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Abstract
Rapid, high-precision pickup of microseismic P- and S-waves is an important basis for microseismic monitoring and early 
warning. However, it is difficult to provide fast and highly accurate pickup of micro-seismic P- and S-waves arrival-time. 
To address this, the study proposes a lightweight and high-precision micro-seismic P- and S-waves arrival times pick-
ing model, lightweight adversarial U-shaped network (LAU-Net), based on the framework of the generative adversarial 
network, and successfully deployed in low-power devices. The pickup network constructs a lightweight feature extraction 
layer (GHRA) that focuses on extracting pertinent feature information, reducing model complexity and computation, and 
speeding up pickup. We propose a new adversarial learning strategy called application-aware loss function. By introducing 
the distribution difference between the predicted results and the artificial labels during the training process, we improve the 
training stability and further improve the pickup accuracy while ensuring the pickup speed. Finally, 8986 and 473 sets of 
micro-seismic events are used as training and testing sets to train and test the LAU-Net model, and compared with the STA/
LTA algorithm, CNNDET+CGANet algorithm, and UNet++ algorithm, the speed of each pickup is faster than that of the 
other algorithms by 11.59ms, 15.19ms, and 7.79ms, respectively. The accuracy of the P-wave pickup is improved by 0.221, 
0.01, and 0.029, respectively, and the S-wave pickup accuracy is improved by 0.233, 0.135, and 0.102, respectively. It is 
further applied in the actual project of the Shengli oilfield in Sichuan. The LAU-Net model can meet the needs of practical 
micro-seismic monitoring and early warning and provides a new way of thinking for accurate and fast on-time picking of 
micro-seismic P- and S-waves.

Keywords Arrival-time picking of P- and S-waves · Generative adversarial network · Lightweight feature extraction 
(GHRA) · Application-aware loss function
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FP  The count of instances where a non-P- 
and S-wave is incorrectly picked as a 
micro-seismic P- and S-wave arrival 
time

FN  The count of times a micro-seismic P- 
and S-wave arrival time is missed

G  The pickup network
G (z)  Picked sample
MaxPool  Maxpooling operation
MLP  Multilayer perception operation
̃p(z)  Specific distribution

TP  The count of correctly picked micro-
seismic P- and S-wave’s arrival times

vi  The amplitude value of the micro-
seismic waveform

x  The amplitude value of the MS 
waveform

xi  The output of the one-dimensional 
Ghost convolutional layer

x
′

i
  The output of the channel attention 

mechanism
x
′′

i
  The output of the spatial attention 

mechanism.
x̃D
r
  The artificial labeling of the input 

discriminant network
x̃G
f

  The new pickup result
x̃D
f
  The pickup network picking up the 

P- and S-waves result of the input 
discriminant network

y  The new pickup result
z  Training wave
×  Training wave
�  The sigmoid function
⊕  Concat operation
⊗  A fusion operation of different 

channels
�  Hyperparameters in Eq. (5)

Abbreviations
AIC  Akaike information criterion
CF  Characteristic function
CNN  Convolutional neural network
DL  Deep learning
FD  Fractal dimension
GAN  Generative adversarial network
GRU   Gated recurrent unit
GHRA  A lightweight feature extraction layer
HRA  Hybrid attention mechanism
IM  Inactivity method
LR  Learning rate
LSGAN  Least squares generative adversarial 

network

LSTM  Long-short-term memory
MAE  Mean absolute error
MB  MByte
MSSA  Multi-channel singular spectrum 

analysis
P  Precision
R  Recall
RSGAN  Relative standard generative adver-

sarial network
SNR  Signal-to-noise ratio
STA/LTA  Short-time and long-time averaging 

ratio
VFD  Variance fractal dimension

Introduction

The micro-seismic monitoring system integrates micro-
seismic sensors and data recording equipment, which can 
be used to record the full waveform data of micro-vibra-
tions from underground rocks and strata (Fahd et al. 2023; 
Dandi et al. 2023; Xu et al. 2021). By picking up the P- and 
S-waves of the micro-seismic events, the location of the 
micro-seismic source can be obtained, and a fast and accu-
rate early warning of micro-seismic can be realized (Alireza 
and Mojdeh 2023). The study of how to quickly and accu-
rately pick up the P- and S-waves of micro-seismic events 
has become a key core for seismic signal processing.

At present, there are two main categories of micro-seis-
mic P- and S-waves arrival-time pickup methods: traditional 
methods and deep learning (DL) methods. Traditional meth-
ods mainly include the short-term and long-term average 
ratio (STA/LTA) (Deyu et al. 2023), the Akaike information 
criterion (AIC) (Lan et al. 2022), and the fractal dimension 
(FD) (Tiwari and Rajesh 2021). These ideas were devel-
oped by Xu and Chen (2021) proposed a new characteristic 
function (CF) based on the modified cumulative envelope 
function to improve the ability of the STA/LTA method to 
identify P- and S- waves. Yao and Liu (2022) proposed an 
automatic seismic P-wave first-arrival pickup algorithm 
based on the inactivity method (IM) and the Akaike infor-
mation criterion (AIC), which minimizes the noise interfer-
ence and can pick up the first arrival time even when using 
a data set with a low signal-to-noise ratio (SNR). Avoiding 
noise interference, P-waves can be picked up even when 
using datasets with low SNR. Long et al. (2023) proposed 
an automatic micro-seismic event detection variance fractal 
dimension (VFD) method based on multi-trace energy enve-
lope stacking (MTEES), which improves the micro-seismic 
event detection accuracy for micro-seismic monitoring. 
These methods rely heavily on manually designed features 
and rules, which not only limit their ability to extract P- and 
S-wave features from micro-seismic events, resulting in low 
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P- and S-wave pickup accuracy, but also are not suitable for 
fast processing of a large number of signals acquired by a 
large number of micro-seismic monitoring systems.

In recent years, deep learning techniques have made 
greater progress and have been widely applied in various 
fields, especially providing new solutions to the problem of 
fast and accurate pickup of P- and S-waves (Fahd et al. 2021; 
ERTURUL 2019). Compared with traditional P- and S-wave 
pickup methods, deep learning-based pickup methods have 
obvious advantages in terms of accuracy, speed, and robust-
ness (Alakbari et al. 2023; Acar et al. 2021). This approach 
has found widespread application in the realm of pickup 
of P- and S-waves as Guo et al. (2021) designed the AEnet 
model, which uses a convolutional neural network (CNN) to 
classify the sample points, and combines the curve-fitting 
technique and unsupervised clustering algorithm to calculate 
the sample point arrivals to prevent incorrectly labeling the 
noise as P- and S- waves, but the micro-seismic waveforms 
have a short duration, and the effect of picking up the P- and 
S- waves are poor in the low-resolution waveforms. Xu et al. 
(2022) pioneered the use of the multi-channel singular spec-
trum analysis (MSSA) method to mitigate the effect of noise 
on micro-seismic waveforms, and then utilized a long short-
term memory network (LSTM) for accurate temporal fea-
ture extraction, but the method was unable to extract detailed 
features, and the accuracy of the pickups was reduced when 
compared to convolutional neural networks. Guo (2021) 
introduced the UNet++ model with a wide receptive field to 
capture complex waveform details and enhance the distinc-
tion between P- and S-waves and noise. The model can deter-
mine the micro-seismic P- and S- wave arrival time directly 
from waveforms interfered with by background noise. How-
ever, the micro-seismic signals are time-series data, and the 
effect of the time-series information on the waveform fea-
ture extraction is not considered. Jiao et al. (2023) used a 
deep convolutional model for micro-seismic event detection. 
Subsequently, they utilized the timing processing capability 
of the gated recursive unit (GRU) and the detail process-
ing function of the self-attention mechanism to accurately 
determine the P- and S-waves arrival time. The result was a 
substantial improvement in accuracy to 0.98, but the model 
complexity was high.

The development of micro-seismic P- and S-wave pickup 
algorithms faces the following challenges: (1) Micro-seismic 
signal acquisition is significantly affected by complex envi-
ronments, such as periodic industrial interference noise and 
impulse noise from mechanical or human vibration in the 
field. These noises make it difficult for the model to fully 
extract the P- and S-wave features, resulting in low P- and 
S-wave pickup accuracy. (2) Since micro-seismic monitoring 
systems need to operate for long periods, low-power devices 
are often used to be able to ensure that the system main-
tains stable operation with limited energy supply, reduce 

maintenance costs, and extend the service life of the sys-
tem. However, current algorithms increase the number of 
parameters and computational complexity of the model to be 
able to improve the accuracy of picking up P- and S-waves 
from complex environments, to the point where they are not 
adapted to low-power devices and the pickup speed slows 
down. Addressing these challenges is critical to achieving 
fast and accurate pickup results. However, the reduction of 
model parameters can make P- and S-wave feature extrac-
tion inadequate, which leads to low accuracy. Therefore, it 
is critical for P- and S-wave pickup models to balance both 
accuracy and speed for optimal performance.

Motivated by the above analysis, this study addresses the 
low accuracy and slow speed of the current micro-seismic P- 
and S-wave pickup methods. In this study, we propose a new 
P- and S-wave method called LAU-Net. The LAU-Net model 
draws on the idea of generative adversarial and consists of 
a pickup network and a discriminative network. The pickup 
network employs Ghost convolution and hybrid attention 
mechanism (HRA) to acquire semantic and detailed infor-
mation for P efficiently- and S-waves while maintaining a 
lightweight structure to improve the pickup speed; the dis-
criminative network focuses on capturing valuable details 
and avoiding picking up noise as P- and S-waves to improve 
the pickup accuracy of the model.

In summary, our advantages are summarized as follows:

1. The LAU-Net model uses a pickup-discriminative net-
work structure. The pickup network focuses on improv-
ing the pickup speed; the discriminative network focuses 
on improving the pickup accuracy.

2. Replacing the ordinary convolutional layer of the 
U-shaped network with a lightweight feature extraction 
layer and using it as a pickup network reduces the model 
parameters and speeds up the model pickup speed. The 
lightweight feature extraction layer consists of Ghost 
convolution and hybrid attention mechanism (HRA), 
which utilizes its advantage of selectively enhancing P- 
and S-wave features with fewer parameters to achieve 
better pickup of P- and S-waves.

3. The LAU-Net model is designed with an application-
aware loss function to achieve higher model pickup 
accuracy. This function helps the pickup network to 
understand the pickup errors and improves its pickup 
accuracy by eliminating the errors of P- and S-wave 
arrivals with manual labeling.

The rest of this study is organized as follows: Section 2 
provides an insight into the proposed LAU-Net model, dis-
cussing its overall structure and main modules. Section 3 
focuses on the dataset and evaluation metrics. Section 4 
presents the analysis of the experimental results. Finally, 
Section 5 concludes the paper.
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Method

LAU‑Net model structure

The study employs a generative adversarial network 
(GAN) (Goodfellow et al. 2020) as its framework, and 
the architecture of the LAU-Net model is illustrated in 
Fig. 1. The LAU-Net model comprises two key compo-
nents: the pickup network and the discriminative network. 

The pickup network, represented by the blue dashed 
box, integrates the lightweight feature extraction layer 
(GHRA), the maxpooling layer, and the upsampling layer 
to facilitate the task of micro-seismic P- and S-waves 
picking. The green dashed box represents the discrimi-
native network, which incorporates a one-dimensional 
Ghost convolutional layer. This layer plays a crucial role 
in further constraining the direction of gradient updates 
for the pickup network.

Fig. 1  LAU-Net model structure

Fig. 2  GHRA layer structure
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Pickup networks

The pickup network is mainly composed of four GHRA lay-
ers, three maxpooling layers, and three upsampling layers, 
and the structure is shown in Fig. 2. The 1D micro-seismic 
signals are first extracted from the GHRA and maxpool-
ing layers. Then, the upsampling layers are used to achieve 
accurate P- and S-wave arrival-time pickup. Table 1 lists the 
details of the pickup network.

To reduce the model’s parameters, the paper substitutes 
the convolution operation within the U-Net structure with 
a lightweight feature extraction layer known as GHRA 
(lightweight feature extraction). The GHRA layer’s struc-
ture is illustrated in Fig. 3. The GHRA layer is an amal-
gamation of the 1D Ghost convolutional layer (Han et al. 
2022) and the hybrid residual attention (HRA) module 
(Li et al. 2022). This combination serves to diminish the 
number of parameters and extract prominent features by 
using the HRA module, all while consolidating the salient 
information via the 1D Ghost convolutional layer. This 
approach results in a feature layer enriched with substan-
tial information. Firstly, the paper employs a 1D Ghost 
convolutional layer to filter the input data and generate a 
feature map. The output of the 1D Ghost convolution layer 
serves as the input for the HRA module. The HRA module 
initially employs the channel attention mechanism [e.g., 
Eq. (1)] to establish correlations among similar micro-
seismic waveforms across different channels, emphasiz-
ing micro-seismic P- and S-wave arrival times in a clean 
channel. Subsequently, it utilizes the spatial attention 
mechanism [e.g., Eq (2)] to enhance the micro-seismic P- 
and S-waves arrival-times features by correlating any two 
samples in the micro-seismic P- and S-waves waveforms 
with each other. The two calculations are shown in Eqs. 
(1–2) (Tang et al. 2021):

where � is the sigmoid function, xi is the output of the one-
dimensional Ghost convolutional layer, x′

i
 is the output of the 

channel attention mechanism, and x′′

i
 is the output of the spa-

tial attention mechanism.⊗ denotes the fusion operation of 
different channels, MaxPool denotes the maximum pooling 
operation, AvgPool denotes the average pooling operation, 
MLP denotes the multilayer perception operation, and f 7×1 
denotes the one-dimensional convolution operation with a 
f 7×1 convolution kernel.

A maxpooling layer consists of a maximum pooling 
layer. After the feature map is max-pooled, its length and 
width will be reduced to half of the original.

An upsampling layer consists of a transpose convolu-
tion layer and a GHRA layer. The upsampling layer first 
expands the length and width of the feature map to twice 
the original one by a transposition convolution operation. 
Secondly, the GHRA layer is used to achieve feature fusion 
of different channels.

Discriminative network

The excessive non-P- and S-wave samples within micro-
seismic waveforms significantly disrupt the process of 
picking P- and S-wave arrival times. In response to this 
challenge, the study introduces a fully convolutional dis-
criminative network to replace the discriminator that was 
originally designed for overall classification in the adver-
sarial network. In contrast to other methods, the LAU-Net 
model produces a confidence curve as its output rather than 
a scalar value. Each sample point within the output con-
fidence curve indicates whether the corresponding input 
sample point represents a picked result or a genuine label. 
The absence of a fully connected layer in the fully con-
volutional network allows it to process input waveforms 
of varying sizes, further enhancing the versatility of the 
LAU-Net model for P- and S-wave arrival-time pickup 
tasks. The structure of the discriminative network is illus-
trated in Fig. 1. The inputs to this network are categorized 
as "real samples" and "fake samples." "Real samples" rep-
resent artificial labels, while "fake samples" arise from the 
combination of artificial labels and model-picking outputs 
in the depth dimension. The discriminative network uti-
lizes three one-dimensional Ghost convolutional layers and 
one conventional convolutional layer. These layers consist 
of feature maps with dimensions of 16, 32, 64, and 128, 
accompanied by convolutional kernel sizes of 5, 7, 5, and 
5, respectively.

(1)x
�

i
=(𝜎(MLP(AvgPool(xi)) +MLP(MaxPool(xi))))⊗ xi

(2)x
��

i
=(𝜎(f 7×1(AvgPool(xi);MaxPool(xi)))⊗ x

�

i

Table 1  Details of pickup network

Name Details Size

Input 1600
GHRA layer GhostConv1× 5 Str.1 1600
Maxpooling layer Maxpooling1×2 800
GHRA layer GhostConv1× 5 Str.1 800
Maxpooling layer Maxpooling1×2 400
GHRA layer GhostConv1× 5 Str.1 400
Maxpooling layer Maxpooling×2 200
GHRA layer GhostConv1× 5 Str.1 200
Upsampling layer Conv.Trans1× 5 Str.2;GhostConv1× 5 Str.1 400
Upsampling layer Conv.Trans1× 5 Str.2;GhostConv1× 5 Str.1 800
Upsampling layer Conv.Trans1× 5 Str.2;GhostConv1× 5 Str.1 1600
Output Conv1× 1 Str.1 1600
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Application‑aware loss function

When the parameters of the pickup network are fewer, the 
network may be less effective for the segmentation of fine 
cracks in the image, partly because of the insufficient feature 
extraction ability of the network with fewer parameters, and 
partly because the traditional error function of the statistics 
of sampling points one by one can not effectively respond 
to the distance between the artificial samples and the pickup 
results. The adversarial generative network defines a dis-
tance that can be trained, and it is hoped that this distance is 
as big as possible when training a discriminative network, 
and it is hoped that this distance is as small as possible 
when training a generative network. Therefore, the idea of 
relative standard generative adversarial network (RSGAN) 
(Jolicoeur-Martineau 2018) can be borrowed to measure the 
distance between the prediction result and the artificial label 
by a trainable discriminative network. If the discriminative 
network is unable to discriminate the results of the pickup 
network picking up P- and S-waves, it can be assumed that 
the pickup network has been trained well enough. Similarly, 
the pickup network needs the help of manually labeled P- 
and S-wave results for optimal training so that it can be 
constantly compared and improved. The loss function of 
RSGAN is shown in Eq. (3) (Jolicoeur-Martineau 2018).

(3)

LD = Exr∼p(x),xf=G(z),z∼
̃p(z)

[
f̃1(D(x̃

D
r
))
]

Exr∼p(x),xf=G(z),z∼
̃p(z)

[
f̃2(D(x̃

D
f
))

]

LG = Exr∼p(x),xf=G(z),z∼
̃p(z)

[
f̃3(D(x̃

G
f
))

]

D denotes the discriminative network and G denotes the 
pickup network. xr represents the manual labeling result 
which obeys the distribution p (x). xf  represents the pickup 
network picking up the P- and S-waves result, which obeys 
the distribution ̃p(z) . x̃D

r
 denotes the artificial labeling of the 

input discriminant network, i.e., x̃D
r
= xr ⊕ xr , x̃Df  denotes the 

pickup network picking up the P- and S-waves result of the 
input discriminant network, i.e., x̃D

f
= xf ⊕ xr . x̃Gf  denotes 

the new pickup result, i.e., x̃G
r
= xr ⊕ xf  . ⊕ denotes the splic-

ing operation of the manual labels and the model pickup 
results at the input. ̃f(1) , ̃f(2) , and ̃f(3) denote the inputs as a 
function of the outputs.

The design of the three functions ̃f(1) , ̃f(2) , and ̃f(3) draws 
on the least squares adversarial network (LSGAN) (Mao 
et al. 2017), where the least squares function is used to force 
the pickup results of the pickup network to approximate the 
artificial labels to improve the accuracy of the P- and S-wave 
pickup. Therefore, Eq. (3) can be further rewritten as Eq. (4) 
(Mao et al. 2017):

For the parameter update of the pickup network, in addition 
to the error of the discriminative network, the error between 
the artificial labels and the pickup network should be taken 
into account. The final application-aware loss function of 
the LAU-Net model can be expressed as (Ni et al. 2022):

(4)

LD = Exr∼p(x),xf=G(z),z∼
̃p(z)

[
D(x̃D

r
) − 1

]

+ Exr∼p(x),xf=G(z),z∼
̃p(z)

[
D(x̃D

f
))

]

LG = Exr∼p(x),xf=G(z),z∼
̃p(z)

[
D(x̃G

f
) − 1

]

Fig. 3  Structure of the pickup network
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where y denotes the result of manual labeling and a = G(z) 
denotes the result of arrival-time pickup of the LAU-Net 
model.

Data pre‑processing and evaluation 
indicators

Datasets

The dataset utilized in this study comprises data collected 
from the ground-based micro-seismic monitoring system 
at Shengli Oilfield, Sichuan, during the years 2011–2017. 
Micro-seismic waveforms were recorded using a network 
of nine broadband three-component micro-seismic stations 
deployed across the oilfield. These stations covered a spatial 
range of approximately 6 km × 4 km × 1 km and origi-
nally sampled data at a frequency of 5 kHz. In this study, to 
obtain more comprehensive and accurate subsurface infor-
mation for the study of subsurface structures or monitoring 
of subsurface activities, clean micro-seismic waveforms, 
waveforms with low SNRs, and micro-seismic waveforms 

(5)

LD = Exr∼p(x),xf=G(z),z∼
̃p(z)[D(x̃

D
r
) − 1]

+ Exr∼p(x),xf=G(z),z∼
̃p(z)[D(x̃

D
f
))]

LG = −
1

n

∑
x[ylna − (1 − y)ln(1 − a)]

+ 𝜆 × Exr∼p(x),xf=G(z),z∼
̃p(z)[D(x̃

G
f
) − 1]

with indistinguishable arrival-time of P- and S-wave, total-
ing 9,459 micro-seismic waveforms, were selected. Among 
them, the selection of P- and S-wave arrival time was care-
fully carried out by micro-seismic experts. The results of 
multiple experts were considered together, and then these 
results were converted into corresponding confidence prob-
ability labels to form a high-quality dataset. Some of the data 
in the dataset are shown in Fig. 4.

The study employs 473 data samples for the test set, 
while the remaining 8986 data samples are allocated to the 
training and testing sets. All pertinent methods have been 
trained and tested, a necessity for supervised deep learning 
models, and subsequently evaluated using the same dataset 
to ensure a fair and unbiased comparison of their strengths 
and weaknesses. The data have been uniformly normalized, 
as depicted in Eq. (6) (Cai et al. 2022), where vi denotes the 
amplitude value of the micro-seismic waveform.

Evaluation indicators

To quantitatively showcase the effectiveness of the LAU-
Net model, three metrics—precision (P), recall (R), and 
F1-score—were employed to assess the quantitative model’s 
performance. The mathematical computations for precision, 
recall, and F1-score are presented in Eqs. (9), (10), and (11) 
(Hou and Zheng 2023):

(6)vi =
vi

max||vi
|
|

Fig. 4  Micro-seismic waveform data and their labels
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where TP denotes the count of correctly picked micro-
seismic P/S-wave arrival times, FP signifies the count of 
instances where a non-P- and S-wave is incorrectly picked 
as a micro-seismic P- and S-wave arrival time, and FN rep-
resents the count of times a micro-seismic P- and S-wave 
arrival time is missed. A higher recall leads to a reduction 
in the number of missed picks of micro-seismic P- and 
S-wave arrival times, while higher precision results in fewer 
instances of missed micro-seismic P- and S-wave arrival 
times. Due to the trade-off between recall and precision, the 
F1 score provides a balanced and weighted combination of 
the two.

Experiments

The experimental setup in this paper involved using the 
Python 3.8 interpreter and the PyTorch 1.0 deep learning 
framework to construct the model. Experimental tests were 
conducted on an RTX 3060 GPU with an AMD Ryzen 
R7-5800 H processor. The paper underwent multiple itera-
tions to fine-tune the parameters within both the discrimina-
tive and picking networks. In each iteration, the discrimi-
native network’s parameters were updated using waveform 
inputs, followed by fixing these parameters and updating 
the parameters within the picking network using another 
set of waveform inputs. This process was repeated for each 
iteration. A total of 4493 waveforms were used to train the 
discriminative network during each cycle, with another 4493 
waveforms used to train the pickup network.

In this section, we validate the accuracy and speed of 
the LAU-Net model for picking up P- and S-waves through 
different experiments. To assess the effect of model con-
volution kernel size on pickup speed and accuracy (as 
described in Sect. 4.1), we select five different convolu-
tion kernel sizes and compare their performances on the 
Sichuan micro-seismic dataset from 2011–2017 to select 
the optimal convolution kernel size. To evaluate the effect 
of model depth on pickup speed and accuracy (as described 
in Sect. 4.2), we designed three model configurations and 
compared their performance on the 2011–2017 Sichuan 
micro-seismic dataset to select the optimal number of lay-
ers. To demonstrate the stability of the LAU-Net model, 

(7)P =
TP

TP + FP

(8)R =
TP

TP + FN

(9)F1 − score =2 ×

(
P × R

P + R

)

we evaluate it on the 2011–2017 Sichuan micro-seismic 
dataset in Sect. 4.3. To demonstrate the effectiveness of 
introducing blocks in the LAU-Net model, we compare 
and evaluate the 2011–2017 Sichuan micro-seismic dataset 
in Sect. 4.4. Subsequently, in Sect. 4.5, we fully analyze 
and compare the performance of the LAU-Net model with 
existing methods. Furthermore, in Sect. 4.6, we apply the 
LAU-Net model to the 2019–2020 Sichuan micro-seis-
mic dataset, thus highlighting its practical applicability 
and generalization capability. In Sect. 4.7, we consider 
the adaptability of the LAU-Net model to pickup P- and 
S-waves under different signal-to-noise ratios and differ-
ent kinds of noise. Finally, in Sect. 4.8 we discuss the 
limitations of the LAU-Net model and suggest directions 
for future work.

Convolutional kernel size selection

To assess the influence of various convolutional kernel 
sizes on the determination of P- and S-waves arrival times, 
the paper formulates five models based on the LAU-Net 
approach outlined in "Section  2.2." Models 1 through 
5 utilize convolutional kernel sizes of 3, 5, 11, 31, and 
71, respectively. The test results are depicted in Fig. 5. 
Among these models, model-2 achieves the highest preci-
sion in P-wave arrival-time determination, model-4 excels 
in S-wave arrival-time precision, and model-1 possesses 
the most minimal parameter count. This illustrates that 
smaller convolution kernels result in incomplete extrac-
tion of S-wave features, leading to diminished precision 
in S-wave arrival-time determination. Conversely, larger 
convolution kernels enhance S-wave arrival-time precision 
but may capture redundant information from the micro-seis-
mic waveforms, resulting in decreased precision in P-wave 
arrival-time determination. Thus, while varying the convo-
lution kernel size can refine model precision and increase 
parameter counts, selecting the most precise yet lightweight 
structure among the five models remains a challenging task. 

Fig. 5  Test results of models 1–5
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For instance, if prioritizing model size, model-1 emerges as 
the optimal choice. On the other hand, if focusing solely on 
accuracy, model-2 delivers the highest precision in P-wave 
arrival-time determination, and model-4 excels in S-wave 
arrival-time determination precision. The S-wave arrival-
time determination precision of model-2 is comparable to 
that of model-4, and model-4 has 1.125 times the param-
eters of model-1.

To meet the requirement of achieving high precision 
while maintaining relatively modest model complexity 
for micro-seismic P- and S-wave arrival-time pickup, the 
study selects model-2 as the neural network structure for 
the P- and S-wave arrival-time pickup task.

Optimization of the number of model layers

The layer count in the LAU-Net model significantly impacts 
the speed and precision of P- and S-wave arrival-time deter-
mination. To identify the optimal depth for the number of 
layers in the LAU-Net model, three distinct model archi-
tectures are devised. These structures involve 3, 4, and 5 
GHRA layers, respectively denoted as LAU-Net-3GHRA, 
LAU-Net-4GHRA, and LAU-Net-5GHRA. A comparative 
assessment of precision, recall, F1-score, mean absolute 
error (MAE), model parameter sizes, and runtime is pre-
sented in Table 2.

Table 2 furnishes valuable insights into the performance 
of various LAU-Net model configurations. LAU-Net-
4GHRA exhibits noteworthy improvements in precision for 
both P-wave and S-wave arrival-time determination, with 
gains of 0.05 and 0.108 in the former, and 0.015 and 0.019 
in the latter for recall. It also reduces the mean absolute 
error (MAE) by 0.187 for P-waves and 1.547 for S-waves 
compared to LAU-Net-3GHRA. Furthermore, the MAE 
for P-wave arrival-time determination between LAU-Net-
5GHRA and LAU-Net-4GHRA is nearly identical, suggest-
ing that these two networks provide more consistent P-wave 
arrival-time determination performance compared to LAU-
Net-3GHRA. However, concerning S-wave arrival-time 
determination, LAU-Net-4GHRA enhances precision by 
0.009, recall by 0.01, and reduces the MAE by 0.075 com-
pared to LAU-Net-5GHRA. In terms of model complexity, 
LAU-Net-4GHRA features 1.79MB fewer model parameters 
and operates 1.7ms faster than LAU-Net-5GHRA, while 

having 0.29MB more model parameters and running 4.3ms 
slower than LAU-Net-3GHRA.

To achieve an equilibrium between elevated precision in 
the pickup and a judiciously controlled model complexity 
for the determination of micro-seismic P- and S-wave arrival 
times, the paper opts for LAU-Net-4GHRA as the architec-
tural framework for the pickup network.

Cross‑validation experiments

To accurately assess the generalization performance of the 
LAU-Net model, fivefold cross-validation was used. The 
entire dataset was equally divided into 5 subsets, each of 
which was rotated as a test set, while the remaining 4 subsets 
were used as a training set for model training. In the training 
set, the data was randomly divided into 80% for training and 
20% for validation. The training data is used to build the 
best classification model, while the validation data is used 
to refine the network structure. Throughout 50 epochs, the 
model is trained on the training data and evaluated on the 
validation data for each epoch. The model with the highest 
classification accuracy on the validation data was retained 
and subsequently tested on the test set. At the end of each 
phase, the precision, recall, F1 score, and mean absolute 
error of the models picking up the P- and S-waves were 
calculated, and the final results were determined by averag-
ing the fivefold cross-validation results. Table 3 shows the 
fivefold cross-validation results, with P-wave precision rang-
ing from 0.949 to 0.983, recall ranging from 0.87 to 0.986, 
F1 scores ranging from 0.92 to 0.984, and mean absolute 
errors ranging from 0.029s to 0.135s, and S-wave precision 
ranging from 0.888 to 0.966 and recall ranging from 0.85 
to 0.947, with the F1 scores between 0.869 and 0.956 with 
mean absolute errors between 0.039s and 0.194s.

Ablation experiments

Ablation experiments were conducted to assess the influ-
ence of the GHRA layer and the application-aware loss 
function in the LAU-Net model on the overall model per-
formance. These experiments compared three model vari-
ations: the U-shaped micro-seismic P- and S-wave arrival-
time pickup model (Ablation model U-Net), a variation that 
substitutes the convolutional layer with the GHRA layer 

Table 2  P-wave and S-wave arrival-times pickup effects of the three different models

Model P-wave S-wave Params/MB Time (ms)

P R F1 MAE (s) P R F1 MAE (s)

LAU-Net-3GHRA 0.978 0.971 0.974 0.316 0.858 0.950 0.902 1.706 0.19 1.41
LAU-Net-4GHRA 0.983 0.986 0.984 0.129 0.966 0.969 0.967 0.159 0.48 3.11
LAU-Net-5GHRA 0.981 0.979 0.980 0.161 0.957 0.959 0.958 0.234 2.27 7.41
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(Ablation model LU-Net), and the LAU-Net model intro-
duced in the paper. All experiments utilized the complete 
dataset for both training and testing. The results are pre-
sented in Table 4. Table 4 reveals the experiment outcomes. 
In contrast to the LAU-Net model proposed in the paper, the 
ablation model U-Net exhibits reduced precision in picking 
both P-waves and S-waves by 0.082 and 0.091, respectively. 
It also increases model parameters by 0.34MB and slows 
down processing speed by 4.3ms. The ablation model LU-
Net shows a similar decline in precision, with reductions of 
0.108 for P-waves and 0.117 for S-waves. However, it man-
ages to decrease model parameters by 0.02MB and acceler-
ates processing by 0.5ms. Notably, the ablation model U-Net 
has the most model parameters, while the ablation model 
LU-Net has the fewest. This underscores the effectiveness 
of the designed GHRA layer in reducing model complexity 
and parameters. However, the reduction of model parameters 
results in decreased model precision. The incorporation of 
the application-aware loss function, as outlined in the paper, 
serves to enhance model precision while ensuring the reduc-
tion of model parameters.

The hyperparameters in the LAU-Net model have a great 
impact on the pickup effect, for this reason, the paper selects 
several sets of parameters for training through several vali-
dations of the training set and compares the results. The 
learning rate, batch size, and loss function hyperparameter 
size � and period of the LAU-Net model are adjusted and 
selected. In each experiment, all parameters except the test 
parameters are kept constant.

The learning rate (LR) is a key hyperparameter in the 
field of deep learning and plays a pivotal role in determin-
ing whether and when a model can effectively converge to 
a minimum. This study explores several common learning 

rates, specifically LR = 0.000001, LR = 0.000005, LR 
= 0.00001, LR = 0.00005, LR = 0.0001, and LR = 
0.0005, and the results in Fig. 6a show that the accuracy 
rate reaches its optimal value when LR = 0.0001. This is 
because too high a learning rate will cause the network to 
fail to converge and the model accuracy will decrease; too 
low a learning rate will prolong the convergence time of 
the network and reduce the model training speed. There-
fore, 0.0001 is chosen as the learning rate for LAU-Net 
model training in this study.

Batch size plays a crucial role in optimizing the model 
and determining the training speed. To speed up the train-
ing process of gradient descent algorithms, batch size is 
usually used to the power of 2. In this study, the batch 
size of the LAU-Net model was evaluated for 16, 32, 64, 
128, and 256 and the results are shown in Fig. 6b. The 
model accuracy reaches its maximum when its value is 
64, and after reaching the maximum, the accuracy starts 
to decrease as the batch size increases. This is because 
too small a batch size will make the training time longer 
and less efficient, while too large a batch size will lead 
to a decrease in the generalization ability of the model. 
Therefore, the study chooses 64 as the batch size.

To develop effective P- and S-wave pickup models, the 
training process requires the selection of appropriate epochs. 
One epoch represents one training iteration, including for-
ward and backward propagation for all batches. In this study, 
the LAU-Net model was evaluated for 40, 50, and 60 epochs 
and the results are shown in Fig. 6c. The value of accuracy 
is maximum when epoch = 50. This is because at epoch 
= 40, the model does not learn enough micro-seismic P- 
and S-wave features, which leads to a lower accuracy rate 
and makes the model pickup ineffective; at epoch = 60, the 

Table 3  Cross-validation 
experiment results

Model P-wave S-wave Params/MB Time (ms)

P R F1 MAE (s) P R F1 MAE (s)

1k-fold 0.958 0.941 0.949 0.116 0.888 0.850 0.869 0.176 0.48 3.11
2k-fold 0.983 0.986 0.984 0.029 0.966 0.947 0.956 0.039 0.48 3.11
3k-fold 0.971 0.969 0.97 0.061 0.937 0.929 0.933 0.194 0.48 3.11
4k-fold 0.949 0.939 0.944 0.104 0.946 0.937 0.941 0.065 0.48 3.11
5k-fold 0.969 0.87 0.92 0.135 0.928 0.892 0.91 0.086 0.48 3.11
Mean 0.966 0.941 0.953 0.059 0.934 0.922 0.928 0.104 0.48 3.11

Table 4  Results of the ablation 
experiments

Model P-wave S-wave Params/MB Time (ms)

P R F1 MAE P R F1 MAE

U-Net 0.884 0.856 0.870 0.169s 0.842 0.807 0.824 0.259s 0.82 7.41
LU-Net 0.858 0.826 0.842 0.184s 0.816 0.754 0.784 0.286s 0.46 2.61
LAU-Net 0.966 0.941 0.953 0.089s 0.933 0.911 0.922 0.11s 0.48 3.11
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model training falls into the overfitting phenomenon, which 
leads to a model denoising effect that is not as good as at 
epoch=50. Therefore, this paper chooses epoch=50 as the 
epoch of LAU-Net model training.

� is an important parameter in Eq. (5), which also 
affects the testing accuracy. In this section, sizes of 0.005, 
0.01, 0.05, and 0.1 are chosen to test the LAU-Net model. 
The test results are shown in Fig. 6d, and from Fig. 6d, it 
can be seen that the highest accuracy is 96.6% and 93.3% 
when the size of � is 0.005, which is higher than the other 
parameters, so we choose the size of 0.005.

The LAU-Net model was trained 50 times on the train-
ing dataset using the ADAM optimizer (Kingma and Ba 
2014). The batch size was set to 64 with a learning rate of 
0.0001 and was 0.0001 in Eq. (5).

Comparative experiments

To showcase the exceptional prowess of the LAU-Net 
model, it was employed to analyze data from the micro-
seismic events recorded in the Shengli Oilfield, Sichuan, 
during 2020. In this investigation, three distinct methods 
for P- and S-wave arrival-time determination were cho-
sen for comparison. These methods included a conven-
tional short-term average/long-term average (STA/LTA) 
picker (Allen 1978) and two deep learning-based architec-
tures, namely CAGNET+CNNDET (Jiao et al. 2023) and 
U-Net++ (Guo 2021). These were evaluated against the 
LAU-Net model introduced in this study. The traditional P- 
and S-wave arrival-time determination method employed 
the Obspy package (Beyreuther et al. 2010), while the deep 

Fig. 6  Effect of different parameters on pickup accuracy
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learning-based methods utilized PyTorch for implementation 
and were trained on a dataset comprising 8986 training sam-
ples. All methods were assessed using 473 test samples. As 
the micro-seismic monitoring datasets varied in time frames, 
containing micro-seismic waveforms of different lengths, 
preprocessing was applied to the micro-seismic data follow-
ing the methodology outlined in Section 3.1.2 of the study. 
Adjustments were made to the input size and feature clipping 
layers of the CAGNET+CNNDET and U-Net++ methods 
to ensure compatibility with the dataset used in this study.

Table 5 exhibits the outcomes of P- and S-wave arrival-
time determination for the micro-seismic dataset obtained 
from the Shengli Oilfield in Sichuan. The results presented 
in Table 5 showcase that the LAU-Net model attains the 
highest precision for the determination of both P- and 
S-wave arrival times, coupled with remarkable recall and 
F1 scores. Specifically, LAU-Net outperforms the STA/
LTA method, demonstrating a precision improvement of 
0.221 for P-waves and 0.233 for S-waves. Additionally, it 
exhibits an increased recall of 0.229 for P-waves and 0.135 
for S-waves, as well as F1-score improvements of 0.177 for 
P-waves and 0.298 for S-waves. Furthermore, the LAU-Net 
model reduces the mean absolute error (MAE) by 0.175s 
for P-waves and 0.207s for S-waves. In comparison to the 
CNNDET+CGANET method, the LAU-Net model achieves 
a precision increase of 0.001 for P-waves and 0.135 for 
S-waves. Additionally, it raises recall by 0.001 for P-waves 
and 0.17 for S-waves, enhancing F1-scores by 0.001 for 
P-waves and 0.153 for S-waves. Moreover, it decreases 
the MAEs by 0.071s for P-waves and 0.187s for S-waves. 
Compared to the UNet++ method, LAU-Net enhances pre-
cision by 0.029 for P-waves and 0.054 for S-waves, accom-
panied by increased recall of 0.018 for P-waves and 0.09 for 
S-waves. Additionally, it improves F1-scores by 0.023 for 
P-waves and 0.073 for S-waves, while reducing the MAE 
by 0.031s for P-waves and 0.076s for S-waves.

The experimental results in Table 5 highlight the supe-
riority of the LAU-Net model as it possesses the highest 
accuracy, recall, and lowest absolute error. It demonstrates 
the ability to pickup P- and S-waves in the micro-seismic 
engineering of the Shengli oilfield in Sichuan and also high-
lights the superiority of the LAU-Net model in picking up 
micro-seismic P- and S-waves with accuracy and speed. 

This is because the STA/LTA method manually designs 
the amplitude and frequency features, which requires a 
lot of domain knowledge and experience, and requires 
repeated attempts for each micro-seismic signal before the 
corresponding features and thresholds can be found, and 
thus is slower and less accurate when a large amount of 
micro-seismic data is processed. The CNNDET+CGANET 
method needs to go through two networks, with more model 
parameters and is slow in picking up speed. In addition, the 
GRU unit and the self-attention mechanism module used in 
the CNNDET+CGANET method have a long dependency 
problem for long series time data, which leads to a signifi-
cant decrease in the accuracy of S-wave when processing 
waveforms with long time data. The deep structure of the 
UNet++ method requires a large amount of memory with 
more model parameters, which leads to low pickup accu-
racy in resource-constrained environments and slow speed 
in real-time applications. In real-time applications, the speed 
is slow. In contrast, the GHRA layer of the LAU-Net model 
improves the sensitivity to subtle waveform variations by 
sharing part of the convolution kernel computation, con-
sidering the correlation of multiple features in the micro-
seismic signals, reducing the model parameters, and accel-
erating the model to pickup P- and S-waves. In addition, 
the application-aware loss function in the LAU-Net model 
can learn complex micro-seismic waveform features, which 
improves the model’s ability to accurately pickup micro-
seismic P- and S-waves in the presence of multiple arrival 
times of P- and S-waves.

To evaluate the performance of the LAU-Net model con-
cerning processing speed and model complexity, we juxtapose 
it against the STA/LTA method, CAGNET+CNNDET, and 
U-Net++. Picking time and model size serve as the bench-
marks for our assessment. The LAU-Net model showcases 
an 11.59ms reduction in inference time compared to the 
STA/LTA method. Moreover, it achieves a remarkable 8.5-
fold improvement in inference speed in comparison to the 
CDDNET+CAGNET method. Additionally, the LAU-Net 
model exhibits a sixfold increase in inference speed when 
compared with the UNet++ method. This acceleration aligns 
with the Occam’s razor principle, asserting that opting for a 
simpler model to attain comparable performance can mitigate 
the risk of overfitting. Regarding model size, the LAU-Net 

Table 5  P-wave and S-wave arrival-times pickup effects of the four different methods on the test set

Model P-wave S-wave Params (MB) Time (ms)

P R F1 MAE (s) P R F1 MAE (s)

LAU-Net 0.966 0.941 0.953 0.059 0.934 0.922 0.928 0.104 0.48 1.11
STA/LTA 0.745 0.712 0.728 0.239 0.701 0.698 0.699 0.328 \ 12.7
CNNDET+CGANET 0.965 0.94 0.952 0.130 0.799 0.752 0.775 0.291 2.88 16.3
UNet++ 0.937 0.923 0.93 0.09 0.88 0.832 0.855 0.180 1.50 8.9
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model boasts a significantly smaller footprint, approximately 
one-sixth of the CDDNET+CAGNET method, and slightly 
surpasses the UNet++ model by around 1MB in parameters. 
This reduction in model size can be attributed to the LAU-Net 
model’s substitution of regular convolution with Ghost con-
volution, resulting in fewer model parameters and enhanced 
inference speed. In summary, the LAU-Net model excels in 
striking a balance between precision and speed. Experimental 
results underscore its effectiveness and competitive perfor-
mance. Furthermore, the application-aware loss function does 
not introduce an additional computational burden during the 
inference phase.

To visualize the precision of arrival time predictions 
by the LAU-Net model, histograms of P-wave and S-wave 
arrival-times errors from each method are presented in 
Fig.  7. Figure  7a illustrates the distribution of P-wave 
arrival-time errors, while Fig. 7b showcases the S-wave 
arrival-time errors. The experimental findings reveal that 
the LAU-Net model produces P-wave and S-wave time 
errors that exhibit a zero-centered error distribution. The 
majority of errors fall below 0.1s, aligning with a Gaussian 
distribution. Notably, the LAU-Net model outperforms the 
other three methods in terms of error distribution. This is 
because the STA/LTA method has difficulty in distinguish-
ing and accurately determining the P- and S-wave arrivals 
in the case of containing both P- and S-waves, which makes 
the arrivals picked up by the STA/LTA method have a large 
error compared to the labeled results. The performance of 
the GRU unit and the self-attention mechanism module used 
in the CNNDET+CGANET method is affected by the length 
of the input sequence. The UNet ++ method’s deep structure 
and multi-scale connectivity lead to higher computational 
complexity, especially when working with long sequences 
or large datasets. On the contrary, the applied perceptual 
loss function of the LAU-Net model improves the accuracy 

of the arrival pickup by combating different types of noise 
and learning complex micro-seismic P- and S-wave features.

Figure 8 depicts the pickup results for two micro-seis-
mic signals. The black and red solid lines indicate the 
P-wave and S-wave time-of-arrival pickup results of the 
different methods for the signals in Fig. 8 (i), while the 
green and orange dashed lines correspond to the expert 
manual pickup results, respectively. From Fig. 8a, it can be 
seen that the errors of P-wave and S-wave arrival moments 
are 0 s and 0.8s for the STA/LTA method, 0.01s and 0.6s 
for the CNNDET+CAGNET method, 0 s and 0.1s for the 
UNet++ method, 0 s and 0.1s for the LAU-Net method, 
and 0 s and 0.1s for the UNet+ method, respectively. From 
Fig. 8b, it can be seen that the STA/LTA method picks up 
the P-wave and S-wave with an error of 0.1s and 0.76s, 
respectively; the CNNDET+CAGNET method picks up 
the P-wave and S-wave with an error of 0.02s and 0.86s, 
respectively; the UNet++ method picks up the P-wave 
and S-wave with an error of 0.1s and 0.6s, respectively; 
the UNet++ method picks up the P-wave and S-wave with 
an error of 0.1s and 0.1s, respectively; and the LAU-Net 
method picks up the P-wave and S-wave with an error of 
0.1s and 0.1s, respectively, and S-wave to time error is 
0.02s and 0.98s, respectively, and the LAU-Net method 
picks up P-wave and S-wave to time error is 0.01s and 0 s, 
respectively.

From the experimental findings, it becomes appar-
ent that there are discernible inaccuracies in the P- and 
S-waves arrival-time determinations made by the STA/
LTA, CNNDET+CGANET, and UNet++ methods, 
encompassing both incorrect and missed determinations. 
In contrast, the LAU-Net model produces results with-
out any erroneous determinations or omissions. These 
disparities can be ascribed to various factors. The limi-
tations of the STA/LTA method arise from the selection 

Fig. 7  a Error distribution of P-wave arrival-time b error distribution of S-wave arrival-time
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of feature functions, which, when inadequately chosen, 
can result in erroneous determinations and omissions. 
The CNNDET+CGANET method, relying on two net-
works, introduces additional model parameters, lead-
ing to a slower determination process. Meanwhile, the 
UNet++ method, despite employing a residual connec-
tion that integrates micro-seismic waveform features, 
lacks a hybrid residual attention mechanism, resulting in 
redundant information extraction that interferes with P- 
and S-wave arrival-time determination. In contrast, the 
LAU-Net model excels at capturing correlation features 
between P- and S-waves with fewer parameters, thereby 
enhancing the arrival-time determination speed. Moreo-
ver, the designed GHRA layer effectively mitigates over-
fitting on smaller test sets. The application-aware loss 
function plays a crucial role in constraining the update 
direction of the determination network, facilitating a 

more comprehensive extraction of micro-seismic wave-
form sample features from the dataset without an excess 
of computational parameters. This ultimately leads to a 
more profound understanding of the dataset sample dis-
tribution and a notable improvement in P- and S-wave 
arrival-time determination precision. In summary, the 
LAU-Net model significantly enhances the precision of 
P- and S-wave arrival-time determinations, bringing them 
closer to actual results.

Application of pickup P‑ and S‑waves in Sichuan oil 
field

To verify the seismic phase recognition effect of the LAU-
Net model in different periods and its generalization ability, 
the paper uses the 2019–2020 micro-seismic dataset from 
Sichuan to test the LAU-Net model. The dataset is identified 

Fig. 8  Comparison of different methods for micro-seismic data 
pickup results with real results. a and b are two examples of micro-
seismic P- and S-wave arrival-times pickup. (i) represents the micro-
seismic waveform, (ii) is the probabilistic prediction curve of the 
P- and S-wave arrival-times positions for LAU-Net model, (iii) is 

the prediction curve of STA/LTA method, (iv) is the probabilis-
tic prediction curve of the P- and S-wave arrival-times positions for 
CNNDET+CGANET method, and (v) is the probabilistic predic-
tion curve of the P- and S-wave arrival-times positions for UNet++ 
method
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using the LAU-Net model, and the results of P- and S-wave 
arrival time pickup are shown in Table 6.

The pickup accuracies of the 2019–2020 Sichuan oil-
field micro-seismic dataset are shown in Table 6. As can be 
seen from Table 6, compared with the STA/LTA method, 
the LAU-Net model increases the P-wave and S-wave 
precision by 0.207, 0.213, the recall rate by 0.157, 0.193, 
and the F1 scores by 0.182, 0.203, and the average abso-
lute error decreases by 0.105s, 0.053s. Compared with 
the CNNDET+CGANET method, the P-wave and S-wave 
pickup precision rises by 0.036, 0.146, the recall rate rises 
by 0.004, 0.153, the F1 score rises by 0.02, 0.15, and the 
mean absolute error drops by 0.031s, 0.027s. Compared 
with the UNet++ method, the P- wave and S-wave preci-
sion increased by 0.059 and 0.122, recall increased by 0.031 
and 0.094, F1 score increased by 0.045 and 0.108, and aver-
age absolute error decreased by 0.179s and 0.066s, respec-
tively. The experimental results show that compared with the 
STA/LTA, CNNDET+CGANET, and UNet++ methods, the 
LAU-Net model accuracy and speed are still the best, which 
is mainly because the pickup accuracy of STA/LTA is lim-
ited by the threshold setting, the source of timing informa-
tion acquisition of UNet++ relies only on the convolutional 
layer, and the convolutional layer itself is weak for long 
sequence timing information grasping ability, so the pickup 
effect decreases inferiorly to the CNNDET+CGANET 
method and LAU-Net method. The autoregressive operation 
of the gated loop unit in the CNNDET+CGANET method 
cannot process the sequence information in parallel, which 
makes the model run inefficiently and slows down the rec-
ognition speed. However, the GHRA layer in the LAU-Net 
method can reduce the computational burden, correlate the 
features of micro-seismic P-wave and S-wave, be adapt-
able, and pickup high accuracy and speed. Meanwhile, the 
application-aware loss function designed in the thesis has a 
certain learning ability for the complex features of micro-
seismic signals, which further improves the pickup P-wave 
and S-wave accuracy of the LAU-Net model. In addition, the 
designed application-aware loss function can be pre-trained 
in an offline environment, and real-time applications, LAU-
Net only needs inference rather than training, which can 
accelerate the recognition process.

Noise immunity tests

In the pragmatic context of shale gas resource extraction, 
noise becomes an unavoidable factor. To offer a more 
nuanced evaluation of the model’s resilience to noise, the 
LAU-Net model underwent testing using micro-seismic 
waveforms at diverse SNR levels. The corresponding test 
outcomes are depicted in Fig. 9. In this visualization, the 
blue bar denotes the number of detected micro-seismic 
events, while the green and purple bars signify the P- and 
S-waves identified by LAU-Net. Notably, these results main-
tained errors below 0.5s. As illustrated in Fig. 9, the experi-
mental findings suggest that the LAU-Net model excels in 
identifying P- and S-waves, particularly in conditions with 
higher SNR. Impressively, it consistently and accurately 
identifies a significant portion of P- and S-wave arrival times 
even in environments with lower SNR levels.

To thoroughly assess the proficiency of the LAU-Net 
model in accurately identifying micro-seismic P- and 
S-wave arrival times across diverse SNRs, Fig. 10 presents 
a comparative analysis between the results obtained by the 
LAU-Net model and the ground truth. In this representa-
tion, the green and orange dashed lines delineate the actual 
P- and S-wave arrival times, while the black and red solid 
lines portray the corresponding results detected by the 
LAU-Net model. Figure 10a–d illustrates six instances of 

Table 6  P- and S-wave pickup effects of the four different methods in the 2019–2020 Sichuan test set

Model P-wave S-wave Params (M) Time (ms)

P R F1 MAE (s) P R F1 MAE (s)

LAU-Net 0.935 0.892 0.913 0.099s 0.914 0.882 0.898 0.164s 0.48 1.11
STA/LTA 0.728 0.735 0.731 0.204s 0.701 0.689 0.695 0.217s \ 12.7
CNNDET+CGANET 0.899 0.888 0.893 0.130s 0.768 0.729 0.748 0.191s 2.88 16.3
UNet++ 0.876 0.861 0.868 0.278s 0.792 0.788 0.790 0.23s 1.50 8.9

Fig. 9  Micro-seismic P-wave and S-wave picking results with differ-
ent SNRs
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micro-seismic waveforms with SNRs of −5.155 dB, 1.618 
dB, 3.472 dB, and 5.813 dB, respectively. For these four 
instances, the absolute errors between the actual P-wave 
arrival times and those identified by the LAU-Net model 
are 0.05, 0.02, 0.02, and 0.04, respectively. Similarly, the 
absolute errors between the genuine S-wave arrival times 
and the corresponding results identified by the LAU-Net 
model are 0.11, 0.05, 0.04, and 0.29s. These experimental 
findings highlight the LAU-Net model’s exceptional capabil-
ity to mitigate noise interference. Its arrival-time confidence 
curves closely align with the actual labels, even in extreme 
cases where the SNR of the micro-seismic waveform is as 
low as -5.155dB. The GHRA layer within the LAU-Net 
model adeptly distinguishes various sources of noise in 
micro-seismic waveforms and assimilates the characteristics 
of micro-seismic P- and S-wave arrival times. In contrast 
to traditional methods that often misidentify noise as P/S-
wave arrival times, the LAU-Net model excels in precisely 

identifying P- and S-wave arrival times, even in low SNR 
environments where noise can easily overshadow the target 
signals.

On-site, a plethora of noise types, encompassing impulse 
noise and periodic noise, are frequently encountered, lead-
ing to interference with micro-seismic waveforms. Impulse 
noise typically arises from mechanical or human-induced 
vibrations at the site, exhibiting amplitude and frequency 
characteristics akin to those of P- and S-waves at the point 
of arrival time. The primary distinction lies in their polari-
zation characteristics, as elucidated in Fig. 11a. In contrast, 
periodic noise displays time-varying behavior and often 
shares frequency bands with micro-seismic waveforms, 
as illustrated in Fig. 11b. To comprehensively evaluate 
the resilience and effectiveness of the LAU-Net model in 
micro-seismic P- and S-wave arrival-time picking across 
diverse noise conditions, the experimental results manifest 
that the LAU-Net model excels in handling all types of 

Fig. 10  Comparison of LAU-Net model pickup results with real 
results under different SNRs. For each subfigure, (i) is the micro-
seismic waveform, and (ii) is the P- and S-wave arrival-times posi-

tion probability prediction curves of the LAU-Net model; the SNRs 
of these micro-seismic events are a −5.155 dB, b 1.618 dB, c 3.472 
dB, d 5.813 dB
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noise data. It not only precisely determines arrival times 
but also adeptly mitigates interference. This exemplary 
performance can be attributed to the inclusion of an appli-
cation-aware loss function in the LAU-Net model. This 
loss function places heightened emphasis on training with 
noisy samples, consistently constraining gradient updates 
in the pickup network, thereby enhancing precision in 
P- and S-wave arrival times. Furthermore, the LAU-Net 
model incorporates a hybrid attention mechanism within 
the GHRA layer. This mechanism learns to discriminate 
between the arrival time information of micro-seismic P- 
and S-waves and periodic noise, accurately focusing on the 
micro-seismic waveform arrival times. This feature ensures 
temporal consistency in the picked results with real labels, 
maintaining seismic precision, and ultimately enhancing 
pickup outcomes.

Drawback of LAU‑net model

Examining the outcomes presented in Fig. 12, it becomes 
evident that while the LAU-Net model demonstrates strong 
performance on the test dataset encompassing 59 MS events 
within the − 15 to 0 dB SNR range, it successfully picked 
45 P-waves and 53 S-waves. However, the precise detection 
rate of P-waves slightly lags behind that of S-waves. This 
occurrence stems from the relatively diminished amplitude 
of P-waves under low SNR conditions, rendering them sus-
ceptible to noise interference. Figure 12 also illustrates that 
S-waves exhibit more robust feature extraction and a height-
ened resilience to noise in comparison to P-waves, largely 
due to their lengthier waveform duration. In the two cases 
outlined in Fig. 12, (a) (i) displays some lingering noise 

preceding the P-wave’s arrival time, leading to pick errors 
in the P-wave. Conversely, (b) (ii) directly experiences noise 
interference, causing the P-wave to be entirely overlooked. 
To address this challenge, a viable solution involves inte-
grating noise reduction techniques into the MS waveform 
processing alongside P/S-wave arrival-times picking. By 
applying a simple mean filter before P/S-waves arrival-times 
determination, the adverse impact of noise on the P/S-waves 
arrival-times picking can be mitigated, as depicted in Fig. 12 
(iii) and (iv).

On the other hand, in the realm of supervised models, 
the volume of data assumes paramount importance, and the 
presence of a substantial corpus of training data plays a piv-
otal role in enhancing model performance. Regrettably, the 
dataset available from the Sichuan Shengli oilfield’s micro-
seismic data, although it contains labeled instances, remains 
rather limited in scale. This inherent constraint poses chal-
lenges when aiming to satisfy the requirements of large-scale 
supervised deep learning. One viable remedy to this conun-
drum lies in the adoption of a semi-supervised learning 
paradigm. This entails utilizing unlabeled samples during 
model training, thereby diminishing the reliance on P- and 
S-wave labeled samples and ameliorating the potential sharp 
decline in picking performance occasioned by the paucity 
of labeled samples. As part of our future research endeav-
ors, we intend to expand the existing dataset, amalgamating 
both labeled and unlabeled samples. This augmentation of 
data resources promises to render the P- and S-wave arrival 
times pickup model more adept and efficient. Nevertheless, 
this ambitious transition necessitates an adaptation of the 
current LAU-Net structure to align with the novel dataset’s 
training requirements.

Fig. 11  Comparison of the LAU-Net model picking results with the 
real results under different types. a Comparison between micro-seis-
mic model pickup and real results for micro-seismic waveforms under 

impulse noise b Comparison between micro-seismic model picking 
and real results for micro-seismic waveforms under periodic noise
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Conclusions

In order to improve the microseismic P-wave and S-wave 
pickup accuracy and accelerate the pickup speed, the light-
weight adversarial U-network (LAU-Net) is investigated in 
this paper. The pickup performance of the LAU-Net model 
is investigated through model design, simulation, and experi-
ment. The results show that:

(1) The LAU-Net model has accurate and fast pickup capa-
bility for P- and S-waves in micro-seismic signals.

(2) The convolution kernel size selection experiment and 
layer optimization experiment show that the model 
performance is best in terms of accuracy and speed 
when the convolution kernel size is 5 and the number 
of GHRA layers is 4.

(3) The results of the ablation experiments show that both 
the GHRA layer and the application-aware loss func-

tion play a key role in the accurate and fast pickup of 
micro-seismic P- and S-wave arrival times by the LAU-
Net model. Removing any GHRA layer and applica-
tion-aware loss function will significantly reduce the 
pickup ability of the network.

(4) The results of anti-noise experiments show that the 
LAU-Net model can skillfully cope with various signal-
to-noise ratios and different types of noisy data, and 
realize accurate P- and S-wave pickup.

(5) When applied to the actual project in the Shengli oil-
field in Sichuan, the LAU-Net model performs well 
in effectively extracting micro-seismic P- and S-wave 
arrival times. Compared with the STA/LTA method, 
CNNDET+CGANet method, and UNet++ method, the 
LAU-Net model shows superior performance and prac-
tical application capability in terms of P- and S-wave 
arrival time pickup accuracy, model size, and pickup 
speed.

Fig. 12  Comparison of micro-seismic waveform picking results 
with real results by different methods. a and b are two examples of 
micro-seismic P- and S-wave pickup; (i) denotes the micro-seismic 
waveforms in the test set, (ii) shows the probability curves of P- and 
S-wave arrival times positions predicted by LAU-Net model for the 

micro-seismic waveforms in the test set, (iii) shows the micro-seis-
mic waveforms after median filtering, and (iv) shows the probability 
curves of P- and S-wave arrival times positions picked up by LAU-
Net model for the median filtered micro-seismic waveforms
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