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Abstract
This study presents a pioneering machine learning approach to continuously model fracture intensity in hydrocarbon res-
ervoirs using solely conventional well logs and mud loss data. While machine learning has previously been applied to 
predict discrete fracture properties, this is among the first attempts to leverage well logs for continuous fracture intensity 
modeling leveraging advanced ensemble techniques. A multi-level stacked ensemble methodology systematically combines 
the strengths of diverse algorithms like gradient boosting, random forest and XGBoost through a tiered approach, enhancing 
predictive performance beyond individual models. Nine base machine learning algorithms generate initial fracture intensity 
predictions which are combined through linear regression meta-models and further stacked using ridge regression into an 
integrated super-learner model. This approach achieves significant improvements over individual base models, with the super-
learner attaining a mean absolute error of 0.083 and R^2 of 0.980 on test data. By quantifying the crucial fracture intensity 
parameter continuously as a function of depth, this data-driven methodology enables more accurate reservoir characteriza-
tion compared to traditional methods. The ability to forecast fracture intensity solely from conventional well logs opens new 
opportunities for rapid, low-cost quantification of this parameter along new wells without requiring advanced logging tools. 
When incorporated into reservoir simulators, these machine learning fracture intensity models can help optimize production 
strategies and recovery management. This systematic stacked ensemble framework advances continuous fracture intensity 
modeling exclusively from well logs, overcoming limitations of prior techniques. Novel insights gained via rigorous model 
evaluation deepen the understanding of naturally fractured reservoirs.
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Abbreviations
ANFIS  Adaptive neuro-fuzzy inference system
ANN  Artificial neural network
BN  Bayesian belief network
CMIS  Committee machine intelligent system
CTODC  Critical crack tip opening displacement
FVDC  Fracture volume per unit depth of core
GA  Genetic algorithm
KICS  Critical stress intensity factor

LSSVM  Least squares support vector machine
MAE  Mean absolute error
MELM  Multiple extreme learning machines
MLP  Multilayer perceptron
MSE  Mean squared error
R2  Coefficient of determination
RBF  Radial basis function
RF  Random forest
rmse  Root mean squared error
svm  Support vector machine

List of symbols
n  Total number of data points (–)
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ypred  Predicted fracture intensity  (m2/m3)
ytrue  Actual fracture intensity  (m2/m3)
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Introduction

For over five decades, the petroleum engineering com-
munity has grappled with fluid flow challenges through 
fractured reservoirs, characterized by subterranean lab-
yrinths of cracks and fissures. These fractures hold the 
key to unlocking the full potential of oil and gas extrac-
tion, yet their inherent complexities have defied precise 
quantification. Recent groundbreaking advancements in 
machine learning offer a promising solution to extract 
hidden insights from conventional well logs and drilling 
data (Cao and Sharma 2023; Hawez et al. 2021; Kim and 
Durlofsky 2023).

The establishment of correlations between well-log 
data and fracture properties has ignited a competition to 
refine predictive models, heralding a new era for petroleum 
engineers. As machine learning algorithms are fine-tuned, 
they provide a powerful tool to peer into the enigmatic 
realms of fractured reservoirs. This paper explores the 
role of machine learning in illuminating the dynamics of 
fractures, enhancing reservoir modeling, and meeting the 
global energy demands more efficiently.

Fracture intensity, defined as the total fracture surface 
area per bulk reservoir volume  (m2/m3), stands as a pivotal 
parameter in this pursuit (Zhan et al. 2017; Wang et al. 
2023). It quantifies the degree of fracturing within a res-
ervoir, with higher values indicating more extensive frac-
ture networks and enhanced production potential. Accurate 
quantification of fracture intensity is crucial for reservoir 
behavior forecasting, well optimization, and maximizing 
hydrocarbon recovery (Abbasi et al. 2020; Wang et al. 
2023).

Fracture intensity plays a crucial role in influencing 
fluid flow within fractured reservoirs. The presence of 
denser and interconnected fractures, characterized by high 
intensity, establishes pathways with increased permeabil-
ity for the smooth movement of hydrocarbons. Conversely, 
tight zones with low fracture intensity impose restrictions 
on fluid flow (Questiaux et al. 2010). Efficiently mapping 
fracture intensity allows for the targeted identification 
of high-intensity sweet spots, optimizing strategies for 
hydrocarbon recovery. Moreover, the integration of frac-
ture intensity models into reservoir simulators not only 
enhances production forecasts but also contributes to the 
development of more effective strategies (Questiaux et al. 
2010; Abbasi et al. 2020). In this context, the application 
of the faulted model in simulation models proves valuable, 
as it enables a detailed exploration of the sensitivity of 
fluid movements across faults and their potential impact in 
proximity to fault fracture zones (Al-Dujaili et al. 2023).

Traditional methods for estimating fracture inten-
sity have limitations, such as limited wellbore coverage 

in image logs and low recovery rates in fractured zones 
during core analysis (Zaree et al. 2016; Azadivash et al. 
2023a; Wang et al. 2023). Leveraging machine learning 
algorithms trained on continuous conventional well logs 
and mud loss data offers a promising solution. Conven-
tional logs provide extensive formation evaluation cover-
age, making them a cost-effective data source (Darling 
2005; Sen et al. 2021; Azadivash et al. 2023b). Machine 
learning models can correlate log trends with fracture 
intensity from core and images, allowing continuous 
intensity prediction along boreholes and between wells. 
The advantages include ubiquitous log data utilization, 
independent estimation, and cost-effectiveness, although 
challenges in data volume and natural fracture variability 
remain (Ouenes 2000; Boerner et al. 2003).

Accurate quantification of fracture intensity through 
machine learning facilitates optimized reservoir develop-
ment and production strategies, harnessing high-intensity 
areas efficiently. Integrating machine-learning fracture mod-
els into reservoir simulators enables scenario forecasting to 
optimize hydrocarbon recovery (He et al. 2020; Fathi et al. 
2022; Ng et al. 2023). However, addressing the demands 
for training data volume and natural fracture heterogeneity 
complexities remains an ongoing research challenge. With 
continued progress, machine learning promises a low-cost, 
continuous solution for optimizing performance in natu-
rally fractured reservoirs through precise fracture intensity 
characterization.

Recent studies have demonstrated the potential of 
machine learning techniques to estimate discrete fracture 
properties from well logs. These studies have made signifi-
cant strides in fracture prediction, utilizing various machine 
learning algorithms and datasets (Boadu 1998; Ince 2004; 
Sarkheil et al. 2009; Ja’fari et al. 2012; Zazoun 2013; Nouri-
Taleghani et al. 2015; Li et al. 2018; Bhattacharya and 
Mishra 2018; Rajabi et al. 2021; Tabasi et al. 2022; Pei and 
Zhang 2022; Delavar 2022; Gao et al. 2023).

While machine learning has been successfully applied to 
predict discrete fracture properties, a critical gap remains in 
leveraging these techniques to model the continuous param-
eter of fracture intensity. Conventional well logs and mud 
loss data offer abundant and low-cost subsurface informa-
tion. However, developing advanced machine learning mod-
els to correlate this data with continuous fracture intensity 
measurements has been an unmet need. This study addresses 
this knowledge gap by introducing a pioneering multi-tiered 
stacked ensemble methodology that systematically combines 
diverse algorithms like gradient boosting, random forest, and 
XGBoost to construct a precise predictive model for continu-
ous fracture intensity solely from conventional well logs and 
mud loss data. The ability to forecast this crucial parameter 
continuously as a function of depth using readily available 
data opens new opportunities for rapid, low-cost fracture 
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intensity quantification along new wells without requiring 
advanced logging tools. When incorporated into reservoir 
simulators, these data-driven fracture intensity models can 
enable more accurate reservoir characterization and opti-
mization of production strategies compared to traditional 
methods.

The methodology employs a diverse set of algorithms, 
including Gradient Boosting, Random Forest, Extra Trees, 
XGBoost, LightGBM, CatBoost, Decision Trees, Bagging, 
and Histogram-based Gradient Boosting. These algorithms 
provide diverse perspectives to capture intricate data pat-
terns related to fracture intensity. The predictions from 
these base learners are ensembled using linear regression 
to create two meta-learner models. Finally, ridge regression 
is utilized to stack the outputs of the two meta-learners, 
resulting in an integrated super-learner model. This multi-
tiered approach capitalizes on the unique strengths of each 
algorithm, enhancing accuracy, diversity, and robustness in 
fracture intensity prediction.

Geological setting

The Kopeh Dagh Basin, located in northeastern Iran, is an 
integral part of the Amu Darya Basin, extending southeast-
ward into Turkmenistan and Uzbekistan (Kavoosi et al. 
2009; Robert et al. 2014). Spanning over 300 km from the 
Turkmenistan border to the Mashhad area, it is bounded 
to the north by the Kopeh Dagh mountain range, formed 

due to the convergence of the Eurasian and Iranian plates 
(Taghizadeh-Farahmand et al. 2013; Ruh et al. 2019).

Sharing a basement of deformed Paleozoic rocks from 
the Hercynian accreted terrane, the Kopeh Dagh Basin 
hosts significant gas reserves in Upper Jurassic carbonates 
(Mozduran Formation) and Lower Cretaceous sandstones 
(Shurijeh Formation), particularly in the Khangiran Field 
(Robert et al. 2014). The closure of the Neotethys Ocean 
during the Late Cretaceous led to uplift and folding, fol-
lowed by episodes of shortening and thickening during the 
Paleocene and Eocene (Brunet et al. 2003; Zanchi et al. 
2006). Figure 1 provides an overview of the topography of 
the Kopeh Dagh range and the critical gas field locations.

Major basin development occurred during the Oligo-
cene and Miocene epochs, driven by the collision of the 
Iranian and Eurasian plates, resulting in flexural subsid-
ence and the accumulation of crucial hydrocarbon source 
rocks and reservoirs (Lyberis and Manby 1999; Golonka 
2004; Robert et al. 2014). With sediment thickness exceed-
ing 12 km in the depocenter, the basin offers substantial 
hydrocarbon potential (Golonka 2004; Robert et al. 2014).

The intricate folding and thrust faulting within the 
Kopeh Dagh Basin create diverse traps for hydrocarbons, 
making it a world-class petroleum province in the Amu 
Darya Basin region (Arian 2012; Nouri and Arian 2017). 
Ongoing exploration efforts are expected to yield further 
discoveries in this geologically significant area. Figure 2 
presents a stratigraphic chart of the Kopeh Dagh belt, 

Fig. 1  A topographic chart depicting the Kopeh Dagh mountain 
range with marked positions of six prominent gas fields (labeled as 
follows: 1—Dauletabad, 2—Gonbadli, 3—Khangiran, 4—Shaltyk, 

5—Bayram-Ali, 6—Achak) is displayed in red close to the Paleo-
tethys suture zone. Image from Robert et al. (2014)
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Fig. 2  Stratigraphic chart of the Kopeh Dagh belt, Amu Darya and South Caspian Sea basins showing units, major unconformities, and correla-
tion with tectonic events. Image from Robert et al. (2014)
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Amu Darya, and South Caspian, illustrating correlations 
between units and tectonic events.

Material and methods

Material

This study employed well log and mud loss data from three 
wells labeled as Wells A, B, and C, situated in the Kopeh 
Dagh basin. The dataset encompassed a wide range of log 
measurements, including bulk density (RHOB, kg/m3), pho-
toelectric factor (PEF, b/e), neutron porosity (NPHI, v/v), 
lost circulation (MUDLOSS, bph), shallow resistivity (LLS, 
ohm.m), deep resistivity (LLD, ohm.m), spectral gamma-
ray (SGR, gAPI), acoustic travel time (DT, us/m), com-
puted gamma-ray (CGR, gAPI), caliper (CALI, mm), bad 
hole (BH, mm), depth (DEPTH, m), and fracture intensity 
(INTENSITY,  m2/m3) derived from electrical image logs.

The dataset comprised 7590 data points, with contribu-
tions from Well A (2674 data points), Well B (2367 data 
points), and Well C (2549 data points). Fracture intensity 
interpretation was based on electrical image logs, while 
lost circulation data were extracted from drilling records. 
Table 1 provides a statistical summary of the dataset, includ-
ing metrics such as sample count, average, standard devia-
tion, minimum, 25th percentile, median, 75th percentile, and 
maximum values.

To ensure data integrity, rigorous quality control and 
preprocessing measures were implemented. This included 
identifying and removing erroneous data, outliers, and miss-
ing log values to prevent potential bias in the subsequent 
modeling.

The log data underwent standardization, involving mean 
centering and scaling to unit variance, facilitating direct 
comparisons among log properties with varying units and 

magnitudes. This standardization also addressed numeri-
cal stability issues and expedited model convergence. 
Log depths were resampled to a consistent step size using 
spline interpolation to ensure uniformity in depth measure-
ments for model compatibility. The resulting dataset, char-
acterized by standardized, cleaned, aligned, and resampled 
logs, served as input for machine learning modeling.

Figure 3 presents a cross-correlation matrix plot of the 
12 input parameters and fracture intensity. This figure 
reveals distinct relationships between fracture intensity 
and various logging measurements. Depth showed a posi-
tive correlation due to increased overburden pressure with 
depth, leading to more intense natural fracturing in deeper 
formations. Lost circulation directly indicated fractured 
zones. Lower bulk density (RHOB) and higher neutron 
porosity (NPHI) readings suggested increased porosity 
resulting from fracturing. Longer acoustic travel times 
(DT) indicated fractures disrupting acoustic wave propa-
gation. Decreased gamma ray (GR) and deep resistivity 
(LLD) corresponded to fractured carbonate lithology and 
saturated vertical fractures, respectively. Irregular bore-
hole diameter measured by caliper (CALI) occurred more 
often in fractured intervals (Pei and Zhang 2022).

While some parameters displayed stronger individual 
correlations with fracture intensity, all 12 well-log inputs 
were utilized for machine learning prediction modeling. 
This comprehensive approach accounted for poten-
tial interdependencies between variables that may not 
be evident through direct correlation analysis. Weaker 
individual correlations did not discount their potential 
contributions to prediction through complex nonlinear 
multivariate interactions. Employing the full suite of 
diverse well-log measurements allowed machine learn-
ing models to determine optimal input combinations for 
maximizing prediction accuracy. This holistic modeling 
approach could uncover subtle relationships between 

Table 1  Statistical summary of 
the dataset

Data Count Mean Std Min 25% 50% 75% Max

DEPTH (m) 7590 3178.87 333.08 2682.39 2920.44 3121.23 3382.63 3953.10
BH (in) 7590 22.31 98.77  − 111.44  − 94.03 81.39 104.33 268.34
CALI (in) 7590 286.97 65.94 199.71 217.03 315.60 322.65 579.49
CGR (gAPI) 7590 34.62 33.67 0.24 4.48 24.69 61.31 138.28
DT (us/m) 7590 190.32 22.74 145.67 170.78 188.78 206.68 365.16
SGR (gAPI) 7590 43.65 36.84 1.77 10.84 34.65 72.46 149.99
LLD (ohm.m) 7590 373.83 699.55 3.28 24.52 66.30 414.88 11,797.35
LLS (ohm.m) 7590 245.26 503.97 3.65 21.61 44.83 142.06 1950.00
MUDLOSS (bph) 7590 1.12 6.21 0.00 0.00 0.00 0.00 50.00
NPHI (v/v) 7590 0.08 0.07  − 0.02 0.03 0.07 0.12 0.31
PEF (b/e) 7590 4.65 1.63 2.35 3.58 4.11 5.20 10.00
RHOB (kg/m3) 7590 2667.64 123.90 1951.90 2613.72 2706.95 2748.88 2976.23
INTENSITY (m2/m3) 7590 0.80 1.54 0.00 0.00 0.00 1.02 12.56
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various parameters and fractures, even those not detect-
able through standalone correlations.

Methods

The methodology for predicting fracture intensity stra-
tegically employs various machine learning techniques, 
offering a comprehensive and systematic approach. Nine 
base learners, including Gradient Boosting, Random For-
est, Extra Trees, Xgboost, LightGBM, CatBoost, Decision 
Trees, Bagging, and Histogram-based Gradient Boosting 
models, generate initial predictions. These diverse mod-
els bring unique strengths to the table, from capturing 
intricate data relationships to handling large datasets and 
categorical features efficiently.

In the second stage, linear regression amalgamates 
the first-level predictions, forming two meta-learners 
designed to capture nuanced data patterns. The third level 
employs ridge regression to stack the outputs of these 
meta-learners, creating a unified super-learner model. 
This rigorous selection process ensures the ensemble 
model's adaptability across various fracture intensity 
scenarios.

The methodology leverages the interactions and syner-
gies among different methods, enhancing overall accu-
racy, diversity, and robustness. Figure 4 illustrates the 
systematic approach employed, showcasing the orches-
tration of diverse machine learning techniques to predict 
fracture intensity.

Base algorithms employed

This section covers various machine learning techniques 
employed in this research.

Gradient Boosting is an ensemble technique that com-
bines weak learners sequentially to reduce errors, utilizing 
gradient descent optimization and regularization to prevent 
overfitting (Dorogush et al. 2018; Bentéjac et al. 2021). Gra-
dient Boosting is favored for its ability to model complex 
data patterns and flexibility in hyperparameter tuning, mak-
ing it a robust approach for regression, classification, and 
ranking problems (Natekin and Knoll 2013; Ayyadevara 
2018).

Random Forest leverages multiple decorrelated decision 
trees trained on random data samples to improve generaliz-
ability and avoid overfitting. Tuning hyperparameters like 
number of trees allows optimizing performance (Breiman 
2001; Speiser et al. 2019). Random Forest is renowned for 
its versatility, scalability and robustness in classification and 
regression tasks (Smith et al. 2013; Rodriguez-Galiano et al. 
2015).

Extra Trees introduces additional randomness in the train-
ing process as a defense against overfitting, making it well-
suited for noisy, high-dimensional data (Geurts et al. 2006; 
Ahmad et al. 2018). The combination of ensemble learning 
and extreme randomness yields a reliable model for chal-
lenging datasets (Goetz et al. 2014).

XGBoost utilizes regularization, tree pruning and cus-
tom loss functions for optimal performance, renowned 
for its speed, accuracy and flexibility via hyperparameter 

Fig. 3  Cross-correlation matrix plot of 12 input parameters and fracture intensity
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tuning (Chen et al. 2015). It is popular across academia 
and industry for diverse regression, classification and 
ranking problems (Hastie et al. 2009).

LightGBM utilizes a histogram-based algorithm for 
fast, low memory tree construction, enabling high per-
formance for large datasets (Ke et al. 2017; Daoud 2019). 
Its computational efficiency and scalability make it a pre-
ferred gradient boosting tool.

CatBoost handles categorical features seamlessly, 
improving resistance to overfitting and reducing preproc-
essing needs (Dorogush et al. 2018; Prokhorenkova et al. 
2018). Its capabilities for automatic feature encoding and 
predictive accuracy make CatBoost effective for modeling 
tabular data.

Decision trees offer intuitive hierarchical structure for 
classification/regression, providing transparency into feature 
importance (Kotsiantis 2013). They benefit from pruning 
and ensemble methods to improve performance and combat 
overfitting (Myles et al. 2004; Robnik-Šikonja 2004). Their 

interpretability makes them a versatile supervised learning 
technique.

Bagging combines independently trained models on resa-
mpled data to improve stability and accuracy through model 
averaging (Breiman 1996; Bauer and Kohavi 1999; Galar 
et al. 2012; Lee et al. 2020). Training base models on ran-
dom subsets avoids overfitting.

Histogram-based Gradient Boosting utilizes histograms 
to accelerate tree construction, enhancing scalability without 
losing accuracy (Guryanov 2019; Nhat-Duc and Van-Duc 
2023). This allows gradient boosting to handle large datasets 
and real-time applications efficiently (Table 2).

Stacking algorithm

Stacking is an ensemble technique that combines multiple 
diverse base learners, with each capturing distinct data pat-
terns and relationships. A meta-learner is then trained on 
the predictions of the base learners to effectively fuse their 

Fig. 4  Workflow of the present study
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collective knowledge (Džeroski and Ženko 2004; Sikora and 
Al-Laymoun 2015). By learning to optimize the blend of 
diverse predictions, the meta-learner acts as a supervisor 
over the ensemble. This allows stacking to improve accuracy 
and robustness compared to individual models, leveraging 
the wisdom of the crowd (Džeroski and Ženko 2004; Goliatt 
et al. 2023).

A key advantage of stacking is its versatility in accom-
modating different base learner types like decision trees, 
neural networks, etc. This makes it adaptable to diverse 
problem domains with complex data where singular models 
may falter (Goliatt et al. 2023). Researchers have explored 
numerous extensions like incorporating feature engineering 
and advanced meta-learner optimization to further enhance 
utility (Džeroski and Ženko 2004; Rahman et al. 2021). With 
its potential to significantly boost predictive performance 
through model collaboration, stacking is a pivotal technique 
for pushing the frontiers of machine learning.

Results

This section presents the results of fracture intensity predic-
tion, employing a range of machine learning models. The log 
data underwent division into training and testing datasets, 
facilitating an assessment of model performance. Further-
more, an evaluation of the models was conducted utilizing 
diverse metrics, complemented by generating pertinent plots 
to acquire insights into their predictive capabilities.

Data partitioning

To enable reliable evaluation of model performance, the 
full dataset was split into an 80% training set and 20% test-
ing set. Specifically, 6072 data points were used to train 
the base learners. The remaining 1,518 data points were 

held out as an independent test set to assess generalization 
capability. This 80–20 split was consistently applied when 
evaluating the various models.

The base learners were trained on 80% of the full data 
and tested on the 20% holdout set. The meta-learners were 
trained on the base learner outputs and evaluated on the 
same holdout set. Finally, the super-learner was trained 
on the meta-learner outputs and tested on the holdout set.

The rationale for the 80–20 split is two-fold. First, the 
large training set enables robust model fitting. Second, the 
20% test set includes varied data not seen during training, 
allowing true assessment of generalization performance. 
Moreover, using one fixed test set for all models enables 
fair comparison of performance between the different 
models.

Model evaluation metrics

A collection of widely recognized evaluation metrics was 
employed to gauge the performance of each machine learn-
ing model in predicting fracture intensity. These metrics act 
as quantitative measures of model effectiveness, allowing 
for the evaluation of accuracy and reliability. The equations 
utilized in this study are presented as Eqs. (1, 2, 3, 4) in the 
upcoming section:

The Mean Absolute Error (MAE) is determined by com-
puting the average absolute difference between the predicted 
(ypred) and actual (ytrue) fracture intensity values across all 
data points:

where:
n is the total number of data points.

(1)MAE =
1

n

n∑

i=1

|ytrue − ypred|

Table 2  Overview of hyperparameters employed in base models

Model Hyperparameters

Gradient boosting alpha: 0.9, criterion: friedman_mse, learning_rate: 0.1, loss: squared_error, max_depth: 3, min_samples_leaf: 1, min_sam-
ples_split: 2, n_estimators: 100, subsample: 1.0, tol: 0.0001, validation_fraction: 0.1

Random forest bootstrap: True, criterion: squared_error, max_features: 1.0, min_samples_leaf: 1, min_samples_split: 2, n_estimators: 100
Extra trees criterion: squared_error, max_features: 1.0, min_samples_leaf: 1, min_samples_split: 2, n_estimators: 100
XGBoost objective: reg:squarederror, missing: nan, n_estimators: 100
LightGBM boosting_type: gbdt, colsample_bytree: 1.0, importance_type: split, learning_rate: 0.1, max_depth: − 1, min_child_samples: 

20, min_child_weight: 0.001, n_estimators: 100, num_leaves: 31, subsample: 1.0, subsample_for_bin: 200,000
CatBoost loss_function: RMSE
Decision tree criterion: squared_error, min_samples_leaf: 1, min_samples_split: 2, splitter: best
Bagging base_estimator: deprecated, bootstrap: True, max_features: 1.0, max_samples: 1.0, n_estimators: 10
Histogram-based 

Gradient boost-
ing

early_stopping: auto, learning_rate: 0.1, loss: squared_error, max_bins: 255, max_iter: 100, max_leaf_nodes: 31, min_sam-
ples_leaf: 20, n_iter_no_change: 10, scoring: loss, tol: 1e-07, validation_fraction: 0.1
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The Mean Squared Error (MSE) is calculated as the aver-
age of the squared differences between the predicted and 
actual fracture intensity values:

The Root Mean Squared Error (RMSE) is derived as the 
square root of the MSE and offers a measure of the average 
error in the same units as the target variable:

The Coefficient of Determination (R^2) quantifies the 
proportion of variance in the target variable explained by 
the model. Its calculation is as follows:

where:
Var(ytrue) is the variance of the actual fracture intensity 

values.
These metrics provide valuable insights into the overall 

performance of each machine-learning model. Superior pre-
dictive accuracy is indicated by lower values of MAE, MSE, 
and RMSE, while higher R^2 values suggest a better fit to 
the data. In subsequent analyses, the implications of these 
metrics and their importance in selecting the most suitable 
model for fracture intensity prediction will be explored.

Base models performance

In this section, an examination of the performance evalua-
tion of a variety of machine learning models is undertaken. 
These models were individually trained to predict fracture 
intensity using a comprehensive set of 12 key input features: 
Bulk density, Photoelectric factor, Neutron porosity, Lost 
circulation, Shallow resistivity, Deep resistivity, Spectral 

(2)MSE =
1

n

n∑

i=1

(ytrue − ypred)2

(3)RMSE =
√
MSE

(4)R2 = 1 −
MSE

Var(ytrue)

gamma-ray, Acoustic travel time, Computed gamma-ray, 
Caliper, Badhole, and Depth. The model selection process 
involved nine contenders: Gradient Boosting, Random For-
est, Extra Trees, XGBoost, LightGBM, CatBoost, Decision 
Tree, Bagging, and Histogram-based Gradient Boosting. 
Each model underwent thorough training and testing.

The results of the model evaluation are showcased in 
Table 3 and Fig. 5. Table 3 provides a concise overview 
of the principal performance metrics, encompassing Mean 
Absolute Error (MAE), Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE), and R-squared (R^2), for both 
the training and test datasets. Figure 5 complements this 
by providing a visual representation of model performance 
through four distinct subfigures, each illustrating a different 
performance metric: (a) MAE, (b) MSE, (c) RMSE, and (d) 
R^2. These visual aids facilitate a comprehensive compari-
son of the nine models across these critical metrics.

Upon close examination of these base models, two 
models, Random Forest and Extra Trees, are identified as 
clear frontrunners. Exceptional accuracy during training is 
exhibited by Random Forest, with a near-perfect R^2 score 
of 0.996, accompanied by impressively low error metrics 
(MAE: 0.037, MSE: 0.010, RMSE: 0.100). Crucially, robust 
generalization capabilities are maintained by it, as evidenced 
by the high accuracy on the test data, with an MAE of 0.092 
and an R^2 of 0.974. On the other hand, Extra Trees achieves 
perfect scores on all training metrics and continues to excel 
on the test data with an MAE of 0.083 and an R^2 of 0.978. 
XGBoost follows closely behind, showcasing remarkable 
training and test dataset accuracy, with an R^2 of 0.998 and 
an MAE of 0.109. These models are regarded as optimal 
choices for tasks requiring precision and generalization.

Gradient Boosting, LightGBM, and CatBoost present a 
competitive and balanced performance profile. While their 
training data accuracy falls slightly short of the top perform-
ers, commendable R^2 scores (0.889, 0.985, and 0.988, 
respectively) and relatively low error metrics (MAE and 
RMSE) are still achieved. These models strike an attractive 

Table 3  Performance metrics 
of the base models on train and 
test data

Model Train Test

MAE MSE RMSE R^2 MAE MSE RMSE R^2

Gradient boosting 0.256 0.268 0.518 0.889 0.263 0.291 0.539 0.871
Random forest 0.037 0.010 0.100 0.996 0.092 0.057 0.240 0.974
Extra trees 0.000 0.000 0.000 1.000 0.083 0.052 0.228 0.978
XGBoost 0.031 0.004 0.065 0.998 0.109 0.061 0.248 0.973
LightGBM 0.088 0.036 0.190 0.985 0.130 0.090 0.300 0.960
CatBoost 0.085 0.028 0.168 0.988 0.136 0.089 0.299 0.960
Decision tree 0.000 0.000 0.000 1.000 0.082 0.085 0.292 0.964
Bagging 0.041 0.015 0.121 0.991 0.100 0.067 0.260 0.966
Histogram-based 

gradient boosting
0.092 0.039 0.198 0.984 0.136 0.103 0.321 0.954
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balance between accuracy and generalization, rendering 
them suitable for a wide range of applications where model 
interpretability and generalizability are paramount. For 
instance, LightGBM maintains a reasonable MAE of 0.130 
and an R^2 of 0.960 on the test data.

Decision Tree and Histogram-based Gradient Boosting 
models display substantial accuracy on the training data, 
indicating their ability to fit the data exceptionally well, as 
evidenced by their perfect training metrics. However, sus-
ceptibility to overfitting may be a concern, as reflected in 
their slightly lower generalization performance on the test 
data, such as Histogram-based Gradient Boosting's MAE 
of 0.136 and an R^2 of 0.954. In contrast, a robust ensem-
ble approach is provided by Bagging, maintaining excellent 
generalization while achieving respectable accuracy on both 
training and test datasets (MAE: 0.100, R^2: 0.966 on the 
test data).

In fracture intensity prediction, the standout model is 
undeniably Extra Trees, showcasing remarkable accu-
racy and strong generalization ability. In sharp contrast, 
Gradient Boosting is the least proficient model within the 
assessed pool. In contrast, the remaining models deliver 

commendable performance, offering dependable choices 
for accurate fracture intensity predictions.

Feature importance analysis

The Feature Importance plot is a potent tool for gaining 
profound insights into the influential input features that 
affect fracture intensity predictions within the ensemble of 
machine learning models. The feature importance plot of 
the base models is displayed in Fig. 6. "DEPTH" consist-
ently emerges as a paramount factor among the prominent 
features, exerting substantial influence across most models. 
Notably, "DEPTH" is particularly emphasized by models 
such as XGBoost and Decision Tree, underscoring its indis-
pensable role in accurately forecasting fracture intensity.

The results show that "DEPTH" is assigned the highest 
importance in most models, especially in Gradient Boost-
ing, Random Forest, Decision Tree, and Histogram-Based 
Gradient Boosting. This consistent emphasis on "DEPTH" 
reinforces the notion that the depth of the geological forma-
tion plays a critical role as an input feature in predicting 
fracture intensity across various modeling techniques.

Fig. 5  A visual overview of model performance metrics a MAE, b MSE, c RMSE, and d R^2
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In contrast, features such as "CGR" (Computed gamma-
ray) and "DT" (Acoustic travel time) tend to exhibit rela-
tively lower importance across the entire spectrum of mod-
els. This suggests that these features may not wield as much 
influence in facilitating accurate predictions as "DEPTH."

In summary, the results of the feature importance analysis 
highlight that "DEPTH" serves as a critical driver of fracture 
intensity predictions in the ensemble of machine learning 
models. Models like XGBoost and Decision Tree mainly 
rely on this feature for accurate forecasting, while features 
like "CGR" and "DT" play a relatively minor role in this 
prediction task.

Actual versus predicted analysis

The analysis of Actual vs. Predicted Performance, an 
essential tool for evaluating machine learning model effi-
cacy, is applied in this study. This visualization comprises 
a scatter plot where the x-axis represents actual values 
derived from the target variable in the train and test data-
set. At the same time, the y-axis illustrates the correspond-
ing predicted values generated by each model. Figure 7 
presents the Actual versus Predicted Plots for various base 
models; all underwent comprehensive evaluation using the 
coefficient of determination (R^2) metric applied to both 

Fig. 6  Feature importance plot of the base models: a gradient boosting, b random forest, c extra trees, d XGBoost, e LightGBM, f CatBoost, g 
decision tree, h bagging, i histogram-based gradient boosting
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the training and test datasets to assess their predictive 
capabilities.

Within the plot, a diagonal line, commonly referred to as 
the "ideal line" or the "line of perfect predictions" (y = x), 
illustrates a scenario in which the model's predictions align 
perfectly with the actual values. The proximity of data points 
to this line signifies precision and accuracy in predictions, 
whereas deviations from the line reveal disparities between 
the model's predictions and the actual ground truth.

The analysis revealed varying levels of model per-
formance. Notably, the Random Forest model exhibited 
exceptional performance, achieving R^2 scores of 0.996 
on the training data and 0.974 on the test data, demon-
strating its remarkable ability to generalize. Similarly, the 
Gradient Boosting model showcased substantial predictive 
capabilities, attaining R^2 scores of 0.889 on the training 
data and 0.871 on the test data.

Fig. 7  A comparative analysis of actual vs. predicted plots for various base models: a gradient boosting, b random forest, c extra trees, d 
XGBoost, e LightGBM, f CatBoost, g decision tree, h bagging, i histogram-based gradient boosting
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Furthermore, the Extra Trees and Decision Tree mod-
els attained flawless R^2 scores of 1.000 on the training 
data, indicating an exceptional fit to the training set. Extra 
Trees maintained a high R^2 score of 0.978 on the test data, 
exemplifying its robust generalization ability. In contrast, 
a slightly lower R^2 score of 0.964 for the Decision Tree 
indicated a minor reduction in predictive accuracy.

Additionally, on the test data, strong predictive capabili-
ties were demonstrated by XGBoost, CatBoost, and Bag-
ging, with R^2 scores of 0.973, 0.960, and 0.966, respec-
tively. While still performing effectively, LightGBM and 
Histogram-based Gradient Boosting exhibited slightly 
more variability in their predictions, recording R^2 scores 
of 0.960 and 0.954 on the test data.

Residual analysis

In this research, residual plot analysis is a crucial diagnostic 
tool for evaluating the performance of different machine-
learning models. Residuals, representing the differences 
between actual and predicted values, provide valuable 
insights into a model's ability to capture inherent data pat-
terns. Figure 8 illustrates the residual plots for different 
base models, while Table 4 presents statistical data related 
to these residuals. The data analysis reveals distinct charac-
teristics in terms of residuals for different models.

Upon closer examination of the mean residuals, it is evi-
dent that residuals close to zero are consistently maintained 
by Gradient Boosting, Random Forest, and Decision Tree 
models. This suggests their capacity to provide reasonably 
accurate predictions, with mean residual values of approxi-
mately -0.006, -0.011, and -0.005, respectively. These mod-
els demonstrate an overall solid fit to the data.

When the standard deviation of residuals is scrutinized, 
the highest spread at 0.539 is exhibited by Gradient Boost-
ing, indicating potential challenges with specific data points 
and variability in prediction accuracy. In contrast, the lowest 
standard deviation values of 0.220 and 0.256 are showcased 
by Extra Trees and Bagging models, respectively, indicating 
their consistent performance across the dataset.

An analysis of the minimum and maximum residu-
als reveals significant differences among the models. For 
example, Gradient Boosting displays a minimum residual 
of − 2.884 and a maximum residual of 2.853, occasionally 
leading to substantial prediction errors. In contrast, models 
like Bagging and Decision Tree feature a narrower range of 
residuals, with Bagging demonstrating a minimum residual 
of -1.591 and a maximum residual of 1.463. These find-
ings highlight the potential for substantial errors in specific 
situations with Gradient Boosting, while other models offer 
more stability.

The comparison of residual characteristics among the 
various machine learning models allows the identification 

of their strengths and weaknesses. Among the models 
evaluated, Extra Trees and Bagging consistently emerge 
as the top performers in terms of residuals. Mean residu-
als close to zero, indicating overall solid performance, are 
consistently yielded by these models, and they exhibit rela-
tively low standard deviations of residuals, signifying con-
sistent predictions. Additionally, the minimum and maxi-
mum residuals for Extra Trees and Bagging fall within 
an acceptable range, suggesting a reduced likelihood of 
producing substantial errors compared to other models.

Conversely, Gradient Boosting stands out as the model 
with the most variable predictions. While it also boasts a 
mean residual close to zero, indicating reasonable accu-
racy on average, its high standard deviation of residuals 
(0.539) raises concerns about its ability to handle specific 
data points. Moreover, Gradient Boosting displays the 
most expansive range between minimum and maximum 
residuals, suggesting a propensity for significant errors in 
specific cases.

Based on the residual analysis and the statistical infor-
mation presented in Table 4, Extra Trees and Bagging can 
be considered the best-performing models among those 
evaluated in this study. They offer consistency and rela-
tively accurate predictions. In contrast, Gradient Boosting 
is the least robust model, potentially struggling with pre-
diction accuracy and occasionally producing more signifi-
cant errors compared to its counterparts.

Multi‑level model stacking

This section explores advanced model stacking to improve 
predictive performance by acknowledging that not all base 
models contribute equally. Gradient boosting, identified as 
the weakest base model, is excluded.

The stacking process begins with two groups of base 
models. The first group comprises Random Forest, Extra 
Trees, Decision Tree, and Bagging, combined via linear 
regression to form MetaLearner-1. Simultaneously, the 
second group, consisting of XGBoost, CatBoost, Light-
GBM, and Histogram-based Gradient Boosting, is inte-
grated into MetaLearner-2.

With MetaLearner-1 and MetaLearner-2 established, 
ridge regression merges their outputs to create a super 
learner. This strategic fusion of base models and their 
predictions via advanced regression techniques results in 
a potent ensemble model, harnessing individual strengths 
while mitigating weaknesses. The outcome is a robust pre-
dictive tool outperforming any single base model. Figure 9 
illustrates the stacking algorithm for enhancing fracture 
intensity prediction.
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Stacking performance

The efficacy of the stacking method in enhancing predic-
tive performance is showcased by evaluating performance 
metrics for three models: MetaLearner-1, MetaLearner-2, 
and the Super Learner. Performance metrics for testing 
are presented in Table 5, while a visual comparison of the 
performance of these models in predicting fracture inten-
sity is provided in Fig. 10. Strong predictive capabilities 
are exhibited by both MetaLearner-1 and MetaLearner-2, 
which are constructed from different sets of base models. 

A Mean Absolute Error (MAE) of 0.095, a Mean Squared 
Error (MSE) of 0.059, a Root Mean Squared Error (RMSE) 
of 0.242, and a high R^2 value of 0.974 are demonstrated by 
MetaLearner-1. Similarly, MetaLearner-2 displays an MAE 
of 0.109, MSE of 0.061, RMSE of 0.248, and an impressive 
R^2 value of 0.973. These metrics indicate that the initial 
choice of base models was sound and contributed positively 
to the ensemble's performance.

Nonetheless, the Super Learner stands out, with the best 
performance across all metrics. An outstanding MAE of 
0.083, an MSE of 0.039, an RMSE of 0.198, and the highest 

Fig. 8  Residual plots of various base models: a gradient boosting, b random forest, c extra trees, d XGBoost, e LightGBM, f CatBoost, g deci-
sion tree, h bagging, i histogram-based gradient boosting
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R^2 value of 0.980 among the three models are boasted by 
the Super Learner. These numerical findings unequivocally 
confirm that the collective strength of the base models is 
effectively harnessed by stacking, resulting in a more accu-
rate and robust ensemble. Figure 11 displays the actual vs. 
predicted plot for MetaLearner-1, MetaLearner-2, and the 
Super Learner.

The stacked Super Learner underscores the potential of 
ensemble methods in machine learning, emphasizing their 
practical significance. By amalgamating the predictions of 
multiple models, the ensemble harnesses the diversity of the 

Table 4  Statistical summary of residuals for base models

Model Mean residual Median residual Std deviation 
of residuals

Min residual Max residual 25th percentile 75th percentile

Gradient boosting  − 0.006  − 0.005 0.539  − 2.884 2.853  − 0.088 0.002
Random forest  − 0.011 0.000 0.255  − 1.810 1.920 0.000 0.000
Extra trees  − 0.016 0.000 0.220  − 2.235 1.067 0.000 0.000
XGBoost  − 0.009 0.000 0.247  − 1.575 1.819  − 0.011 0.010
LightGBM  − 0.015  − 0.002 0.300  − 2.500 2.010  − 0.005 0.008
CatBoost  − 0.010 0.000 0.299  − 2.215 1.743  − 0.021 0.020
Decision tree  − 0.005 0.000 0.280  − 2.403 2.020 0.000 0.000
Bagging  − 0.002 0.000 0.256  − 1.591 1.463 0.000 0.000
Histogram-based 

Gradient boosting
 − 0.012  − 0.001 0.321  − 2.790 1.716  − 0.006 0.004

Fig. 9  Stacking algorithm for enhanced fracture intensity prediction

Table 5  Performance metrics for MetaLearner-1, MetaLearner-2, and 
the super learner in fracture intensity prediction

Model MAE MSE RMSE R^2

MetaLearner-1 0.095 0.059 0.242 0.974
MetaLearner-2 0.109 0.061 0.248 0.973
Super learner 0.083 0.039 0.198 0.980
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Fig. 10  Comparing the performance of MetaLearner-1, MetaLearner-2, and the super learner in predicting fracture intensity: a MAE, b MSE, c) 
RMSE, and d R^2

Fig. 11  Comparing actual versus predicted fracture intensity: a MetaLearner-1, b MetaLearner-2, and c super learner
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base models, capitalizing on their complementary strengths 
while mitigating individual weaknesses. In conclusion, the 
stacking process, supported by numerical evidence, has 
successfully yielded a Super Learner that outperforms indi-
vidual meta-learners. The value of stacking as an advanced 
ensemble technique for constructing powerful predictive 
models is underscored by its exceptional performance, 
characterized by reduced prediction errors and higher R^2 
values. This approach emphasizes the importance of care-
ful base model selection and demonstrates the potential to 
achieve superior predictive accuracy by amalgamating the 
strengths of multiple models through advanced regression 
techniques like ridge regression.

Discussion

The results presented in this study indicate compelling evi-
dence that advanced ensemble techniques, such as stacking, 
can substantially improve the predictive performance of 
machine learning methods for fracture intensity forecasting. 
Among the tested models, it was consistently observed that 
the Super Learner, created through stacking, outperformed 
individual base learners across key evaluation metrics like 
MAE, MSE, RMSE, and R^2. This superior performance 
underscores the value of thoughtfully combining com-
plementary models to leverage their strengths. The Super 
Learner's outstanding MAE of 0.083 and R2 of 0.980 on the 
test set validate the efficacy of model stacking in improving 
generalization ability.

A more detailed examination of the base models reveals 
that ensemble methods, such as Random Forest, Extra Trees, 
and XGBoost, emerged as the top performers among the 
base models, demonstrating exceptional accuracy and gen-
eralization capability. Their combination of accuracy and 
robustness renders them well-suited for real-world fracture 
intensity forecasting. Nevertheless, it was demonstrated that 
the Super Learner outperformed even these strong baselines, 
thus highlighting how ensembling can harness the predictive 
strengths of models like Extra Trees and Random Forest 
while mitigating their individual limitations. The creation 
of MetaLearner-1 and MetaLearner-2 also resulted in incre-
mental improvements, further substantiating the utility of 
model stacking.

The model evaluation metrics demonstrate the superior-
ity of advanced ensemble techniques over individual mod-
els for fracture intensity forecasting. Additionally, metrics 
like feature importance and residual analysis offer valuable 
diagnostic insights. For example, it consistently emerges 
that depth is the most influential input feature across mod-
els, emphasizing its indispensable role in accurate predic-
tions. Concurrently, residual analysis aided in identifying 

model-specific deficiencies, such as the higher variability 
exhibited by Gradient Boosting.

Overall, the results suggest that ensemble methods are 
ideally suited for predicting fracture intensity, considering 
the complexity of the task. By amalgamating diverse mod-
els, stacking offers a robust approach to harnessing their 
complementary capabilities. However, the performance 
metrics indicate the presence of room for improvement. For 
instance, the Super Learner's RMSE of 0.198 suggests some 
variability between predictions and actuals. Investigating 
whether additional tuning of the base models or a different 
combination of learners could further enhance accuracy is 
warranted. Furthermore, testing alternative stacking algo-
rithms like blending could yield incremental improvements. 
Expanding the model pool to include other advanced tech-
niques like neural networks may also enhance performance.

In terms of practical applications, this study demonstrates 
the potential to predict fracture intensity in new wells using 
only conventional well logs and mud loss data without need-
ing advanced and costly image logs or core analysis. The 
proposed stacked ensemble approach can forecast fracture 
intensities in new wells during drilling operations by lev-
eraging readily available conventional logs and mud loss 
data. Once deployed, this would enable real-time optimiza-
tion of drilling design and hazard mitigation without sub-
stantial additional logging investments. This approach could 
empower geosteering companies to provide predictive ser-
vices to operators by leveraging legacy data. However, it is 
imperative to conduct further real-world testing to validate 
the feasibility and value of large-scale deployment using 
only conventional logs and mud loss data across fields.

In conclusion, this study underscores the significant per-
formance gains that can be achieved by applying state-of-
the-art ensemble techniques like stacking for an intrinsically 
complex task such as fracture intensity prediction. Nonethe-
less, specific limitations exist, such as the relatively lower 
performance of gradient boosting and the potential overfit-
ting of specific models like decision trees. Future work could 
explore techniques like regularization to enhance generaliz-
ability. The proposed approach offers a robust framework 
for harnessing artificial intelligence to advance fracture 
intensity modeling.

Conclusions

This research marks a pioneering venture into the domain 
of continuous fracture intensity modeling through the lens 
of well logs, employing a sophisticated stacked ensem-
ble methodology. By quantifying fracture intensity as a 
function of depth, the study sets a new precedent for res-
ervoir characterization accuracy. The innovative stacked 
ensemble method, integrating the capabilities of gradient 
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boosting, random forest, and XGBoost, demonstrates a 
significant leap in predictive performance compared to 
singular model applications. Furthermore, the ability to 
predict fracture intensity exclusively from conventional 
well logs heralds a new era of rapid and cost-efficient 
reservoir analysis, enabling enhanced recovery strategies 
through machine learning-informed reservoir simulators. 
The study culminates in several transformative insights 
and methodologies that promise to reshape applications 
within the energy sector:

(1) This study successfully demonstrates the potential of 
advanced machine learning techniques to predict frac-
ture intensity in geological formations using well-log 
and mud loss data.

(2) Ensemble-based methods, especially Extra Trees and 
Random Forest, excel in accuracy and generalizability, 
showcasing the innovative power of ensemble architec-
tures.

(3) While other parameters (bulk density, neutron porosity, 
spectral gamma-ray) are important, depth consistently 
ranks as the predominant factor, necessitating the inte-
gration of diverse well-log parameters.

(4) Bagging and Extra Trees are well-suited methods, 
offering consistency and precision, while Gradient 
Boosting faces challenges in handling outliers.

(5) The stacking ensemble approach, creating a Super 
Learner through meta-regression, outperforms indi-
vidual models, showcasing the advantages of model 
synergy in ensemble learning for improved accuracy.

(6) The study systematically validates the capability to 
decode complex geological parameters within well-log 
data, offering profound implications for refining explo-
ration strategies and optimizing hydrocarbon reservoir 
targeting.

(7) The ability to predict fracture intensity from well logs 
advances artificial intelligence applications in refining 
exploration, optimizing reservoir targeting, and enhanc-
ing development and production planning, providing a 
competitive edge in the oil and gas industry.

(8) To enhance model generalizability, incorporating well 
logs from diverse geological settings is recommended. 
Additionally, exploring neural networks and deep 
learning architectures presents opportunities for further 
improvement and innovation.

(9) The study lays a robust foundation for leveraging artifi-
cial intelligence to extract valuable insights from well-
log data, driving innovation at the intersection of data 
science and the energy industry. It opens new possibili-
ties for gaining a competitive edge in the upstream oil 
and gas workflow.
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