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Abstract

Rapid, high-precision pickup of microseismic P- and S-waves is an important basis for microseismic monitoring and early
warning. However, it is difficult to provide fast and highly accurate pickup of micro-seismic P- and S-waves arrival-time.
To address this, the study proposes a lightweight and high-precision micro-seismic P- and S-waves arrival times pick-
ing model, lightweight adversarial U-shaped network (LAU-Net), based on the framework of the generative adversarial
network, and successfully deployed in low-power devices. The pickup network constructs a lightweight feature extraction
layer (GHRA) that focuses on extracting pertinent feature information, reducing model complexity and computation, and
speeding up pickup. We propose a new adversarial learning strategy called application-aware loss function. By introducing
the distribution difference between the predicted results and the artificial labels during the training process, we improve the
training stability and further improve the pickup accuracy while ensuring the pickup speed. Finally, 8986 and 473 sets of
micro-seismic events are used as training and testing sets to train and test the LAU-Net model, and compared with the STA/
LTA algorithm, CNNDET+CGANet algorithm, and UNet++ algorithm, the speed of each pickup is faster than that of the
other algorithms by 11.59ms, 15.19ms, and 7.79ms, respectively. The accuracy of the P-wave pickup is improved by 0.221,
0.01, and 0.029, respectively, and the S-wave pickup accuracy is improved by 0.233, 0.135, and 0.102, respectively. It is
further applied in the actual project of the Shengli oilfield in Sichuan. The LAU-Net model can meet the needs of practical
micro-seismic monitoring and early warning and provides a new way of thinking for accurate and fast on-time picking of
micro-seismic P- and S-waves.

Keywords Arrival-time picking of P- and S-waves - Generative adversarial network - Lightweight feature extraction
(GHRA) - Application-aware loss function
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P- and S-waves result of the input
discriminant network
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Training wave
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Akaike information criterion
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Convolutional neural network
Deep learning
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Generative adversarial network
Gated recurrent unit

A lightweight feature extraction layer

Hybrid attention mechanism
Inactivity method

Learning rate

Least squares generative adversarial
network

LSTM Long-short-term memory

MAE Mean absolute error

MB MByte

MSSA Multi-channel singular spectrum
analysis

P Precision

R Recall

RSGAN Relative standard generative adver-
sarial network

SNR Signal-to-noise ratio

STA/LTA Short-time and long-time averaging
ratio

VFD Variance fractal dimension

Introduction

The micro-seismic monitoring system integrates micro-
seismic sensors and data recording equipment, which can
be used to record the full waveform data of micro-vibra-
tions from underground rocks and strata (Fahd et al. 2023;
Dandi et al. 2023; Xu et al. 2021). By picking up the P- and
S-waves of the micro-seismic events, the location of the
micro-seismic source can be obtained, and a fast and accu-
rate early warning of micro-seismic can be realized (Alireza
and Mojdeh 2023). The study of how to quickly and accu-
rately pick up the P- and S-waves of micro-seismic events
has become a key core for seismic signal processing.

At present, there are two main categories of micro-seis-
mic P- and S-waves arrival-time pickup methods: traditional
methods and deep learning (DL) methods. Traditional meth-
ods mainly include the short-term and long-term average
ratio (STA/LTA) (Deyu et al. 2023), the Akaike information
criterion (AIC) (Lan et al. 2022), and the fractal dimension
(FD) (Tiwari and Rajesh 2021). These ideas were devel-
oped by Xu and Chen (2021) proposed a new characteristic
function (CF) based on the modified cumulative envelope
function to improve the ability of the STA/LTA method to
identify P- and S- waves. Yao and Liu (2022) proposed an
automatic seismic P-wave first-arrival pickup algorithm
based on the inactivity method (IM) and the Akaike infor-
mation criterion (AIC), which minimizes the noise interfer-
ence and can pick up the first arrival time even when using
a data set with a low signal-to-noise ratio (SNR). Avoiding
noise interference, P-waves can be picked up even when
using datasets with low SNR. Long et al. (2023) proposed
an automatic micro-seismic event detection variance fractal
dimension (VFD) method based on multi-trace energy enve-
lope stacking (MTEES), which improves the micro-seismic
event detection accuracy for micro-seismic monitoring.
These methods rely heavily on manually designed features
and rules, which not only limit their ability to extract P- and
S-wave features from micro-seismic events, resulting in low
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P- and S-wave pickup accuracy, but also are not suitable for
fast processing of a large number of signals acquired by a
large number of micro-seismic monitoring systems.

In recent years, deep learning techniques have made
greater progress and have been widely applied in various
fields, especially providing new solutions to the problem of
fast and accurate pickup of P- and S-waves (Fahd et al. 2021;
ERTURUL 2019). Compared with traditional P- and S-wave
pickup methods, deep learning-based pickup methods have
obvious advantages in terms of accuracy, speed, and robust-
ness (Alakbari et al. 2023; Acar et al. 2021). This approach
has found widespread application in the realm of pickup
of P- and S-waves as Guo et al. (2021) designed the AEnet
model, which uses a convolutional neural network (CNN) to
classify the sample points, and combines the curve-fitting
technique and unsupervised clustering algorithm to calculate
the sample point arrivals to prevent incorrectly labeling the
noise as P- and S- waves, but the micro-seismic waveforms
have a short duration, and the effect of picking up the P- and
S- waves are poor in the low-resolution waveforms. Xu et al.
(2022) pioneered the use of the multi-channel singular spec-
trum analysis (MSSA) method to mitigate the effect of noise
on micro-seismic waveforms, and then utilized a long short-
term memory network (LSTM) for accurate temporal fea-
ture extraction, but the method was unable to extract detailed
features, and the accuracy of the pickups was reduced when
compared to convolutional neural networks. Guo (2021)
introduced the UNet++ model with a wide receptive field to
capture complex waveform details and enhance the distinc-
tion between P- and S-waves and noise. The model can deter-
mine the micro-seismic P- and S- wave arrival time directly
from waveforms interfered with by background noise. How-
ever, the micro-seismic signals are time-series data, and the
effect of the time-series information on the waveform fea-
ture extraction is not considered. Jiao et al. (2023) used a
deep convolutional model for micro-seismic event detection.
Subsequently, they utilized the timing processing capability
of the gated recursive unit (GRU) and the detail process-
ing function of the self-attention mechanism to accurately
determine the P- and S-waves arrival time. The result was a
substantial improvement in accuracy to 0.98, but the model
complexity was high.

The development of micro-seismic P- and S-wave pickup
algorithms faces the following challenges: (1) Micro-seismic
signal acquisition is significantly affected by complex envi-
ronments, such as periodic industrial interference noise and
impulse noise from mechanical or human vibration in the
field. These noises make it difficult for the model to fully
extract the P- and S-wave features, resulting in low P- and
S-wave pickup accuracy. (2) Since micro-seismic monitoring
systems need to operate for long periods, low-power devices
are often used to be able to ensure that the system main-
tains stable operation with limited energy supply, reduce

maintenance costs, and extend the service life of the sys-
tem. However, current algorithms increase the number of
parameters and computational complexity of the model to be
able to improve the accuracy of picking up P- and S-waves
from complex environments, to the point where they are not
adapted to low-power devices and the pickup speed slows
down. Addressing these challenges is critical to achieving
fast and accurate pickup results. However, the reduction of
model parameters can make P- and S-wave feature extrac-
tion inadequate, which leads to low accuracy. Therefore, it
is critical for P- and S-wave pickup models to balance both
accuracy and speed for optimal performance.

Motivated by the above analysis, this study addresses the
low accuracy and slow speed of the current micro-seismic P-
and S-wave pickup methods. In this study, we propose a new
P- and S-wave method called LAU-Net. The LAU-Net model
draws on the idea of generative adversarial and consists of
a pickup network and a discriminative network. The pickup
network employs Ghost convolution and hybrid attention
mechanism (HRA) to acquire semantic and detailed infor-
mation for P efficiently- and S-waves while maintaining a
lightweight structure to improve the pickup speed; the dis-
criminative network focuses on capturing valuable details
and avoiding picking up noise as P- and S-waves to improve
the pickup accuracy of the model.

In summary, our advantages are summarized as follows:

1. The LAU-Net model uses a pickup-discriminative net-
work structure. The pickup network focuses on improv-
ing the pickup speed; the discriminative network focuses
on improving the pickup accuracy.

2. Replacing the ordinary convolutional layer of the
U-shaped network with a lightweight feature extraction
layer and using it as a pickup network reduces the model
parameters and speeds up the model pickup speed. The
lightweight feature extraction layer consists of Ghost
convolution and hybrid attention mechanism (HRA),
which utilizes its advantage of selectively enhancing P-
and S-wave features with fewer parameters to achieve
better pickup of P- and S-waves.

3. The LAU-Net model is designed with an application-
aware loss function to achieve higher model pickup
accuracy. This function helps the pickup network to
understand the pickup errors and improves its pickup
accuracy by eliminating the errors of P- and S-wave
arrivals with manual labeling.

The rest of this study is organized as follows: Section 2
provides an insight into the proposed LAU-Net model, dis-
cussing its overall structure and main modules. Section 3
focuses on the dataset and evaluation metrics. Section 4
presents the analysis of the experimental results. Finally,
Section 5 concludes the paper.

@ Springer
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Fig.2 GHRA layer structure

Method
LAU-Net model structure

The study employs a generative adversarial network
(GAN) (Goodfellow et al. 2020) as its framework, and
the architecture of the LAU-Net model is illustrated in
Fig. 1. The LAU-Net model comprises two key compo-
nents: the pickup network and the discriminative network.

@ Springer

The pickup network, represented by the blue dashed
box, integrates the lightweight feature extraction layer
(GHRA), the maxpooling layer, and the upsampling layer
to facilitate the task of micro-seismic P- and S-waves
picking. The green dashed box represents the discrimi-
native network, which incorporates a one-dimensional
Ghost convolutional layer. This layer plays a crucial role
in further constraining the direction of gradient updates
for the pickup network.
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Table 1 Details of pickup network

Name Details Size
Input 1600
GHRA layer GhostConv1x5 Str.1 1600
Maxpooling layer Maxpooling1x2 800
GHRA layer GhostConv1x5 Str.1 800
Maxpooling layer Maxpooling1x2 400
GHRA layer GhostConv1x5 Str.1 400
Maxpooling layer Maxpoolingx2 200
GHRA layer GhostConv1x5 Str.1 200
Upsampling layer Conv.Trans1x5 Str.2;GhostConv1x5 Str.1 400
Upsampling layer Conv.Trans1x5 Str.2;GhostConv1x5 Str.1 800
Upsampling layer Conv.Trans1x5 Str.2;GhostConv1x5 Str.1 1600
Output Conv1x1 Str.1 1600

Pickup networks

The pickup network is mainly composed of four GHRA lay-
ers, three maxpooling layers, and three upsampling layers,
and the structure is shown in Fig. 2. The 1D micro-seismic
signals are first extracted from the GHRA and maxpool-
ing layers. Then, the upsampling layers are used to achieve
accurate P- and S-wave arrival-time pickup. Table 1 lists the
details of the pickup network.

To reduce the model’s parameters, the paper substitutes
the convolution operation within the U-Net structure with
a lightweight feature extraction layer known as GHRA
(lightweight feature extraction). The GHRA layer’s struc-
ture is illustrated in Fig. 3. The GHRA layer is an amal-
gamation of the 1D Ghost convolutional layer (Han et al.
2022) and the hybrid residual attention (HRA) module
(Li et al. 2022). This combination serves to diminish the
number of parameters and extract prominent features by
using the HRA module, all while consolidating the salient
information via the 1D Ghost convolutional layer. This
approach results in a feature layer enriched with substan-
tial information. Firstly, the paper employs a 1D Ghost
convolutional layer to filter the input data and generate a
feature map. The output of the 1D Ghost convolution layer
serves as the input for the HRA module. The HRA module
initially employs the channel attention mechanism [e.g.,
Eq. (1)] to establish correlations among similar micro-
seismic waveforms across different channels, emphasiz-
ing micro-seismic P- and S-wave arrival times in a clean
channel. Subsequently, it utilizes the spatial attention
mechanism [e.g., Eq (2)] to enhance the micro-seismic P-
and S-waves arrival-times features by correlating any two
samples in the micro-seismic P- and S-waves waveforms
with each other. The two calculations are shown in Egs.
(1-2) (Tang et al. 2021):

x; =(c(MLP(AvgPool(x;)) + MLP(MaxPool(x;)))) ® x; (1)

x;.' =(o(f™! (AvgPool(x,);MaxPool(x,))) ® x;. (2)

where o is the sigmoid function, x; is the output of the one-
dimensional Ghost convolutional layer, x; is the output of the

channel attention mechanism, and x;’ is the output of the spa-
tial attention mechanism.® denotes the fusion operation of
different channels, MaxPool denotes the maximum pooling
operation, AvgPool denotes the average pooling operation,
MLP denotes the multilayer perception operation, and f7*!
denotes the one-dimensional convolution operation with a
£ convolution kernel.

A maxpooling layer consists of a maximum pooling
layer. After the feature map is max-pooled, its length and
width will be reduced to half of the original.

An upsampling layer consists of a transpose convolu-
tion layer and a GHRA layer. The upsampling layer first
expands the length and width of the feature map to twice
the original one by a transposition convolution operation.
Secondly, the GHRA layer is used to achieve feature fusion
of different channels.

Discriminative network

The excessive non-P- and S-wave samples within micro-
seismic waveforms significantly disrupt the process of
picking P- and S-wave arrival times. In response to this
challenge, the study introduces a fully convolutional dis-
criminative network to replace the discriminator that was
originally designed for overall classification in the adver-
sarial network. In contrast to other methods, the LAU-Net
model produces a confidence curve as its output rather than
a scalar value. Each sample point within the output con-
fidence curve indicates whether the corresponding input
sample point represents a picked result or a genuine label.
The absence of a fully connected layer in the fully con-
volutional network allows it to process input waveforms
of varying sizes, further enhancing the versatility of the
LAU-Net model for P- and S-wave arrival-time pickup
tasks. The structure of the discriminative network is illus-
trated in Fig. 1. The inputs to this network are categorized
as "real samples" and "fake samples." "Real samples" rep-
resent artificial labels, while "fake samples" arise from the
combination of artificial labels and model-picking outputs
in the depth dimension. The discriminative network uti-
lizes three one-dimensional Ghost convolutional layers and
one conventional convolutional layer. These layers consist
of feature maps with dimensions of 16, 32, 64, and 128,
accompanied by convolutional kernel sizes of 5, 7, 5, and
5, respectively.

@ Springer
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Application-aware loss function

When the parameters of the pickup network are fewer, the
network may be less effective for the segmentation of fine
cracks in the image, partly because of the insufficient feature
extraction ability of the network with fewer parameters, and
partly because the traditional error function of the statistics
of sampling points one by one can not effectively respond
to the distance between the artificial samples and the pickup
results. The adversarial generative network defines a dis-
tance that can be trained, and it is hoped that this distance is
as big as possible when training a discriminative network,
and it is hoped that this distance is as small as possible
when training a generative network. Therefore, the idea of
relative standard generative adversarial network (RSGAN)
(Jolicoeur-Martineau 2018) can be borrowed to measure the
distance between the prediction result and the artificial label
by a trainable discriminative network. If the discriminative
network is unable to discriminate the results of the pickup
network picking up P- and S-waves, it can be assumed that
the pickup network has been trained well enough. Similarly,
the pickup network needs the help of manually labeled P-
and S-wave results for optimal training so that it can be
constantly compared and improved. The loss function of
RSGAN is shown in Eq. (3) (Jolicoeur-Martineau 2018).

Lp = E\ p0.x=6@).~p(0) [/1(D&DY)]
EXrNP(X),Xf=G(z),z~P(~z) [fZ(D (x;)))] 3

— _|F G
Lo = By po).5=60).0p(0) [f3 (D(xg ))]
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D denotes the discriminative network and G denotes the
pickup network. x, represents the manual labeling result
which obeys the distribution p (x). x; represents the pickup
network picking up the P- and S-waves result, which obeys
the distribution p(z). xz) denotes the artificial labeling of the
input discriminant network, i.e., xz) =x.Dx, x;l,) denotes the
pickup network picking up the P- and S-waves result of the
input discriminant network, i.e., x;D =x; D x,. x;q denotes

the new pickup result, i.e., fo? =x, ®x. D denotes the splic-
ing operation of the manual labels and the model pickup
results at the input. f(~1), f(~2), and f(~3) denote the inputs as a
function of the outputs.

The design of the three functions f(~1), f(~2), and f(~3) draws
on the least squares adversarial network (LSGAN) (Mao
et al. 2017), where the least squares function is used to force
the pickup results of the pickup network to approximate the
artificial labels to improve the accuracy of the P- and S-wave
pickup. Therefore, Eq. (3) can be further rewritten as Eq. (4)
(Mao et al. 2017):

LD = EX,~P(X),Xf=G(Z),Z~p(~z) [D(.X?) - 1]
+ EX,-NP(X),);FG(Z),ZNp(z) [D (fo ))] (4)

LG = EXrNP(x),xf=G(z),z~ﬁ(~z) [D (fo )= 1]

For the parameter update of the pickup network, in addition
to the error of the discriminative network, the error between
the artificial labels and the pickup network should be taken
into account. The final application-aware loss function of
the LAU-Net model can be expressed as (Ni et al. 2022):
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tE . x5 =G(2),2~p(2) (D (xD )] them, the selection of P- and S-wave arrival time was care-
(5)  fully carried out by micro-seismic experts. The results of

——Z [ylna — (1 = y)in(1 - a)]

+AXE, 2 (0) 5= G(Z)z~p(z)[D(x )—1]

where y denotes the result of manual labeling and a = G(z)
denotes the result of arrival-time pickup of the LAU-Net
model.

Data pre-processing and evaluation
indicators

Datasets

The dataset utilized in this study comprises data collected
from the ground-based micro-seismic monitoring system
at Shengli Oilfield, Sichuan, during the years 2011-2017.
Micro-seismic waveforms were recorded using a network
of nine broadband three-component micro-seismic stations
deployed across the oilfield. These stations covered a spatial
range of approximately 6 km X 4 km X 1 km and origi-
nally sampled data at a frequency of 5 kHz. In this study, to
obtain more comprehensive and accurate subsurface infor-
mation for the study of subsurface structures or monitoring
of subsurface activities, clean micro-seismic waveforms,
waveforms with low SNRs, and micro-seismic waveforms

multiple experts were considered together, and then these
results were converted into corresponding confidence prob-
ability labels to form a high-quality dataset. Some of the data
in the dataset are shown in Fig. 4.

The study employs 473 data samples for the test set,
while the remaining 8986 data samples are allocated to the
training and testing sets. All pertinent methods have been
trained and tested, a necessity for supervised deep learning
models, and subsequently evaluated using the same dataset
to ensure a fair and unbiased comparison of their strengths
and weaknesses. The data have been uniformly normalized,
as depicted in Eq. (6) (Cai et al. 2022), where v; denotes the
amplitude value of the micro-seismic waveform.

Vi

(6)

max|v,|

Evaluation indicators

To quantitatively showcase the effectiveness of the LAU-
Net model, three metrics—precision (P), recall (R), and
F1-score—were employed to assess the quantitative model’s
performance. The mathematical computations for precision,
recall, and F1-score are presented in Egs. (9), (10), and (11)
(Hou and Zheng 2023):

@ Springer
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where TP denotes the count of correctly picked micro-
seismic P/S-wave arrival times, FP signifies the count of
instances where a non-P- and S-wave is incorrectly picked
as a micro-seismic P- and S-wave arrival time, and FN rep-
resents the count of times a micro-seismic P- and S-wave
arrival time is missed. A higher recall leads to a reduction
in the number of missed picks of micro-seismic P- and
S-wave arrival times, while higher precision results in fewer
instances of missed micro-seismic P- and S-wave arrival
times. Due to the trade-off between recall and precision, the
F1 score provides a balanced and weighted combination of
the two.

Experiments

The experimental setup in this paper involved using the
Python 3.8 interpreter and the PyTorch 1.0 deep learning
framework to construct the model. Experimental tests were
conducted on an RTX 3060 GPU with an AMD Ryzen
R7-5800 H processor. The paper underwent multiple itera-
tions to fine-tune the parameters within both the discrimina-
tive and picking networks. In each iteration, the discrimi-
native network’s parameters were updated using waveform
inputs, followed by fixing these parameters and updating
the parameters within the picking network using another
set of waveform inputs. This process was repeated for each
iteration. A total of 4493 waveforms were used to train the
discriminative network during each cycle, with another 4493
waveforms used to train the pickup network.

In this section, we validate the accuracy and speed of
the LAU-Net model for picking up P- and S-waves through
different experiments. To assess the effect of model con-
volution kernel size on pickup speed and accuracy (as
described in Sect. 4.1), we select five different convolu-
tion kernel sizes and compare their performances on the
Sichuan micro-seismic dataset from 2011-2017 to select
the optimal convolution kernel size. To evaluate the effect
of model depth on pickup speed and accuracy (as described
in Sect. 4.2), we designed three model configurations and
compared their performance on the 2011-2017 Sichuan
micro-seismic dataset to select the optimal number of lay-
ers. To demonstrate the stability of the LAU-Net model,
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we evaluate it on the 2011-2017 Sichuan micro-seismic
dataset in Sect. 4.3. To demonstrate the effectiveness of
introducing blocks in the LAU-Net model, we compare
and evaluate the 2011-2017 Sichuan micro-seismic dataset
in Sect. 4.4. Subsequently, in Sect. 4.5, we fully analyze
and compare the performance of the LAU-Net model with
existing methods. Furthermore, in Sect. 4.6, we apply the
LAU-Net model to the 2019-2020 Sichuan micro-seis-
mic dataset, thus highlighting its practical applicability
and generalization capability. In Sect. 4.7, we consider
the adaptability of the LAU-Net model to pickup P- and
S-waves under different signal-to-noise ratios and differ-
ent kinds of noise. Finally, in Sect. 4.8 we discuss the
limitations of the LAU-Net model and suggest directions
for future work.

Convolutional kernel size selection

To assess the influence of various convolutional kernel
sizes on the determination of P- and S-waves arrival times,
the paper formulates five models based on the LAU-Net
approach outlined in "Section 2.2." Models 1 through
5 utilize convolutional kernel sizes of 3, 5, 11, 31, and
71, respectively. The test results are depicted in Fig. 5.
Among these models, model-2 achieves the highest preci-
sion in P-wave arrival-time determination, model-4 excels
in S-wave arrival-time precision, and model-1 possesses
the most minimal parameter count. This illustrates that
smaller convolution kernels result in incomplete extrac-
tion of S-wave features, leading to diminished precision
in S-wave arrival-time determination. Conversely, larger
convolution kernels enhance S-wave arrival-time precision
but may capture redundant information from the micro-seis-
mic waveforms, resulting in decreased precision in P-wave
arrival-time determination. Thus, while varying the convo-
lution kernel size can refine model precision and increase
parameter counts, selecting the most precise yet lightweight
structure among the five models remains a challenging task.
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Table 2 P-wave and S-wave arrival-times pickup effects of the three different models

Model P-wave S-wave Params/MB Time (ms)
P R F1 MAE (s) P R F1 MAE (s)

LAU-Net-3GHRA 0.978 0.971 0.974 0.316 0.858 0.950 0.902 1.706 0.19 1.41

LAU-Net-4GHRA 0.983 0.986 0.984 0.129 0.966 0.969 0.967 0.159 0.48 3.11

LAU-Net-5GHRA 0.981 0.979 0.980 0.161 0.957 0.959 0.958 0.234 2.27 741

For instance, if prioritizing model size, model-1 emerges as
the optimal choice. On the other hand, if focusing solely on
accuracy, model-2 delivers the highest precision in P-wave
arrival-time determination, and model-4 excels in S-wave
arrival-time determination precision. The S-wave arrival-
time determination precision of model-2 is comparable to
that of model-4, and model-4 has 1.125 times the param-
eters of model-1.

To meet the requirement of achieving high precision
while maintaining relatively modest model complexity
for micro-seismic P- and S-wave arrival-time pickup, the
study selects model-2 as the neural network structure for
the P- and S-wave arrival-time pickup task.

Optimization of the number of model layers

The layer count in the LAU-Net model significantly impacts
the speed and precision of P- and S-wave arrival-time deter-
mination. To identify the optimal depth for the number of
layers in the LAU-Net model, three distinct model archi-
tectures are devised. These structures involve 3, 4, and 5
GHRA layers, respectively denoted as LAU-Net-3GHRA,
LAU-Net-4GHRA, and LAU-Net-SGHRA. A comparative
assessment of precision, recall, F1-score, mean absolute
error (MAE), model parameter sizes, and runtime is pre-
sented in Table 2.

Table 2 furnishes valuable insights into the performance
of various LAU-Net model configurations. LAU-Net-
4GHRA exhibits noteworthy improvements in precision for
both P-wave and S-wave arrival-time determination, with
gains of 0.05 and 0.108 in the former, and 0.015 and 0.019
in the latter for recall. It also reduces the mean absolute
error (MAE) by 0.187 for P-waves and 1.547 for S-waves
compared to LAU-Net-3GHRA. Furthermore, the MAE
for P-wave arrival-time determination between LAU-Net-
5GHRA and LAU-Net-4GHRA is nearly identical, suggest-
ing that these two networks provide more consistent P-wave
arrival-time determination performance compared to LAU-
Net-3GHRA. However, concerning S-wave arrival-time
determination, LAU-Net-4GHRA enhances precision by
0.009, recall by 0.01, and reduces the MAE by 0.075 com-
pared to LAU-Net-5GHRA. In terms of model complexity,
LAU-Net-4GHRA features 1.79MB fewer model parameters
and operates 1.7ms faster than LAU-Net-5GHRA, while

having 0.29MB more model parameters and running 4.3ms
slower than LAU-Net-3GHRA.

To achieve an equilibrium between elevated precision in
the pickup and a judiciously controlled model complexity
for the determination of micro-seismic P- and S-wave arrival
times, the paper opts for LAU-Net-4GHRA as the architec-
tural framework for the pickup network.

Cross-validation experiments

To accurately assess the generalization performance of the
LAU-Net model, fivefold cross-validation was used. The
entire dataset was equally divided into 5 subsets, each of
which was rotated as a test set, while the remaining 4 subsets
were used as a training set for model training. In the training
set, the data was randomly divided into 80% for training and
20% for validation. The training data is used to build the
best classification model, while the validation data is used
to refine the network structure. Throughout 50 epochs, the
model is trained on the training data and evaluated on the
validation data for each epoch. The model with the highest
classification accuracy on the validation data was retained
and subsequently tested on the test set. At the end of each
phase, the precision, recall, F1 score, and mean absolute
error of the models picking up the P- and S-waves were
calculated, and the final results were determined by averag-
ing the fivefold cross-validation results. Table 3 shows the
fivefold cross-validation results, with P-wave precision rang-
ing from 0.949 to 0.983, recall ranging from 0.87 to 0.986,
F1 scores ranging from 0.92 to 0.984, and mean absolute
errors ranging from 0.029s to 0.135s, and S-wave precision
ranging from 0.888 to 0.966 and recall ranging from 0.85
to 0.947, with the F1 scores between 0.869 and 0.956 with
mean absolute errors between 0.039s and 0.194s.

Ablation experiments

Ablation experiments were conducted to assess the influ-
ence of the GHRA layer and the application-aware loss
function in the LAU-Net model on the overall model per-
formance. These experiments compared three model vari-
ations: the U-shaped micro-seismic P- and S-wave arrival-
time pickup model (Ablation model U-Net), a variation that
substitutes the convolutional layer with the GHRA layer
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Table 3 Cross-validation

; Model P-wave S-wave Params/MB  Time (ms)
experiment results
P R Fl MAE(s) P R F1 MAE (s)
1k-fold 0.958 0.941 0.949 0.116 0.888 0.850 0.869 0.176 0.48 3.11
2k-fold 0.983 0.986 0.984 0.029 0.966 0.947 0.956 0.039 0.48 3.11
3k-fold 0971 0969 0.97 0.061 0.937 0.929 0.933 0.194 0.48 3.11
4k-fold 0.949 0.939 0.944 0.104 0.946 0.937 0.941 0.065 0.48 3.11
Sk-fold 0969 0.87 0.92 0.135 0.928 0.892 091 0.086 0.48 3.11
Mean 0966 0.941 0.953 0.059 0.934 0.922 0928 0.104 0.48 3.11
Table.4 Results of the ablation Model P-wave S-wave Params/MB  Time (ms)
experiments
P R F1 MAE P R F1 MAE
U-Net 0.884 0.856 0.870 0.169s 0.842 0.807 0.824 0.259s 0.82 7.41
LU-Net 0.858 0.826 0.842 0.184s 0.816 0.754 0.784 0.286s 0.46 2.61
LAU-Net 0966 0941 0953 0.089s 0.933 0911 0.922 0.11s 048 3.11

(Ablation model LU-Net), and the LAU-Net model intro-
duced in the paper. All experiments utilized the complete
dataset for both training and testing. The results are pre-
sented in Table 4. Table 4 reveals the experiment outcomes.
In contrast to the LAU-Net model proposed in the paper, the
ablation model U-Net exhibits reduced precision in picking
both P-waves and S-waves by 0.082 and 0.091, respectively.
It also increases model parameters by 0.34MB and slows
down processing speed by 4.3ms. The ablation model LU-
Net shows a similar decline in precision, with reductions of
0.108 for P-waves and 0.117 for S-waves. However, it man-
ages to decrease model parameters by 0.02MB and acceler-
ates processing by 0.5ms. Notably, the ablation model U-Net
has the most model parameters, while the ablation model
LU-Net has the fewest. This underscores the effectiveness
of the designed GHRA layer in reducing model complexity
and parameters. However, the reduction of model parameters
results in decreased model precision. The incorporation of
the application-aware loss function, as outlined in the paper,
serves to enhance model precision while ensuring the reduc-
tion of model parameters.

The hyperparameters in the LAU-Net model have a great
impact on the pickup effect, for this reason, the paper selects
several sets of parameters for training through several vali-
dations of the training set and compares the results. The
learning rate, batch size, and loss function hyperparameter
size 4 and period of the LAU-Net model are adjusted and
selected. In each experiment, all parameters except the test
parameters are kept constant.

The learning rate (LR) is a key hyperparameter in the
field of deep learning and plays a pivotal role in determin-
ing whether and when a model can effectively converge to
a minimum. This study explores several common learning
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rates, specifically LR = 0.000001, LR = 0.000005, LR
= 0.00001, LR = 0.00005, LR = 0.0001, and LR =
0.0005, and the results in Fig. 6a show that the accuracy
rate reaches its optimal value when LR = 0.0001. This is
because too high a learning rate will cause the network to
fail to converge and the model accuracy will decrease; too
low a learning rate will prolong the convergence time of
the network and reduce the model training speed. There-
fore, 0.0001 is chosen as the learning rate for LAU-Net
model training in this study.

Batch size plays a crucial role in optimizing the model
and determining the training speed. To speed up the train-
ing process of gradient descent algorithms, batch size is
usually used to the power of 2. In this study, the batch
size of the LAU-Net model was evaluated for 16, 32, 64,
128, and 256 and the results are shown in Fig. 6b. The
model accuracy reaches its maximum when its value is
64, and after reaching the maximum, the accuracy starts
to decrease as the batch size increases. This is because
too small a batch size will make the training time longer
and less efficient, while too large a batch size will lead
to a decrease in the generalization ability of the model.
Therefore, the study chooses 64 as the batch size.

To develop effective P- and S-wave pickup models, the
training process requires the selection of appropriate epochs.
One epoch represents one training iteration, including for-
ward and backward propagation for all batches. In this study,
the LAU-Net model was evaluated for 40, 50, and 60 epochs
and the results are shown in Fig. 6¢. The value of accuracy
is maximum when epoch = 50. This is because at epoch
= 40, the model does not learn enough micro-seismic P-
and S-wave features, which leads to a lower accuracy rate
and makes the model pickup ineffective; at epoch = 60, the
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Fig. 6 Effect of different parameters on pickup accuracy

model training falls into the overfitting phenomenon, which
leads to a model denoising effect that is not as good as at
epoch=50. Therefore, this paper chooses epoch=50 as the
epoch of LAU-Net model training.

A is an important parameter in Eq. (5), which also
affects the testing accuracy. In this section, sizes of 0.005,
0.01, 0.05, and 0.1 are chosen to test the LAU-Net model.
The test results are shown in Fig. 6d, and from Fig. 6d, it
can be seen that the highest accuracy is 96.6% and 93.3%
when the size of A is 0.005, which is higher than the other
parameters, so we choose the size of 0.005.

The LAU-Net model was trained 50 times on the train-
ing dataset using the ADAM optimizer (Kingma and Ba
2014). The batch size was set to 64 with a learning rate of
0.0001 and was 0.0001 in Eq. (5).

Comparative experiments

To showcase the exceptional prowess of the LAU-Net
model, it was employed to analyze data from the micro-
seismic events recorded in the Shengli Oilfield, Sichuan,
during 2020. In this investigation, three distinct methods
for P- and S-wave arrival-time determination were cho-
sen for comparison. These methods included a conven-
tional short-term average/long-term average (STA/LTA)
picker (Allen 1978) and two deep learning-based architec-
tures, namely CAGNET+CNNDET (Jiao et al. 2023) and
U-Net++ (Guo 2021). These were evaluated against the
LAU-Net model introduced in this study. The traditional P-
and S-wave arrival-time determination method employed
the Obspy package (Beyreuther et al. 2010), while the deep
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Table 5 P-wave and S-wave arrival-times pickup effects of the four different methods on the test set

Model P-wave S-wave Params (MB) Time (ms)
P R F1 MAE (s) P R F1 MAE (s)

LAU-Net 0.966 0.941 0.953 0.059 0.934 0.922 0.928 0.104 0.48 1.11

STA/LTA 0.745 0.712 0.728 0.239 0.701 0.698 0.699 0.328 \ 12.7

CNNDET+CGANET 0.965 0.94 0.952 0.130 0.799 0.752 0.775 0.291 2.88 16.3

UNet++ 0.937 0.923 0.93 0.09 0.88 0.832 0.855 0.180 1.50 8.9

learning-based methods utilized PyTorch for implementation
and were trained on a dataset comprising 8986 training sam-
ples. All methods were assessed using 473 test samples. As
the micro-seismic monitoring datasets varied in time frames,
containing micro-seismic waveforms of different lengths,
preprocessing was applied to the micro-seismic data follow-
ing the methodology outlined in Section 3.1.2 of the study.
Adjustments were made to the input size and feature clipping
layers of the CAGNET+CNNDET and U-Net++ methods
to ensure compatibility with the dataset used in this study.

Table 5 exhibits the outcomes of P- and S-wave arrival-
time determination for the micro-seismic dataset obtained
from the Shengli Oilfield in Sichuan. The results presented
in Table 5 showcase that the LAU-Net model attains the
highest precision for the determination of both P- and
S-wave arrival times, coupled with remarkable recall and
F1 scores. Specifically, LAU-Net outperforms the STA/
LTA method, demonstrating a precision improvement of
0.221 for P-waves and 0.233 for S-waves. Additionally, it
exhibits an increased recall of 0.229 for P-waves and 0.135
for S-waves, as well as F1-score improvements of 0.177 for
P-waves and 0.298 for S-waves. Furthermore, the LAU-Net
model reduces the mean absolute error (MAE) by 0.175s
for P-waves and 0.207s for S-waves. In comparison to the
CNNDET+CGANET method, the LAU-Net model achieves
a precision increase of 0.001 for P-waves and 0.135 for
S-waves. Additionally, it raises recall by 0.001 for P-waves
and 0.17 for S-waves, enhancing F1-scores by 0.001 for
P-waves and 0.153 for S-waves. Moreover, it decreases
the MAEs by 0.071s for P-waves and 0.187s for S-waves.
Compared to the UNet++ method, LAU-Net enhances pre-
cision by 0.029 for P-waves and 0.054 for S-waves, accom-
panied by increased recall of 0.018 for P-waves and 0.09 for
S-waves. Additionally, it improves F1-scores by 0.023 for
P-waves and 0.073 for S-waves, while reducing the MAE
by 0.031s for P-waves and 0.076s for S-waves.

The experimental results in Table 5 highlight the supe-
riority of the LAU-Net model as it possesses the highest
accuracy, recall, and lowest absolute error. It demonstrates
the ability to pickup P- and S-waves in the micro-seismic
engineering of the Shengli oilfield in Sichuan and also high-
lights the superiority of the LAU-Net model in picking up
micro-seismic P- and S-waves with accuracy and speed.
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This is because the STA/LTA method manually designs
the amplitude and frequency features, which requires a
lot of domain knowledge and experience, and requires
repeated attempts for each micro-seismic signal before the
corresponding features and thresholds can be found, and
thus is slower and less accurate when a large amount of
micro-seismic data is processed. The CNNDET+CGANET
method needs to go through two networks, with more model
parameters and is slow in picking up speed. In addition, the
GRU unit and the self-attention mechanism module used in
the CNNDET+CGANET method have a long dependency
problem for long series time data, which leads to a signifi-
cant decrease in the accuracy of S-wave when processing
waveforms with long time data. The deep structure of the
UNet++ method requires a large amount of memory with
more model parameters, which leads to low pickup accu-
racy in resource-constrained environments and slow speed
in real-time applications. In real-time applications, the speed
is slow. In contrast, the GHRA layer of the LAU-Net model
improves the sensitivity to subtle waveform variations by
sharing part of the convolution kernel computation, con-
sidering the correlation of multiple features in the micro-
seismic signals, reducing the model parameters, and accel-
erating the model to pickup P- and S-waves. In addition,
the application-aware loss function in the LAU-Net model
can learn complex micro-seismic waveform features, which
improves the model’s ability to accurately pickup micro-
seismic P- and S-waves in the presence of multiple arrival
times of P- and S-waves.

To evaluate the performance of the LAU-Net model con-
cerning processing speed and model complexity, we juxtapose
it against the STA/LTA method, CAGNET+CNNDET, and
U-Net++. Picking time and model size serve as the bench-
marks for our assessment. The LAU-Net model showcases
an 11.59ms reduction in inference time compared to the
STA/LTA method. Moreover, it achieves a remarkable 8.5-
fold improvement in inference speed in comparison to the
CDDNET+CAGNET method. Additionally, the LAU-Net
model exhibits a sixfold increase in inference speed when
compared with the UNet++ method. This acceleration aligns
with the Occam’s razor principle, asserting that opting for a
simpler model to attain comparable performance can mitigate
the risk of overfitting. Regarding model size, the LAU-Net
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model boasts a significantly smaller footprint, approximately
one-sixth of the CDDNET+CAGNET method, and slightly
surpasses the UNet++ model by around 1MB in parameters.
This reduction in model size can be attributed to the LAU-Net
model’s substitution of regular convolution with Ghost con-
volution, resulting in fewer model parameters and enhanced
inference speed. In summary, the LAU-Net model excels in
striking a balance between precision and speed. Experimental
results underscore its effectiveness and competitive perfor-
mance. Furthermore, the application-aware loss function does
not introduce an additional computational burden during the
inference phase.

To visualize the precision of arrival time predictions
by the LAU-Net model, histograms of P-wave and S-wave
arrival-times errors from each method are presented in
Fig. 7. Figure 7a illustrates the distribution of P-wave
arrival-time errors, while Fig. 7b showcases the S-wave
arrival-time errors. The experimental findings reveal that
the LAU-Net model produces P-wave and S-wave time
errors that exhibit a zero-centered error distribution. The
majority of errors fall below 0.1s, aligning with a Gaussian
distribution. Notably, the LAU-Net model outperforms the
other three methods in terms of error distribution. This is
because the STA/LTA method has difficulty in distinguish-
ing and accurately determining the P- and S-wave arrivals
in the case of containing both P- and S-waves, which makes
the arrivals picked up by the STA/LTA method have a large
error compared to the labeled results. The performance of
the GRU unit and the self-attention mechanism module used
in the CNNDET+CGANET method is affected by the length
of the input sequence. The UNet ++ method’s deep structure
and multi-scale connectivity lead to higher computational
complexity, especially when working with long sequences
or large datasets. On the contrary, the applied perceptual
loss function of the LAU-Net model improves the accuracy

of the arrival pickup by combating different types of noise
and learning complex micro-seismic P- and S-wave features.

Figure 8 depicts the pickup results for two micro-seis-
mic signals. The black and red solid lines indicate the
P-wave and S-wave time-of-arrival pickup results of the
different methods for the signals in Fig. 8 (i), while the
green and orange dashed lines correspond to the expert
manual pickup results, respectively. From Fig. 8a, it can be
seen that the errors of P-wave and S-wave arrival moments
are 0 s and 0.8s for the STA/LTA method, 0.01s and 0.6s
for the CNNDET+CAGNET method, O s and 0.1s for the
UNet++ method, 0 s and 0.1s for the LAU-Net method,
and O s and 0.1s for the UNet+ method, respectively. From
Fig. 8b, it can be seen that the STA/LTA method picks up
the P-wave and S-wave with an error of 0.1s and 0.76s,
respectively; the CNNDET+CAGNET method picks up
the P-wave and S-wave with an error of 0.02s and 0.86s,
respectively; the UNet++ method picks up the P-wave
and S-wave with an error of 0.1s and 0.6s, respectively;
the UNet++ method picks up the P-wave and S-wave with
an error of 0.1s and 0.1s, respectively; and the LAU-Net
method picks up the P-wave and S-wave with an error of
0.1s and 0.1s, respectively, and S-wave to time error is
0.02s and 0.98s, respectively, and the LAU-Net method
picks up P-wave and S-wave to time error is 0.01s and O s,
respectively.

From the experimental findings, it becomes appar-
ent that there are discernible inaccuracies in the P- and
S-waves arrival-time determinations made by the STA/
LTA, CNNDET+CGANET, and UNet++ methods,
encompassing both incorrect and missed determinations.
In contrast, the LAU-Net model produces results with-
out any erroneous determinations or omissions. These
disparities can be ascribed to various factors. The limi-
tations of the STA/LTA method arise from the selection
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Fig.8 Comparison of different methods for micro-seismic data
pickup results with real results. a and b are two examples of micro-
seismic P- and S-wave arrival-times pickup. (i) represents the micro-
seismic waveform, (ii) is the probabilistic prediction curve of the
P- and S-wave arrival-times positions for LAU-Net model, (iii) is

of feature functions, which, when inadequately chosen,
can result in erroneous determinations and omissions.
The CNNDET+CGANET method, relying on two net-
works, introduces additional model parameters, lead-
ing to a slower determination process. Meanwhile, the
UNet++ method, despite employing a residual connec-
tion that integrates micro-seismic waveform features,
lacks a hybrid residual attention mechanism, resulting in
redundant information extraction that interferes with P-
and S-wave arrival-time determination. In contrast, the
LAU-Net model excels at capturing correlation features
between P- and S-waves with fewer parameters, thereby
enhancing the arrival-time determination speed. Moreo-
ver, the designed GHRA layer effectively mitigates over-
fitting on smaller test sets. The application-aware loss
function plays a crucial role in constraining the update
direction of the determination network, facilitating a
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the prediction curve of STA/LTA method, (iv) is the probabilis-
tic prediction curve of the P- and S-wave arrival-times positions for
CNNDET+CGANET method, and (v) is the probabilistic predic-
tion curve of the P- and S-wave arrival-times positions for UNet++
method

more comprehensive extraction of micro-seismic wave-
form sample features from the dataset without an excess
of computational parameters. This ultimately leads to a
more profound understanding of the dataset sample dis-
tribution and a notable improvement in P- and S-wave
arrival-time determination precision. In summary, the
LAU-Net model significantly enhances the precision of
P- and S-wave arrival-time determinations, bringing them
closer to actual results.

Application of pickup P- and S-waves in Sichuan oil
field

To verify the seismic phase recognition effect of the LAU-
Net model in different periods and its generalization ability,
the paper uses the 2019-2020 micro-seismic dataset from
Sichuan to test the LAU-Net model. The dataset is identified
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Table 6 P- and S-wave pickup effects of the four different methods in the 2019-2020 Sichuan test set

Model P-wave S-wave Params (M) Time (ms)
P R F1 MAE() P R F1 MAE (s)
LAU-Net 0.935 0.892 0913 0.099s 0914 0.882 0.898 0.164s 0.48 1.11
STA/LTA 0.728 0.735 0.731 0.204s 0.701 0.689 0.695 0.217s \ 12.7
CNNDET+CGANET 0.899 0.888 0.893 0.130s 0.768 0.729 0.748 0.191s 2.88 16.3
UNet++ 0.876 0.861 0.868 0.278s 0.792 0.788 0.790 0.23s 1.50 8.9
using the LAU-Net model, and the results of P- and S-wave 120 B ot SNR
. . . . ven
arrival t11.ne pickup are §hown in Table 6. . . 100l B Detected P-wave within 0.5s
The pickup accuracies of the 2019-2020 Sichuan oil- B Detected S-wave within 0.5s
field micro-seismic dataset are shown in Table 6. As can be 80+
seen from Table 6, compared with the STA/LTA method, § 60
the LAU-Net model increases the P-wave and S-wave S
precision by 0.207, 0.213, the recall rate by 0.157, 0.193, 40 -
and the F1 scores by 0.182, 0.203, and the average abso- sl
lute error decreases by 0.105s, 0.053s. Compared with
the CNNDET+CGANET method, the P-wave and S-wave 0
. .. . . -10 0 10 20 30 40 50
pickup precision rises by 0.036, 0.146, the recall rate rises SNR

by 0.004, 0.153, the F1 score rises by 0.02, 0.15, and the
mean absolute error drops by 0.031s, 0.027s. Compared
with the UNet++ method, the P- wave and S-wave preci-
sion increased by 0.059 and 0.122, recall increased by 0.031
and 0.094, F1 score increased by 0.045 and 0.108, and aver-
age absolute error decreased by 0.179s and 0.066s, respec-
tively. The experimental results show that compared with the
STA/LTA, CNNDET+CGANET, and UNet++ methods, the
LAU-Net model accuracy and speed are still the best, which
is mainly because the pickup accuracy of STA/LTA is lim-
ited by the threshold setting, the source of timing informa-
tion acquisition of UNet++ relies only on the convolutional
layer, and the convolutional layer itself is weak for long
sequence timing information grasping ability, so the pickup
effect decreases inferiorly to the CNNDET+CGANET
method and LAU-Net method. The autoregressive operation
of the gated loop unit in the CNNDET+CGANET method
cannot process the sequence information in parallel, which
makes the model run inefficiently and slows down the rec-
ognition speed. However, the GHRA layer in the LAU-Net
method can reduce the computational burden, correlate the
features of micro-seismic P-wave and S-wave, be adapt-
able, and pickup high accuracy and speed. Meanwhile, the
application-aware loss function designed in the thesis has a
certain learning ability for the complex features of micro-
seismic signals, which further improves the pickup P-wave
and S-wave accuracy of the LAU-Net model. In addition, the
designed application-aware loss function can be pre-trained
in an offline environment, and real-time applications, LAU-
Net only needs inference rather than training, which can
accelerate the recognition process.

Fig. 9 Micro-seismic P-wave and S-wave picking results with differ-
ent SNRs

Noise immunity tests

In the pragmatic context of shale gas resource extraction,
noise becomes an unavoidable factor. To offer a more
nuanced evaluation of the model’s resilience to noise, the
LAU-Net model underwent testing using micro-seismic
waveforms at diverse SNR levels. The corresponding test
outcomes are depicted in Fig. 9. In this visualization, the
blue bar denotes the number of detected micro-seismic
events, while the green and purple bars signify the P- and
S-waves identified by LAU-Net. Notably, these results main-
tained errors below 0.5s. As illustrated in Fig. 9, the experi-
mental findings suggest that the LAU-Net model excels in
identifying P- and S-waves, particularly in conditions with
higher SNR. Impressively, it consistently and accurately
identifies a significant portion of P- and S-wave arrival times
even in environments with lower SNR levels.

To thoroughly assess the proficiency of the LAU-Net
model in accurately identifying micro-seismic P- and
S-wave arrival times across diverse SNRs, Fig. 10 presents
a comparative analysis between the results obtained by the
LAU-Net model and the ground truth. In this representa-
tion, the green and orange dashed lines delineate the actual
P- and S-wave arrival times, while the black and red solid
lines portray the corresponding results detected by the
LAU-Net model. Figure 10a—d illustrates six instances of
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Fig. 10 Comparison of LAU-Net model pickup results with real
results under different SNRs. For each subfigure, (i) is the micro-
seismic waveform, and (ii) is the P- and S-wave arrival-times posi-

micro-seismic waveforms with SNRs of —5.155 dB, 1.618
dB, 3.472 dB, and 5.813 dB, respectively. For these four
instances, the absolute errors between the actual P-wave
arrival times and those identified by the LAU-Net model
are 0.05, 0.02, 0.02, and 0.04, respectively. Similarly, the
absolute errors between the genuine S-wave arrival times
and the corresponding results identified by the LAU-Net
model are 0.11, 0.05, 0.04, and 0.29s. These experimental
findings highlight the LAU-Net model’s exceptional capabil-
ity to mitigate noise interference. Its arrival-time confidence
curves closely align with the actual labels, even in extreme
cases where the SNR of the micro-seismic waveform is as
low as -5.155dB. The GHRA layer within the LAU-Net
model adeptly distinguishes various sources of noise in
micro-seismic waveforms and assimilates the characteristics
of micro-seismic P- and S-wave arrival times. In contrast
to traditional methods that often misidentify noise as P/S-
wave arrival times, the LAU-Net model excels in precisely

@ Springer

Sampling Point
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tion probability prediction curves of the LAU-Net model; the SNRs
of these micro-seismic events are a —5.155 dB, b 1.618 dB, ¢ 3.472
dB,d 5.813dB

identifying P- and S-wave arrival times, even in low SNR
environments where noise can easily overshadow the target
signals.

On-site, a plethora of noise types, encompassing impulse
noise and periodic noise, are frequently encountered, lead-
ing to interference with micro-seismic waveforms. Impulse
noise typically arises from mechanical or human-induced
vibrations at the site, exhibiting amplitude and frequency
characteristics akin to those of P- and S-waves at the point
of arrival time. The primary distinction lies in their polari-
zation characteristics, as elucidated in Fig. 11a. In contrast,
periodic noise displays time-varying behavior and often
shares frequency bands with micro-seismic waveforms,
as illustrated in Fig. 11b. To comprehensively evaluate
the resilience and effectiveness of the LAU-Net model in
micro-seismic P- and S-wave arrival-time picking across
diverse noise conditions, the experimental results manifest
that the LAU-Net model excels in handling all types of
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Fig. 11 Comparison of the LAU-Net model picking results with the
real results under different types. a Comparison between micro-seis-
mic model pickup and real results for micro-seismic waveforms under

noise data. It not only precisely determines arrival times
but also adeptly mitigates interference. This exemplary
performance can be attributed to the inclusion of an appli-
cation-aware loss function in the LAU-Net model. This
loss function places heightened emphasis on training with
noisy samples, consistently constraining gradient updates
in the pickup network, thereby enhancing precision in
P- and S-wave arrival times. Furthermore, the LAU-Net
model incorporates a hybrid attention mechanism within
the GHRA layer. This mechanism learns to discriminate
between the arrival time information of micro-seismic P-
and S-waves and periodic noise, accurately focusing on the
micro-seismic waveform arrival times. This feature ensures
temporal consistency in the picked results with real labels,
maintaining seismic precision, and ultimately enhancing
pickup outcomes.

Drawback of LAU-net model

Examining the outcomes presented in Fig. 12, it becomes
evident that while the LAU-Net model demonstrates strong
performance on the test dataset encompassing 59 MS events
within the — 15 to 0 dB SNR range, it successfully picked
45 P-waves and 53 S-waves. However, the precise detection
rate of P-waves slightly lags behind that of S-waves. This
occurrence stems from the relatively diminished amplitude
of P-waves under low SNR conditions, rendering them sus-
ceptible to noise interference. Figure 12 also illustrates that
S-waves exhibit more robust feature extraction and a height-
ened resilience to noise in comparison to P-waves, largely
due to their lengthier waveform duration. In the two cases
outlined in Fig. 12, (a) (i) displays some lingering noise

Sampling Point

(b)

impulse noise b Comparison between micro-seismic model picking
and real results for micro-seismic waveforms under periodic noise

preceding the P-wave’s arrival time, leading to pick errors
in the P-wave. Conversely, (b) (ii) directly experiences noise
interference, causing the P-wave to be entirely overlooked.
To address this challenge, a viable solution involves inte-
grating noise reduction techniques into the MS waveform
processing alongside P/S-wave arrival-times picking. By
applying a simple mean filter before P/S-waves arrival-times
determination, the adverse impact of noise on the P/S-waves
arrival-times picking can be mitigated, as depicted in Fig. 12
(>iii) and (iv).

On the other hand, in the realm of supervised models,
the volume of data assumes paramount importance, and the
presence of a substantial corpus of training data plays a piv-
otal role in enhancing model performance. Regrettably, the
dataset available from the Sichuan Shengli oilfield’s micro-
seismic data, although it contains labeled instances, remains
rather limited in scale. This inherent constraint poses chal-
lenges when aiming to satisfy the requirements of large-scale
supervised deep learning. One viable remedy to this conun-
drum lies in the adoption of a semi-supervised learning
paradigm. This entails utilizing unlabeled samples during
model training, thereby diminishing the reliance on P- and
S-wave labeled samples and ameliorating the potential sharp
decline in picking performance occasioned by the paucity
of labeled samples. As part of our future research endeav-
ors, we intend to expand the existing dataset, amalgamating
both labeled and unlabeled samples. This augmentation of
data resources promises to render the P- and S-wave arrival
times pickup model more adept and efficient. Nevertheless,
this ambitious transition necessitates an adaptation of the
current LAU-Net structure to align with the novel dataset’s
training requirements.
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Fig. 12 Comparison of micro-seismic waveform picking results
with real results by different methods. a and b are two examples of
micro-seismic P- and S-wave pickup; (i) denotes the micro-seismic
waveforms in the test set, (ii) shows the probability curves of P- and
S-wave arrival times positions predicted by LAU-Net model for the

Conclusions

In order to improve the microseismic P-wave and S-wave
pickup accuracy and accelerate the pickup speed, the light-
weight adversarial U-network (LAU-Net) is investigated in
this paper. The pickup performance of the LAU-Net model
is investigated through model design, simulation, and experi-
ment. The results show that:

(1) The LAU-Net model has accurate and fast pickup capa-
bility for P- and S-waves in micro-seismic signals.
The convolution kernel size selection experiment and
layer optimization experiment show that the model
performance is best in terms of accuracy and speed
when the convolution kernel size is 5 and the number
of GHRA layers is 4.

The results of the ablation experiments show that both
the GHRA layer and the application-aware loss func-

2

3
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(b)

micro-seismic waveforms in the test set, (iii) shows the micro-seis-
mic waveforms after median filtering, and (iv) shows the probability
curves of P- and S-wave arrival times positions picked up by LAU-
Net model for the median filtered micro-seismic waveforms

tion play a key role in the accurate and fast pickup of
micro-seismic P- and S-wave arrival times by the LAU-
Net model. Removing any GHRA layer and applica-
tion-aware loss function will significantly reduce the
pickup ability of the network.

The results of anti-noise experiments show that the
LAU-Net model can skillfully cope with various signal-
to-noise ratios and different types of noisy data, and
realize accurate P- and S-wave pickup.

When applied to the actual project in the Shengli oil-
field in Sichuan, the LAU-Net model performs well
in effectively extracting micro-seismic P- and S-wave
arrival times. Compared with the STA/LTA method,
CNNDET+CGANet method, and UNet++ method, the
LAU-Net model shows superior performance and prac-
tical application capability in terms of P- and S-wave
arrival time pickup accuracy, model size, and pickup
speed.
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