for light hydrocarbons and CO and CO2 using an

online Agilent 6890 gas chromatograph equipped with

TCD and FID detectors. Propane conversions, product

selectivities and propylene yield were defined as follows

[26]:

Propane Conversion ð%Þ ¼
P

i
ni

3

� �
Fi½ �out� FC3H8

½ �outP
i

ni

3

� �
Fi½ �out

� 100

ð2Þ

Selectivity for component i ð%Þ

¼
ni

3

� �
Fi½ �outP

i
ni

3

� �
Fi½ �out� FC3H8

½ �out

� 100 ð3Þ

Propylene Yield ð%Þ

¼ Propane Conversion � Selectivity of Propylene

100

ð4Þ

where i includes all the components with carbon atoms in

the exit gas stream, and ni and Fi are the number of carbon

atoms and molar flow of component i, respectively.

Spent catalysts were characterized by thermal gravi-

metric analysis (TGA). TGA tests were performed using a

PL-STA 1500 model by PL Thermal Science (England)
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where weight measurements were registered at a rate of

50 measurements/min using a temperature ramp of

5 �C/min from the base temperature of 25 �C up to 950 �C.

Artificial neural networks modeling

NNs are inductive models inspired by the structure and the

functions of biological neurons. A network is composed of

units or nodes that represent the neuron bodies. The units

are in the shape of conjunct loop structure which, in fact,

functions like axons and dendrites [27].

Information passes among these units along intercon-

nections. Any incoming connection has two associated

values, an input value and a weight. The output of the unit

is a function of the summed value. ANNs are not pro-

grammed to perform specific tasks; rather, they are trained

with respect to data sets until they learn patterns used as

inputs. Once they are trained, new patterns may be pre-

sented to them for prediction or classification. ANNs can

automatically learn to recognize patterns in data from real

systems or from physical models. An ANN can handle

many inputs and produce answers that are in a form suit-

able for the designers.

One of the well-known topologies of NN is the multi-

layer perception (MLP) which is used for classification and

estimation problems. One example of the layered networks

is depicted in Fig. 1. In the figure, ANN input, hidden and

output layers are shown. ANN training is an optimization

process in which an error function is minimized by

adjusting the ANN weights. When an input training pattern

is introduced to ANN, output is calculated. Output is

compared with the real output provided by the user [28,

29].

Output signals from each of the nodes are triggered by

the signals emanating from the input nodes which can be

modeled as a sigmoid relation:

f ðhÞ ¼ 1

1 þ e�h
ð5Þ

where f ðhÞ is the output signal from each node and h is the

activity of each node. The activity of each node is obtained

as the sum of the signals received from the preceding nodes

and defined as:

h ¼
X

xixi ð6Þ

where xi are the weights connecting input node i to hidden

node j, xi is the input value (normalized to unity) to input

node i. Signals from the hidden nodes then propagate to the

output layer and generate output signal similarly as the

input did.

Training of the ANN is an improvement process by

which error functions can be minimized according to the

network weights. When an input training pattern is intro-

duced to ANN, output is calculated. Output is compared

with the real output provided by the user. These differences

can be used by improvement technique to teach neural

network. The error function used here was mean square

error (MSE) which is given by the following formula:

MSE ¼ 1

n

Xn

i¼1

yi � yi;real

� �2 ð7Þ

Fig. 1 Structure of a neural

network

Appl Petrochem Res (2013) 3:47–54 49

123



where yi;real is the ith real target and yi is the network output

corresponding to input. Thus, training process is a path

from input layer to output layer to calculate an output,

obtaining the error and a backward path to update the

weights [30].

In this work, the neural network was trained to learn the

‘function’ using training set of the input and output data, in

which both input and output data were experimental. Then,

conversion and selectivity to propylene over the catalyst

was calculated by introducing the input data of the left-out

catalyst into thus trained network. This procedure was

repeated for all the experimental data and conditions, and

the calculated values were compared with the experimental

values.

The simulation of processes with NN requires a large

number of experimental data. The data were shuffled and

split in two subsets: training set and test set. The splitting

of samples plays an important role in evaluation of an ANN

performance. The training set is used to estimate model

parameter, and the test set is used to check the general-

ization ability of the model. The training set must be rep-

resentative of the whole population of input samples. In

this investigation data were obtained under various exper-

imental conditions including different reaction tempera-

tures and different amounts of water or methanol as

additives. The use of more than 60 % of data for training

and the remaining for testing is the most common approach

for ANN [31]. The network was taught by 70 % of data and

the remaining data were used to test the generalization

capacity of the network. ANN variables and their domains

are illustrated in Table 1.

Using MLP network according to Fig. 2, in which MSE

is plotted in conformity with the number of neurons in

hidden layers for water and methanol, the optimal number

for hidden layers is seven corresponding to the least square

error.

Results and discussion

The developed ANN model was employed for studying

variables affecting the catalyst performance. Experimental

and neural network modeling results of propane conver-

sions and selectivity and yield to propylene in the presence

of small amounts of water are summarized in Tables 2, 3

and 4 and those for methanol in Tables 5, 6 and 7. Figure 3

presents the ANN modeling and experimental data on

propane conversions, product selectivity and yield of

Table 1 Neural network variables and domain

Variables Domain

Oxygenate (water or methanol) (ml/h) 0–0.6

Temperature (�C) 575–620

Conversion (mol.%) 10–50

Selectivity (mol.%) 20–100

Yield (mol.%) 10–50
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Fig. 2 Error versus number of hidden layer for a water and

b methanol through the best obtained MLP network

Table 2 Experimental and ANN modeling conversion results for

catalytic PDH in presence of water

T (�C) Water amount (ml/h) Conversion (mol.%)

Experimental ANN Modeling

Starta Endb Start End

575 0.20 28.56 26.48 27.59 26.39

0.25 29.74 27.88 28.65 27.54

0.30 30.89 28.17 29.04 27.88

0.35 24.96 22.87 – –

Without 26.79 24.18 26.53 24.86

600 0.40 38.76 36.54 36.73 35.41

0.45 39.95 37.13 38.34 36.08

Without 36.12 33.43 33.88 31.88

620 0.30 46.18 43.22 46.15 42.75

0.40 47.57 45.02 47.91 44.61

0.50 48.67 46.29 48.49 45.60

0.60 45.17 39.85 44.14 40.63

Without 45.34 42.98 44.51 41.84

a Start, reaction time after 3 h
b End, after 7 h
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propylene versus time-on-stream at 575 �C with the opti-

mum level 0.3 ml/h water added to the feed [25]. The

agreement between the model predictions and the experi-

mental data is good. In all runs the catalyst activity

declined with time-on-stream as coke was accumulated on

the catalyst surface while the selectivity to propylene

increased and it can be seen that the ANN model correctly

predicts the trend. This model, approximately, can be

generalized to the entire range of data for water since the

differences between predicted and experimental value are

small indicating the capability of ANN to predict unob-

served data correctly.

The indicated graphs demonstrate the good performance

of the created network. The ANN simulation is a useful

tool for many situations including when information for the

catalytic system, such as catalyst structure and material, are

unavailable. The ANN simulation is solely based on the

experimental results and as such here is no need for

detailed information of catalyst structure, oxygenated

additive and mechanism of reaction. This is an important

advantage for simulation of catalytic processes by ANNs.

Similar observations can be made with respect to the

effects of water on PDH at other reaction temperatures.

The optimum amount of water was found to increase with

increasing temperature. As indicated by Tables 2, 3 and 4,

the optimum amounts of water at reaction temperatures of

575, 600, and 620 �C were 0.3, 0.45, and 0.5 ml/h,

respectively, corresponding to a feed water composition of

83.6, 125.4, and 139.34 ppm. In all cases any further

increase in the feed water content beyond the optimum

value would result in a substantial loss in catalyst that

could also be predicted by ANN.

Figure 4 presents the propane conversions and product

selectivities for PDH at 620 �C with various amounts of

methanol added to the feed. The trends were qualitatively

similar to those obtained when water was added to the feed.

The optimum amounts of methanol at reaction temperatures

of 575, 600, and 620 �C were 0.02, 0.05, and 0.1 ml/h,

respectively, corresponding to a feed methanol composition

Table 3 Experimental and ANN modeling selectivity to propylene

results for catalytic PDH in presence of water

T (�C) Water amount (ml/h) Selectivity to C3H6 (mol.%)

Experimental ANN modeling

Starta Endb Start End

575 0.20 75.64 78.30 78.47 78.29

0.25 77.87 79.18 79.91 79.84

0.30 77.92 81.65 79.57 81.06

0.35 67.53 70.25 – –

Without 79.26 82.64 77.76 80.38

600 0.40 84.18 87.15 87.71 89.13

0.45 85.74 90.03 87.82 90.61

Without 90.59 94.84 94.78 97.81

620 0.30 77.26 79.76 77.13 80.37

0.40 75.44 79.65 74.47 79.64

0.50 77.93 82.76 76.97 83.44

0.60 75.73 78.32 78.98 78.22

Without 82.78 87.98 84.03 88.93

a Start, reaction time after 3 h
b End, after 7 h

Table 4 Experimental and ANN modeling yield of propylene results

for catalytic PDH in presence of water

T (�C) Water amount (ml/h) Yield of C3H6 (mol.%)

Experimental ANN modeling

Starta Endb Start End

575 0.20 21.60 20.73 21.65 20.66

0.25 24.05 22.30 22.89 21.99

0.30 23.17 22.76 23.15 22.61

0.35 16.85 16.07 – –

Without 21.23 19.98 20.64 19.97

600 0.40 32.63 31.84 32.23 31.56

0.45 34.25 33.83 33.67 32.73

Without 32.72 31.70 32.12 31.17

620 0.30 35.68 34.47 35.59 34.36

0.40 35.89 35.86 35.69 35.52

0.50 37.93 38.31 37.38 38.05

0.60 34.21 31.21 34.83 31.79

Without 37.53 37.81 37.41 37.22

a Start, reaction time after 3 h
b End, after 7 h

Table 5 Experimental and ANN modeling conversion results for

catalytic PDH in presence of methanol

T (�C) Methanol amount (ml/h) Conversion (mol.%)

Experimental ANN modeling

Starta Endb Start End

575 0.02 29.13 26.97 28.95 26.29

0.05 27.13 25.14 28.64 25.51

Without 26.79 24.18 28.21 25.62

600 0.05 38.07 35.79 38.57 36.37

0.10 34.18 34.72 37.02 34.47

Without 36.12 33.43 36.95 33.59

620 0.10 47.96 45.78 46.40 45.37

0.20 41.72 36.84 40.99 36.84

Without 45.34 42.98 45.76 43.63

a Start, reaction time after 3 h
b End, after 7 h
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of 9.98, 24.94, and 49.88 ppm. The agreements between the

model predictions and the experimental data were slightly

better for water compared with methanol as the additive. In

all runs the catalyst conversion declined with time-on-

stream that was correctly predicted by ANN modeling. The

selectivity to propylene increased with increasing time-on-

stream. This trend was also predicted by the ANN model

although agreements between model predictions and

experimental results are not satisfactory for the initial per-

iod. In case of the propylene yield, the predictions for

methanol were not satisfactory in comparison with water.

As indicated by the ANN results, the optimum amounts of

methanol were lower compared with those for optimum

water addition. The enhanced propane conversions and

propylene yields were slightly higher when optimum

amounts of water were used compared with those for opti-

mum methanol addition. This implies that for equivalent

amount of oxygen, methanol is a more efficient modifier

than water.

At high temperatures carbonaceous deposits, collec-

tively termed coke, are rapidly formed and as a conse-

quence, catalyst deactivation and regeneration are

important considerations for commercial processes. With

increasing temperature, the activity of catalyst and the

reaction rate increased which also resulted in an increase in

Table 6 Experimental and ANN modeling selectivity to propylene

results for catalytic PDH in presence of methanol

T (�C) Methanol amount (ml/h) Selectivity to C3H6 (mol.%)

Experimental ANN modeling

Starta Endb Start End

575 0.02 79.22 81.94 85.74 84.74

0.05 75.87 77.41 82.98 81.14

Without 79.26 82.64 87.37 86.70

600 0.05 86.79 90.16 91.43 91.82

0.10 82.09 88.07 87.79 88.39

Without 90.59 94.84 93.52 93.55

620 0.10 78.65 82.63 83.30 86.38

0.20 64.95 69.46 68.68 74.50

Without 82.78 87.98 87.51 88.51

a Start, reaction time after 3 h
b End, after 7 h

Table 7 Experimental and ANN modeling yield of propylene results

for catalytic PDH in presence of methanol

T (�C) Methanol amount (ml/h) Yield of C3H6 (mol.%)

Experimental ANN modeling

Starta Endb Start End

575 0.02 23.08 22.10 24.82 22.28

0.05 20.58 19.46 23.77 20.69

Without 21.23 19.98 24.65 22.21

600 0.05 33.04 32.27 35.27 33.39

0.10 28.06 30.58 32.50 30.47

Without 32.72 31.70 34.55 31.41

620 0.10 37.72 37.83 38.65 39.18

0.20 27.10 25.59 28.15 27.44

Without 37.53 37.81 40.04 38.62

a Start, reaction time after 3 h
b End, after 7 h
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Fig. 3 ANN modeling and experimental comparison effects of water

for a propane conversion, b propylene selectivity and c propylene

yield on PDH over industrial Pt–Sn/c-Al2O3 catalyst in optimum

amount of water addition at 575 �C
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coke deposition. Water and light oxygenates can also serve

as catalyst modifier when used in low levels in the feed

stream. They act as catalyst depressant. Pt-based catalysts

are poisoned by high level of oxygenate by various

mechanisms. They also deplete chlorine, essential for re-

dispersion of sintered platinum, from the catalyst and

increase the selectivity to carbon oxides. When used in

appropriate levels, however, they could exhibit beneficial

effects on catalyst performance without other adverse

effects. In general, one can conclude that with increasing

reaction temperature, the optimum amounts of oxygenated

additives should be increased.

The results from TGA for selected spent catalyst sam-

ples are presented in Table 8 in terms of the coke content

(g/g cat) of spent catalysts, indicating that without any

added water or methanol, the coke content of the spent

catalysts increased with increasing reaction temperature.

Addition of water or methanol in optimum amounts sig-

nificantly reduced the coke content of spent catalysts.

Comparison of the coke content at 620 �C indicated that

when water was added in the optimum amount, the

reduction in the coke content of the spent catalyst was

slightly more than when methanol was added in the opti-

mum amount (Fig. 5).

Conclusions

PDH was carried out over an industrial Pt–Sn/c-Al2O3

catalyst with small amounts of water or methanol added to

the feed. These oxygenated additives would maximize both

the conversion of propane and the yield of propylene if

they are added in the optimum amounts. Application of

ANNs model can avoid difficulties like type of catalyst,

uncertainty in porosity and mechanism of reaction, etc. in

simulation of a catalyst activity. Based on different training
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c propylene yield on PDH over industrial Pt–Sn/c-Al2O3 catalyst in
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Table 8 Coke content of spent catalysts from TGA

T (�C) Oxygenated additive Wt% coke of catalyst

620 0.1 ml/h methanol 4.2

620 0.5 ml/h water 3.8

620 Non 8.0

600 0.05 ml/h methanol 3.2

600 Non 5.9

575 0.3 ml/h water 2.8

575 Non 4.6
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algorithms, MLP has been found as the best network with

minimum training error for modeling of catalyst conver-

sion and selectivity. The obtained results incorporate

excellent capability of ANN in modeling. The estimated

values of ANN agreed very well with the experimental

values, even in the case where the experimental data

seemed to contain some error and diversity. The optimum

amounts of oxygenated additives increased with increasing

reaction temperature. For a given temperature, the opti-

mum amount of water was more than that for methanol.

These trends were well predicted by the NN model and the

results lead to the conclusion that the neural network is a

powerful tool for the estimation of catalyst activity,

selectivity and propylene yield for sufficient amounts of

oxygenated additives.
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