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Abstract
Rock typing plays a crucial role in describing the heterogeneity of the reservoir. Most of the conventional rock typing meth-
ods are implemented to classify the target reservoir into various rock types based on various petrophysical properties (e.g., 
porosity and permeability), but fail to provide more critical information that significantly affects the final performance of the 
reservoir characterization including: (1) the porosity and permeability contribution of each rock type and (2) the geological 
genesis of each rock type. Along with the universal application of various imaging devices, the image-based microscale 
rock typing (IMRT) can be directly conducted based on the observed pore structures which fundamentally determine the 
rock types. The IMRT belongs to the computer vision field which can be divided into pattern recognition-related rock typ-
ing (PRRT) and texture segmentation-related rock typing (TSRT). The PRRT is mainly used to identify the category (e.g., 
lithofacies, reservoir zone, or Dunham textures) of a given rock sample. The TSRT aims to classify a single image into 
several areas where each area denotes a relatively homogeneous porous structure. In this paper, the popular IMRT methods 
and their applications are reviewed thoroughly. Many successful applications proved that IMRT is an effective way to quan-
titatively estimate the porosity and permeability contributions of each rock type in a heterogeneous rock sample with the 
help of numerical flow simulation. Besides, the IMRT results also can be used to reveal the geological genesis of each rock 
type when its texture is determined by a special geological process.

Keywords Rock typing · Digital rock physics · Texture segmentation · Pore-scale reservoir characterization

List of symbols
C  A contour parameter in Chan-Vese 

model that divides the image domain 
into two regions (dimensionless)

c1  A parameter in Chan-Vese model that 
denotes the average image intensity 
inside the contour C (dimensionless)

c2  A parameter in Chan-Vese model that 
denotes the average image intensity 
outside the contour C (dimensionless)

ds  A surface element (μm2)
D  Dataset (dimensionless)
Df(v)  Denotes a subset of training dataset D 

such for whose attribution f (f is one of 
a group of features which are applied to 
classify a pixel into a specific rock type) 
is equal to v

D+
t
  The subset of D consists of all samples 

satisfying f > t (a threshold)D−
t
 : the 

subset of D consists of all samples satis-
fying f ≤ t (a threshold)

Ent(D)  Information entropy of the dataset D 
(dimensionless)

Ent(D, f)  Information entropy of the subset of D 
that consists of all samples with feature 
f (dimensionless)

Ent(D, f, t)  Information entropy of the subset of D 
that consists of all samples with feature 
f (dimensionless)g(x|μi, Σi): Gaussian 
distribution with a expectation of μi and 
a variance matrix of Σi

Gain(D, f)  Information gain of the subset of D that 
consists of all samples with feature f 
(dimensionless)

Gain_ratio(D, f)  Information gain ratio of the subset 
of D that consists of all samples with 
feature f (dimensionless)

Gini(D)  Gini index of the dataset D 
(dimensionless)
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Gini(D, f)  Gini index of the subset of D that 
consists of all samples with feature f 
(dimensionless)

m0X  The volume fraction of the target phase 
(dimensionless)

m1X  The surface area of the target phase (1/
μm)

m2X  The mean curvature of the interface (1/
μm2)

m3X  The total curvature of the interface (1/
μm3)

Pk  Probability of kth event (dimensionless)
p(x|λ)  Probability density function of MGMM 

with parameter λ
r1  Maximum radius of curvature (μm)
r2  Minimum radius of curvature (μm)
u0(x,y)  Intensity value of the pixel located at 

(x,y)
Vt  Total volume of the target image (μm3)
V(X)  The volume of the space occupied by 

the target phase (μm3)
X  The space occupied by the target phase 

(μm3)
Ω  The embedding space (dimensionless)
δX  The surface of the space occupied by 

the target phase (μm2)
μ  Weight (dimensionless)
μi  Expectation of the  ith Gaussian distribu-

tion (dimensionless)
Σi  Variance matrix of  ith Gaussian distri-

bution (dimensionless)
λ1  Weight (dimensionless)
λ2  Weight (dimensionless)
ϕ(x,y)  Level set function at the location (x, y) 

(dimensionless)
IV(f )  Number of the samples in the dataset 

with feature f
|D|  Number of samples in the dataset D
|Dv|  Number of samples in the dataset D 

whose feature f equals to v

Abbreviations
AF  Average filter
ANN  Artificial neural network
CART   Classification and regression trees
CCR   Coordinated cluster representation
CNNs  Convolutional neural networks
CV  Chan-Vese
DCT  Discrete cosine transform
DFT  Discrete Fourier transform
DM  Distance to mean
DT  Decision tree
FFTs  Fast Fourier transforms

FIB-SEM  Focused ion beam scanning electron 
microscopy

FZI  Flow zone index
IMRT  Image-based microscale rock typing
KNN  K-nearest neighbors
LBP  Local binary pattern
LHF  Local homogeneity filter
MGMM  Multi-variate Gaussian mixture model
MICP  Mercury injection capillary pressure
NM  Nearest mode algorithm
NN  Nearest neighbor algorithm
OSN  Optimal spherical neighborhoods
PRRT   Pattern recognition-related rock typing
SEM  Scanning electron microscopy
TSRT  Texture segmentation-related rock 

typing
u-CT  X-ray micro-computed tomography

Introduction

Rock types are defined as units of rocks that present unique 
reservoir properties and this uniqueness may be caused by 
similar geological conditions and/or digenetic processes 
(Gunter et al. 1997). Rock typing is a process that aims to 
categorize a given heterogeneous reservoir into different 
rock types and each rock type presents a relatively homo-
geneous pore structure or a specific lithology phase (Wang 
et al. 2021). Reservoir rock typing is considered one of the 
most significant steps in reservoir characterization and mod-
eling study because it is an effective approach for unraveling 
the reservoir heterogeneity and further for the interpreta-
tion of fluid units within the reservoir (Kadkhodaie-Ilkhchi 
et al. 2014). Over the past six decades, rock typing has been 
studied at different scales ranging from pore-scale to basin-
scale based on various measurements such as image textures 
(Wang et al. 2021), laboratory measurements (Abedini et al. 
2011; Al-Dujaili et al. 2021; Colombo et al. 2018; Dakhel-
pour-Ghoveifel et al. 2019; Krivoshchekov et al. 2023), 
geophysical properties (e.g., well logs Aranibar et al. 2013; 
Ghadami et al. 2015; Manzoor et al. 2023; Safaei-Farouji 
et al. 2022; Shahat et al. 2023; Wang et al. 2015), seismic 
data (Chevitarese et al. 2018), ASTER TIR (thermal infra-
red radiometer) (Watanabe and Matsuo 2003), and hyper-
spectral data (Owada et al. 2023) using various category 
schemes (see Fig. 1). Before the universal application of 
imaging devices such as X-ray micro-computed tomography 
(u-CT), scanning electron microscopy (SEM), thin sections 
and focused ion beam scanning electron microscopy (FIB-
SEM) in petroleum industry, most of the rock typing meth-
ods are implemented based on some petrophysical proper-
ties (e.g., porosity and permeability) and/or their derivative 
formation factors (e. g., formation zone index and Leverett 
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dimensionless J-function) (Maldar et al. 2022). However, 
it is impractical to quantitatively estimate the porosity and 
permeability contribution and the geological genesis of 
each rock type based on the results of the conventional rock 
typing methods. For example, the conventional rock typing 
methods just classify the target reservoir into different rock 
types but fail to answer what geological genesis (e.g., ero-
sion process and clay filling) make a given rock type present 
different reservoir properties from others. Further, it is hard 
to calculate the porosity and permeability contribution of a 
given geological process quantitatively.

Currently, the most popularly used imaging devices are 
X-ray micro-computed tomography (μ-CT) (Alhammadi 
et al. 2020; Ding et al. 2019; Wildenschild and Sheppard 
2013), scanning electron microscopy (SEM) (Liu et al. 
2022; Mangi et al. 2022; Mangi et al. 2023; Mangi et al. 
2020; Scott et al. 2019), thin sections (Jobe et al. 2018) 
and focused ion beam scanning electron microscopy (FIB-
SEM) (Kelly et al. 2016). The μ-CT image is considered 
to be the most direct way to obtain the 3D inner structure 
of the rock sample. However, the maximum resolution of 
a μ-CT image is about 2 μm3/voxel, which is insufficient to 
describe some small structures in the porous media of the 
rock sample (Okabe and Blunt 2007; Wang and Rahman 
2023). SEM can provide nanometer resolution image, but 
it is 2D. FIB-SEM is an effective way to provide high-
resolution 3D images, but its field of view is too small to 
cover the heterogeneity of the rock samples. There is a long 
history of using thin sections to describe the inner structure 
of the rock sample, but thin sections are 2D images and 
their resolution is always limited. Although none of these 

imaging devices are perfect, they significantly enhance 
our ability to characterize the inner structure of the rock 
sample. Thanks to the universal application of various 
imaging devices, the image-based microscale rock typing 
(IMRT) can be directly conducted based on the observed 
pore structures which fundamentally determine the rock 
types (Shaik et al. 2019).

Rebelle and Lalanne classified the current rock typing 
methods according to two criteria: geology versus petrophys-
ics, and large-scale versus small-scale (Rebelle and Lalanne 
2014). Figure 1 illustrates the classification scheme of the 
main rock typing methods that adapted from the Rebelle-
Lalanne’s strategy by adding the image-based microscale 
rock typing method. Currently, rock typing methods can be 
approximately divided into seven categories according to 
their driven factors (see Fig. 1). From large-scale to small-
scale, different rock typing methods can be used to describe 
the heterogeneity of the reservoir at different field of view. 
All these rock typing methods can be also qualitatively 
located according to how much geological information we 
can obtain from the rock typing results (Zhan et al. 2022). 
For example, we can identify the sedimentary phases accord-
ing to the result of the rock typing based on seismic phases. 
However, it is difficult to derive the geology genesis of a 
given rock type from the flow zone indicator (FZI)-based 
rock typing because FZI mainly reflects the petrophysical 
features of the reservoir.

The IMRT has its unique significance. First, IMRT 
is an effective way to identify the lithofacies (Su et al. 
2020), carbonate pore systems (Marmo et al. 2005), and 
reservoir zones (A et al. 2024; Jobe et al. 2018). Second, 

Fig. 1  Classification of the main 
rock typing methods (adapted 
from Fig. 4 in Rebelle and 
Lalanne 2014)
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IMRT can accurately characterize the spatial distribu-
tion of each rock type and further characterize the pore 
structure of a given rock type. The conventional meth-
ods such as MICP just statistically provide the pore size 
distribution of the measured rock sample. It is, however, 
still challenging to quantitatively estimate each secondary 
porosity system’s permeability contribution. Secondary 
porosity is defined as the additional porosity acquired by 
diagnosis and fracturing after the original rock formation 
process. Wang and Sun processed several SEM images 
of Northern Sea sandstone with secondary porosity that 
occurred in rock fragment, clay, and eroded feldspar, and 
quantitatively calculated the permeability contribution of 
each type of secondary porosity. Two authors concluded 
that the permeability contribution of different secondary 
porosity highly depends on the content of this micropore 
medium and the permeability of the macropore structure. 
In one demonstrated rock sample, the permeability con-
tribution of different secondary porosity can be neglected. 
However, in another demonstrated sample, two authors 
concluded that the permeability attribution of the eroded 
feldspar, rock fragment, and clay are 1.38%, 0.37%, and 
2.64%, respectively. (Wang and Sun 2021c). Third, IMRT 
is one of the core steps for upscaling. It is not practical 
to numerically simulate the flow transportation directly 
in a sizeable rock sample’s image due to heavy computa-
tional burden. Upscaling is considered to be an effective 
way to reduce the computing price by mapping the fine 
scale porous medium into a coarse scale grid system. The 
upscaling accuracy highly depends on the understanding 
of the heterogeneity of the target rock sample which can 
be unraveled by IMRT. Fourth, fluid flow mechanisms in 
different scales pore networks are dominated by different 
flow regimes of continuum flow, slip flow, transition flow, 
and Knudsen diffusion (Li et al. 2020, 2021; Wang et al. 

2018d; Yuan et al. 2016, 2017). Therefore, IMRT should 
be the premise of the multiscale pore structure’s numeri-
cal flow simulation (Wang et al. 2017; Yuan et al. 2015; 
Zhang et al. 2019).

For convenience, the popularly used image-based 
microscale rock typing methods and their applications 
will be reviewed as the structure presented in Fig. 2. 
According to the application scenario, an IMRT task 
can be classified as a pattern recognition problem or a 
texture segmentation problem, which will be reviewed 
in Sect. "Pattern recognition-related rock typing" and 
Sect.  "Texture segmentation-related rock typing", 
respectively. The pattern recognition-related rock typing 
(PRRT) is carried out to solve some problems like iden-
tifying lithofacies, reservoir zone, or Dunham textures 
(Liu et al. 2023). In this case, the input is a rock sample 
image, and the output is a label that describes the class of 
this sample (see Sect. "Self-defined features based PRRT 
"). The texture segmentation-related rock typing (TSRT) 
is undertaken to segment the target image into different 
areas where each area presents a homogeneous porous 
medium (see Sect. "Learning-based PRRT "). TSRT is the 
premise of the pore scale heterogeneity characterization. 
It is well-known that reservoir rock typing belongs to 
a classification problem. A typical workflow of solving 
a classification problem contains feature extraction and 
classification. Feature extraction step is implemented to 
organize a feature vector that consists of a number of 
structure descriptors for each specimen, and the classi-
fication step is undertaken to classify these specimens 
into different categories by a certain classifier. From the 
perspective of feature extraction, IMRT can be classified 
as object-based rock typing and pixel-based rock typing. 
In the pixel-based rock typing, each image pixel is treated 
as a specimen (see Sect. "Pixel-based TSRT"). While in 

Fig. 2  Classification of different 
image-based microscale rock 
typing methods
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object-based rock typing, the input image needs to be 
preprocessed to extract the target objects (e.g., grains 
or pores), the geometry descriptors of each object are 
then be organized as its corresponding feature vector (see 
Sect. "Object-based rock typing"). Pixel-based rock typ-
ing identifies each pixel’s rock type, while the object-
based rock typing identifies each object’s category. Note 
that an image object is a combination of a group of pix-
els/voxels. There are two kinds of pixel-based rock typ-
ing: local feature-based rock typing and phase field-based 
rock typing, which will be reviewed in Sect. "Local fea-
ture-based TSRT" and Sect. "Phase field-based TSRT", 
respectively. Local feature-based rock typing applies con-
ventional classifiers such as Decision tree, random for-
est, Gaussian mixture model, but phase field rock typing 
uses some phase field segmentation methods to realize 
the rock typing. Finally, some conclusions are given in 
Sect. "Conclusions".

In summary, conventional rock typing techniques are 
employed to classify reservoirs based on flow charac-
teristics like porosity and permeability. However, they 
often fall short in providing insights into the geologi-
cal origins of each rock type and their specific contri-
butions to porosity and permeability. Image-based rock 
typing offers a solution by categorizing heterogeneous 
rock samples according to their pore structures. With the 
widespread use of imaging devices in reservoir charac-
terization (digital rock physics), we gain access to the 
intricate inner structures of porous mediums. This ena-
bles us to quantitatively analyze structural heterogeneity 
within rock samples. Following image-based rock typing, 
we can delve into the geological genesis of each rock type 
based on pore structure features such as pore-throat size 
distribution, pore connectivity, and pore surface curva-
ture. Moreover, we can estimate the individual influence 
of each rock type on porosity and permeability across the 
entire sample. Successful implementation of image-based 
rock typing relies on two key prerequisites: (1) the rock 
sample must exhibit varied pore structures, and (2) an 
adequate resolution of images is required to effectively 
observe and describe these pore structures. The quality of 
the image can be mitigated by adjusting the field of view 
(FOV) and resolution of the imaging devices. For exam-
ple, some SEM images present very high resolution (say 
20 nm), which is suitable to identify the mineral types but 
fails to characterize the pore structures. The advantages 
of the image-based rock typing are invaluable, but it's 
essential to clarify that image-based rock typing doesn't 
aim to replace conventional methods, because the sample 
size of current image-based rock typing is constrained 
to millimeter to core sizes due to the limitations of the 
imaging devices' field of view.

Pattern recognition‑related rock typing

The aim of the pattern recognition-related rock typing 
(PRRT) is to identify the rock type of a given rock image. 
The input of the PRRT is a grayscale or color image, and 
the output is its corresponding rock type (e.g., Dunham clas-
sification and reservoir zone). The PRRT is a typical clas-
sification task which can be solved by two steps of feature 
extraction and classifier selection. According to whether the 
user needs to manually extract structure features, the PRRT 
can be further divided into Self-defined features based PRRT 
and learning-based PRRT.

Self‑defined features based PRRT 

Self-defined features based PRRT requires users to deter-
mine what features are preferred to use for rock typing. 
Currently, the features extracted for PRRT are divided 
into three classes: color features, image features, object 
features. Color features (Li et al. 2017), also known as 
statistical features (Singh et al. 2010), are calculated based 
on the distribution of the image intensity, which contain 13 
variables such as Mean, Variance, Entropy, Skewness and 
so on. Image features are extracted from the entire image, 
for example the number of perimeter pixels, white areas, 
and Canny edge pixels. Object features, also known as 
region features (Singh et al. 2010), are calculated based on 
a given number of biggest objects (e.g., four biggest grains 
(Cavalin and Oliveira 2017) or white areas (Singh et al. 
2010)). From each object, several features are calculated 
such as Area of object, Solidity, Convex deficiency, and 
Extent (Zhou et al. 2021). The object’s area is obtained by 
counting the number of pixels/voxels of the target object. 
Solidity is the area of an object divided by the area of its 
convex hull. Convex deficiency is similar with Solidity and 
equates to one minus Solidity. The Extent of an object is 
the ratio between the object area and its smallest rectangle 
bounding box (see Fig. 3).

Followed by the feature extraction, a classifier is selected 
to divide these images into different categories. Popu-
larly used classifiers include K-nearest neighbors (KNN) 
(Coomans and Massart 1982; Wang et al. 2018c), Gauss-
ian Mixture Model (GMM) (Day 1969), decision tree (DT) 
(Breiman et al. 1984), multiclass support vector machine 
(MSVM) (Angulo et al. 2003), random forest (Tin Kam 
1998; Zhou 2020), and artificial neural network (ANN) 
(Crick 1989).

Marmo et al. introduced a machine learning approach to 
identify the carbonate rocks’ Dunham texture (Dunham and 
Ham 1962; Jardine and Wilshart 1982) based on thin sec-
tions (Marmo et al. 2005). In that study, 23 image features 
are extracted from each thin section firstly, and then the 



 Journal of Petroleum Exploration and Production Technology

dimensionality of these feature vectors is decreased from 
23 to 15 by principal component analysis (PCA). A three-
layer artificial neural network (ANN) model composed of 
15 input nodes, 4 output nodes, and 8 hidden nodes is estab-
lished to train the 532 training images that are selected from 
more than 1000 thin sections. The 4 nodes of the output 
layer correspond to 4 Dunham classes. The trained ANN 
model was tested in other 268 thin sections selected from the 
same dataset and obtained a 93.3% accuracy. It is interesting 
that even a higher accuracy of 93.5% is presented when the 
test images are collected from other carbonate sequences. 
Although their proposed method presents good generaliza-
tion ability, it still has significant room for improvement 
because applying more features rather than just image fea-
tures may bring a better result. In addition, a deeper and 
more complex neural network model may also improve the 
classification performance.

Singh et al. trained a four-layer neural networks with 
27 input features, including statistical features, image fea-
tures, and object features, to identify the rock texture for 
basaltic rock mass based on 300 thin sections collected 
from 140 rock samples (Singh et al. 2010). The trained 
model is then tested on 90 thin sections and obtained a 
92.22% accuracy. Similar work was presented by Patel and 
Chatterjee, who classified an Indian limestone mine into 
nine rock types (e.g., pink limestone, dark-gray limestone, 
and greenish-gray limestone) using image features and a 
probabilistic neural network (Patel and Chatterjee 2016). 

A more than 98% accuracy is obtained in that study. Mly-
narczuk et al. used nine different rock samples to demon-
strate the feasibility of the automatic recognition based on 
thin sections. Four popular machine learning algorithms 
(nearest neighbor algorithm (NN), K-nearest neighbor 
(KNN), nearest mode algorithm (NM), and the method 
of optimal spherical neighborhoods (OSN) are applied. 
Besides, different color spaces: CIELab, YIQ, RGB, and 
HSV, are also proven to have an effect on the prediction 
accuracy. They concluded that the combination of the NN 
method and CIELab color space present the best perfor-
mance with an accuracy of 99.98% (Młynarczuk et al. 
2013).

Jobe et al. demonstrated an example of how to use vari-
ous carbonate pore geometries to identify the reservoir zone 
based on thin sections (Jobe et al. 2018). In this example, 
ninety-one thin sections collected from the same location 
with several different lithofacies are firstly segmented into 
binary images containing two phases of void and solid. 
A single pore is defined as a cluster of void pixels with a 
four-neighborhood connection, and the single pixel pores 
are considered as noise that will be omitted. All pores are 
firstly divided into five categories according to their pore 
size. In each category, pores are further classified into nine 
categories according to three criteria, including pore size 
(the number of pixels), axial proportion (four bins), and 
rugosity proportion (four bins). Axial proportion defines 
the ratio of the minor axis length and the major axis length 

Fig. 3  Popularly applied features for image-based microscale rock typing



Journal of Petroleum Exploration and Production Technology 

of the minimum ellipse that contains the pore. Rugosity pro-
portion approximates the deviation of the pore perimeter 
from the perimeter of an ellipse. Then the frequency of the 
pores that fall within the given range is recorded. Finally, 
each image has a feature vector containing 45 descriptors. 
Multiple machine learning algorithms, including distance 
to mean (DM), K-nearest neighbors (KNN), decision tree 
(DT), and multiclass support vector machine (MSVM), are 
applied to realize the classification. They conclude that the 
DT and KNN methods can provide more than 80% accuracy.

Besides extracting features from the initial image, the 
image features can also be extracted from the filtered images 
processed by various filters such as Local Binary Pattern 
(LBP), Gabor Filter, Discrete Fourier Transform (DFT), 
Coordinated Cluster Representation (CCR), and discrete 
Cosine Transform (DCT) (Fernández et al. 2011). In addi-
tion, some derivative filters are proposed to enrich the infor-
mation we can extract from the target images. Both LBP and 
Gabor related features are considered to be very effective 
descriptors for texture discrimination. Then a combination 
of the LBP and the Gabor filters are proposed to enhance the 
discriminative ability of LBP. The G-ALBPCSF is extracted 
by computing the LBP based on the images after applying 
Gabor filtering. Similarly, the D-ALBPCSF is calculated by 
computing the LBP based on the images after applying DCT 
(Vangah et al. 2019).

All self-defined features based PRRT methods share one 
workflow with two steps: one is feature extraction, by which 
different rock types can be evaluated quantitatively, the other 
is classification. All current popular applied methods can be 
treated as a certain combination of some specific features 
and a classifier. More applications of the self-defined fea-
tures based PRRT can refer to (Chatterjee 2013; Shang and 
Barnes 2012; Tian et al. 2019). Current self-defined features 
based PRRT methods could provide an accuracy range from 
80 to 100% according to the data released by different kinds 
of literature.

Learning‑based PRRT 

The selection of features for rock typing is quite a tricky pro-
cess which highly depends on the material itself. Nowadays, 
learning-based PRRT is utilized more and more widely in 
rock fabric recognition by which the model will automati-
cally select proper features for the target rock samples, which 
reduces the work intensity but increases the classification 
accuracy.

Cheng and Guo applied a CNNs model (Lecun et al. 
1998; Wang et al. 2018a) to classify 4800 thin sections 
of the feldspar sandstone samples from the Ordos basin, 
China, into three types according to their granular size. In 
these 4800 images, each rock type has 1600 specimens. 
To every rock type, 1200 samples are applied to train the 

CNNs model, and other 400 are used for validation. On 
the test dataset, a 98.5% accuracy is obtained (Cheng and 
Guo 2017). The CNNs model is also applied to classify the 
rock types based on field image patches by Ran et al. A 
total of 2290 images that belong to six rock types of sand-
stone, limestone, mylonite, conglomerate, granite, and shale 
are collected to demonstrate their proposed classification 
method. The overall accuracy of the classification reaches 
97.96% (Ran et al. 2019). Jobe et al. applied a CNNs model 
to predict the carbonate Dunham textures. A large number 
of images are labeled firstly and then be used to train the 
CNNs model for the prediction of textures in unlabeled 
images. The proposed method presents an 83% accuracy in 
the test dataset (Jobe et al. 2018). In order to recognize the 
rock lithology of the target survey field, Chen et al. devel-
oped a CNNs model consisting of two lightweight CNNs 
models, SqueezeNet and MobileNets, which is capable to 
identify 28 kinds of rocks. Their developed module can be 
installed in a smart phone and obtained an accuracy of over 
96% (Fan et al. 2020). Zhou et al., proposed a novel CNN 
called RockNet to realize the automatic rock classification. 
Seven common Hong Kong rock types, namely fine-grained 
granite, medium-grained granite, coarse-grained granite, 
coarse ash tuff, fine ash tuff, feldspar phyric rhyolite, and 
granodiorite, are applied to validate the performance of the 
proposed RockNet and obtained an impressive performance 
in precision (90.9%), recall (90.4%), and f1-score (90.5%) 
(Zhou et al. 2022).

Many publications show that training based on existing 
model parameters referred to as fine-tuning may out-perform 
or perform as well as training from scratch. Polat et al. clas-
sified the thin sections of the volcanic rocks using transfer 
learning networks based on DenseNet121 and ResNet50 net-
works, respectively. In that study, 1200 thin sections were 
applied for training and testing and obtained an accuracy 
of more than 98.8% (Polat et al. 2021). Zhang et al. used 
2206 grayscale and color images belong to 12 types to rec-
ognize the geological structures by Inception-v3 model. A 
CNN model was also established and trained using transfer 
learning which presents a success rate of more than 90% (ye 
et al. 2018). In addition, the VGG16 model (Simonyan and 
A Zisserman, 2014) is also used to identify the rock types 
of sandstone, granite, limestone, basalt, peridotite, sulfate, 
gneiss, and tuff using transfer learning strategy and obtained 
a 95.16% accuracy.

Learning-based PRRT is becoming the mainstream of 
the image recognition method because it automatically 
selects classification features. The computational price of 
the CNNs method is quite high, but this limitation has been 
extremely relieved by the transfer learning strategy. Most of 
the learning-based IMPRT presents a more than 95% accu-
racy according to the current literature.
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Texture segmentation‑related rock typing

Texture segmentation-related rock typing (TSRT) can be 
treated as an extension of the pattern recognition-related 
rock typing (PRRT) discussed in the last section. The PRRT 
deals with the problem of each image is being identified as a 
unique rock type, while TSRT is carried out to classify a sin-
gle image into different areas and each area presents a spe-
cific rock type. Compared to PRRT, TSRT is more challeng-
ing because it not only requires identifying different rock 
types but also locating their spatial distribution. TSRT is a 
typical texture segmentation issue that is universally studied 
in many fields such as object-identification of aerial images 
and biomedical image segmentation (Cavalin and Oliveira 
2017; Lashari and Ibrahim 2013; Mushrif et al. 2006; Sali 
and Wolfson 1992; Shaban and Dikshit 1998; Willis et al. 
2017; Xu et al. 2022; Zhang et al. 2017).

Pixel‑based TSRT

The conventional way to realize the texture segmentation is 
to successively identify the rock type of each pixel until the 
entire image is processed. According to classification meth-
ods, pixel-based rock typing can further be classified as local 
feature-based rock typing and phase field-based rock typing.

Local feature‑based TSRT

In this strategy, each pixel is considered as a specimen, and a 
certain number of structure descriptors are calculated based 
on a neighborhood centered by a given pixel. We desire to 
find a set of descriptors that could minimize the contrast 
within the same rock type but maximize the contrast among 
different rock types.

Ismail et al. applied regional Minkowski functionals as 
structure descriptors and multi-variate Gaussian mixture 
model (MGMM) as classifier to realize the sandstone pore 
structure rock typing (Ismail et al. 2013). The Minkowski 
functionals consist of volume (m0X), surface area (m1X), 
mean curvature (m2X), and total curvature (m3X) which are 
always treated as basic integral geometric measurements to 
quantitatively describe the porous media (Arns et al. 2010, 
2004, 2001; Wang et al. 2018b). The first functional M0 is 
simply the total fraction of the target phase which is given 
by:

where X ⊂ Ω (Ω is the embedding space) is the space occu-
pied by the target phase. The other Minkowski function-
als are defined by integrating over the surface of the pores 
(denoted as δX) which unambiguously defines its morphol-
ogy features of the pore structure at the given resolution. The 

(1)m0X = M0(X)∕Vt = V(X)∕Vt

first integral measures the area of the surface of the target 
phase which can be described by

where ds, denotes a surface element. The second integral 
measures the mean curvature of the interface

where r1 and r2 are the minimum and maximum radius of 
curvature for the surface element ds. This radius is positive 
for convex curvatures and negative for concave curvatures. 
The third integral measures the total curvature

which is related to the connectivity of the considered 
phase. For well-connected phases and few isolated compo-
nents this measure is typically negative, and crosses zero 
to become positive close to the percolation threshold of the 
material.

Then a MGMM is used to realize the rock typing based on 
extracted Minkowski functionals. A MGMM is a weighted 
sum of M component Gaussian distribution described by:

where x is the feature vector of a given pixel; �i is the mix-
ture weight of the ith (i = 1, …, M) Gaussian density compo-
nent and

∑M

i=1
�i = 1 ; �i and �i are the expectation and the 

covariance matrix of the ith Gaussian density component, 
respectively; � is a parameter combination consisting of�i , 
�i and �i ; the M denotes the total number of Gaussian den-
sities. Each Gaussian function component can be given by:

To relieve the computational price, only 10% pixels are 
selected randomly to train the GMM, and then the trained 
model is applied to classify all other pixels. Given a training 
dataset which is always organized as a T × N matrix (T is the 
training pixel number and N is feature number), a GMM can 
be trained by estimating the parameter � to maximize the 
following likelihood:

(2)m1X = M1(X)∕Vt =
1

6∫ �X

ds∕Vt

(3)m2X = M2(X)∕Vt =
1

3�∫ �X

(
1

r1
+

1

r2

)

ds∕Vt

(4)m3X = M3(X)∕Vt =
∫

�X

(
1

r1r2

)

ds∕Vt

(5)p(x|�) =

M∑

i=1

�ig
(
x|�i,�i

)

(6)

g
(
x|�i,�i

)
=

1

(2�)D∕2||�i
|
|
1∕2

exp
{

−
1

2
(x − �i)

T
�i

−1
(x − �i)

}

(7)p(x|�) =

T∏

t=1

p
(
xt|�

)
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Then the expectation–maximization (EM) algorithm can 
be used to obtain the parameter � . For more details about the 
EM method, please refer to (Dempster et al. 1977).

However, the Minkowski functionals are sensitive to spa-
tial support. We prefer to use larger spatial support because 
the insufficient size of the support will lead to the contrast 
increase in one rock type. However, large regional support 
window will result in computationally expensive. To calcu-
late the regional measures over a relatively larger window, 
Jiang and Arns introduced a statistical strategy to accelerate 
the calculation of the Minkowski functionals based on large 
window size via Fast Fourier Transforms (FFTs) (Jiang and 
Arns 2020).

Wang and Sun studied the permeability contribution of 
different micropore structures using a heterogeneous North 
Sea oil reservoir sandstone as demonstration (Wang and Sun 
2021c). The pore structure presented in the SEM images 
is characterized as a macropore system (consists of grains 
and macropores) and micropore system. In that study, three 
categories of image features, including noise filters (e.g., 
Gaussian blur (Misra and Wu 2020)), edge detector (e.g., 
Laplacian of Gaussian (Sotak and Boyer 1989), Difference 
of Gaussian (Young 1987), and Gaussian Gradient Magni-
tude (Acton 2009)), and texture detectors (e.g., Hessian of 
Gaussian Eigenvalues Arganda-Carreras et al. 2017; Som-
mer et al. 2011) and Structure Tensor Eigenvalues (Sertcelik 
and Kafadar 2012)) are extracted from the target images. 

Then, the random forest method is used as a classifier to 
complete the rock typing (see Fig. 4).

The random forest is a combination of a large number 
of decision trees. Once a new sample is imported, all trees 
within the forest will classify the sample independently. The 
classification outputs of these trees will be used to vote the 
final belongings of the target sample. To introduce the ran-
dom forest algorithm, it is necessary to briefly introduce its 
fundamental element, the decision tree.

The decision tree is characterized by a tree structure of 
a binary tree or a multi-branch tree. Each non-leaf node 
presents a testing process of a given feature, the different 
branches of this non-leaf node denote the classification out-
put of the corresponding feature, and the leaf-node stores a 
class label. The point of building a decision tree is the selec-
tion of the features for each level to make the uncertainty 
of the non-leaf node decrease as far as possible. Assum-
ing that we have a training dataset D with m samples (e.g., 
a structural feature vector of each pixel in image-based 
rock typing), n features (e.g., porosity and average curva-
ture), and K classes (e.g., eroded feldspar, rock fragment, 
and clay). Any sample si ( 1 ≤ i ≤ m ) can be presented as 
(
⇀

x , y) = (x1, x2, … , xn, y) , where xj(1 ≤ j ≤ n ) is the jth fea-
ture of the sample si, and y is the corresponding class label. 
If the frequency of the kth ( 1 ≤ k ≤ K ) class is denoted by 
pk, a popular measurement of the uncertainty is information 
entropy, which is given by (Zhou 2020):

Fig. 4  An example of the local 
feature-based TSRT where 
G denotes grain, EF denotes 
eroded feldspar, C denotes clay, 
RF denotes rock fragment, Pma 
denotes macropore, and Pmi 
denotes micropore. a is an SEM 
image of a sandstone, b presents 
the rock typing result of (a), c to 
e present the local details of the 
EF, RF and C extracted from (a)
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Let Df (v) denotes a subset of training dataset D such for 
whose attribution f (f is one of a group of features which 
are applied to classify a pixel into a specific rock type) is 
equal to v, then the conditional entropy Ent(D, f ) is given 
by (Zhou 2020):

where p(Df (v)) denotes the frequency of the samples whose 
feature f equals to v count for the total number of samples in 
D. Equation (2) is suitable for the situation that f is a discrete 
variable. If feature f is a continuous variable, a threshold t 
needs to be introduced to divide the training dataset D into 
two subsets, D+

t
 andD−

t
 , where D+

t
 is the subset of D consist-

ing of all samples satisfying f > t , and D−
t
 isD�D+

t
 . Then the 

conditional entropy is given by (Zhou 2020):

The threshold t is obtained by a greedy strategy in which 
all observed values of f in training datasets are sorted in 
descending or increasing order. Then the middle point of 
every two adjacent number is tried as threshold t to calcu-
late the conditional entropy and select the t which result in 
minimum Ent(D, f ) (Quinlan 1993). Then information gain 
that using feature f to split the set D is calculated as:

Information gain presents the decrement of the uncer-
tainty of the dataset D when the information about feature 
f is known. When establishing the decision tree, we pre-
fer to select the feature whose information gain is largest. 
The strategy discussed before is the so-called ID3 algo-
rithm (Quinlan 1986). However, using information gain as 
a selection criterion has a disadvantage that the informa-
tion gain prefers to choose the feature with high probability. 
Therefore, the C4.5 algorithm is proposed to deal with this 
drawback by using the information gain ratio replaces the 
information gain (Quinlan 1993). Information gain ratio is 
defined as:

Where

(8)Ent(D) = −

K∑

k=1

pklog
(
pk
)

(9)Ent(D, f ) = −
∑

v∈vals(f )

p(Df (v)) ∗ Ent
(
Df (v)

)

(10)

Ent(D, f ) = min
t
Ent(D, f , t) = min

t
(−

∑

�∈(−,+)

p(D�

t
) ∗ Ent

(
D�

t

)
)

(11)Gain(D, f ) = Ent(D) − Ent(D, f )

Gain_ratio(D, f ) =
Gain(D, f )

IV(f )
,

(12)IV(f ) = −

V∑

v=1

|Dv|

|D|
log

|Dv|

|D|

However, the information gain ratio may result in the pre-
fer to select the features with low probability. Therefore, in 
practice, we firstly select a group of features whose informa-
tion gain is above the average value, and then among which 
select the one who has the largest information gain ratio.

Besides information gain, Gini impurity is another uni-
versally applied method to measure the impurity of a system. 
Gini index is the uncertainty measurement used in classifica-
tion and regression trees (CART), which has a close relation-
ship with information entropy (Breiman et al. 1984). If we 
use 1–pk , which is the first-order Taylor series expansion of 
the term – log

(
pk
)
 at pk = 1 to replace the – log

(
pk
)
 in Eq. (1), 

the Gini index can be given by:

Similar to information gain, conditional Gini index is 
given by:

The algorithm will repeatedly partition the data into 
smaller and smaller subsets until reach one of the following 
status: (1) all samples contained in the final subset belong to 
the same class; (2) all samples contained in the final subset 
have same attribution values; (3) no sample exists in the final 
subset. In situation (2), the current node will be labeled as 
leaf-node, and its class is labeled as its most popular class. 
In situation (3), the current node will be labeled as the leaf-
node, and its class is labeled as the most popular class of its 
father node.

Considering the status of a single tree is limited, the deci-
sion tree algorithm was extended to a random forest algo-
rithm by establishing a ‘forest’ consisting of many trees (Tin 
Kam 1995). The final decision is made by considering the 
output of all trees rather than a single tree applied in the 
decision tree algorithm. As a supervised machine learning 
algorithm, the random forest method can be carried out via 
two steps, training and prediction. The main procedures of 
random forest refer to (Breiman 2001).

Because it is impractical to prepare a ground truth refer-
ence image for the validation of their proposed rock typing 
method, the rock typing performance is validated by visual 
sensitivity analysis. From Fig. 4, one can see that the pro-
posed method presents a good performance in identifying 
different rock types of macropore system and micropore 
system that occurred in eroded feldspar, clay and rock frag-
ments. Based on the result of the rock typing, flow simula-
tion is carried out to estimate the permeability contribu-
tion of each rock type and concluded that the permeability 
contribution of a micropore structure in a multiscale porous 
medium varies from 0 to 100%, which highly depends on 

(13)Gini(D) = 1 −

K∑

k=1

pk
2

(14)Gini(D, f ) = −
∑

v∈vals(f )

p(Df (v)) ∗ Gini
(
Df (v)

)
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the content of this micropore medium and the permeabil-
ity of the macropore structure. In the demonstrated sample, 
the permeability contribution of the micropore structures of 
eroded feldspar, rock fragment, and clay are 1.38%, 0.37%, 
and 2.64%. The permeability contribution of all micropore 
structures is 3.1%. Therefore, the permeability contribution 
of the micropore structures in the demonstrated sample is 
neglectable. This workflow presented in this study provided 
an effective way to analyze the genetic classification of vari-
ous pore structures. The genetic classification of rock types 
was also discussed by Rojas et al., whose study was carried 
out based on core description, MICP and log data rather than 
images (Rojas et al. 2020).

Phase field‑based TSRT

An obstacle of the local feature-based TSRT is that it is chal-
lenging to accurately locate the boundary between different 
rock types because the selected local image patch unavoid-
ably contains a part of pore structures belong to the adjacent 
rock types when we calculate the local features of the bound-
ary-close pixels/voxels. Wang et al. introduced an innovative 
approach for image-based rock typing based on Chan-Vese 
model (Wang et al. 2021) which can be described as:

where C is a contour that divides the image domain, Ω into 
two regions consists of  Ω1 and Ω2. ( Ω2 = Ω∕Ω1 ). Ω1 is the 
objective region (inside C), and Ω2 is the background region 
(outside C).� ≥ 0 , �1 ≥ 0 , and �2 ≥ 0 are fixed parameters. 
In this paper,�1 = �2 = 1 . u0(x, y) is the intensity value of 
the pixel located at (x,y). c1 and c2 are the average image 
intensity inside and outside contour C, respectively.

The problem described by Eq. (1) can be formulated and 
addressed by the level set method (Osher and Sethian 1988) 
via defining a level set function �(x, y) . The key idea of the 
level set function is to implicitly represent a contour inter-
face as the zero level set of a higher dimensional function, 
namely the level set function, and formulate the evolution 
of the contour through the evolution of the level set func-
tion (Estellers et al. 2012). The contour C is considered to 
be the zero level set of the level set function �(x, y) where 
C = {(x, y) ∶ �(x, y) = 0} . Due to the optimized segmenta-
tion obtained by the evolution of the contour C, the level set 
function is then modified as �(t, x, y) by introducing another 
variable time t. Usually, �(t, x, y) is defined as the signed 
minimum Euclidean distances from every point (x,y) to the 

(15)

F
(

c1, c2,C
)

= � ⋅ Length(C) + �1∫ Ω1

|

|

u0(x, y) − c1||
2dxdy

+ �2∫ Ω2

|

|

u0(x, y) − c2||
2dxdy

boundary C where 𝜙 > 0 if the point (x,y) belongs to Ω1 and 
𝜙 < 0 if the point (x,y) belongs to Ω2.

Because Chan-Vese model is not sensitive to the gradients 
when implementing image segmentation (Chan and Vese 
2001), phase field-based rock typing can obviously relieve 
the ambiguities of the rock type of the boundary-close pix-
els/voxels. The method is carried out via two steps of filter-
ing and segmentation. The target segmented image that has 
two phases of pore and solid is consecutively processed by 
a local homogeneity filter (LHF) and an average filter (AF). 
The aim of the local homogeneity filtering is carried out to 
increase the structure contrast among different rock types, 
and the average filtering is implemented to weaken the struc-
ture contrast within each single rock type. Then, the images 
after filtering are segmented by Chan-Vese model to com-
plete the rock typing (see Fig. 5). Currently, the proposed 
Chan-Vese model is still challenging to realize multiphase 
rock typing. The method was validated using two synthetic 
images by calculating the Hamming distance between the 
reference image and the processed image. The Hamming 
distance between the reference images and their correspond-
ing processed images ranges from 0.0017 to 0.0034, which 
highly depends on the structural contrast between different 
rock types.

Object‑based rock typing

The object-based rock typing is further categorized into 
pore-based rock typing and grain-based rock typing. Differ-
ent from previously discussed rock typing methods, object-
based rock typing requires recognizing the target objects 
firstly, such as grain partitioning (Knackstedt et al. 2005; 
Wang and Sun 2021a).

In order to identify the porosity types, Javad et al. pro-
posed a semi-automatic porosity identification workflow 
based on thin sections (Ghiasi-Freez et al. 2012). In that 
paper, 384 pores extracted from 240 thin sections are 
selected manually to demonstrate their method, among 
which 294 pores are used as training data, and others are 
applied for validation. The pores are classified into five 
types, including interparticle pores, intraparticle pores, mol-
dic pores, vuggy pores and biomoldic pores. Six geometri-
cal features, including elongation, roundness, rectangularity, 
eccentricity, solidity, and the ratio of equivalent diameter 
to major diameter, are calculated to characterize each pore. 
Then a Gaussian mixture model is trained and can be used 
to classify other pores into different pore types. The results 
show that the prediction accuracy varies from 66.6% (vuggy 
pores) to 100% (biomoldic pores), which highly depends on 
the pore types.

The heterogeneity of the pore structure in the rock sam-
ple can be affected by many geological processes. In some 
special cases, different rock types can be identified by their 
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grain features such as size and sphericity. Wang et al. pro-
posed a grain feature-based rock typing method that can sig-
nificantly relieve the boundary ambiguousness issue (Wang 
and Sun 2021b). To validate, the proposed method is applied 
to process two synthetic images whose rock types have been 
labeled initially. The accuracy of the proposed method was 
estimated by computing the similarity between the refer-
ence image and the processed image using Hamming dis-
tance. The calculated Hamming distance in two synthetic 
images is 0.0232 and 0.0308, respectively, which indicates 
the effectiveness of the proposed rock typing method. The 
grain partitioning is carried out firstly to separate the granu-
lar rock sample image into a combination of a large num-
ber of single grains, and then the geometry features of each 
single grain are computed. After that MSVM algorithm is 
applied to recognize each single grain’s rock type. Detailed 
workflow of grain features-based rock typing is listed as fol-
lows (see Fig. 6):

1.  Image preprocessing, including denoising and segmen-
tation, is implemented to classify a grayscale or color 
image into two phases including void and solid;

2. The grain partitioning is carried out to separate the solid 
phase into a combination of single grains;

3.  A set of grain geometry features (e.g., grain size, sphe-
ricity (Wadell 1935) and relative surface area) are cal-
culated for every single grain;

4.  The rock types of a given number of grains are labeled 
manually, which can be used as training data to train the 
classifier;

5.  Using the trained classifier to interpret all single grains;
6.  The pixels/voxels that belong to the pore phase are 

labeled as a rock type identical with its nearest solid 
pixel.

The grain-based rock typing always presents impressive 
performance for granular partitionable and distinguishable 
rock samples, but its limitation is also obvious that it has 
failed to deal with the samples whose grains are challeng-
ing to be partitioned in images such as highly consolidated 
sandstone and vuggy limestone.

The results of the IMRT can be then used to estimate the 
permeability contribution of each rock type under the help of 
numerical flow simulation and geological analysis. First, the 
permeability of entire rock sample is calculated and denoted 
as K0. The target rock type is then assumed to be either pure 
porous or pure solid, depending on whether it decreases or 
enhances the reservoir permeability. For example, the rock 
type related to secondary clay minerals can be treated as 
pure pore, while the rock type related to erosion process can 

Fig. 5  The workflow of the Chan-Vese model-based rock typing method
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be treated as pure solid. Then the sample’s permeability can 
be calculated again and denoted by K1. Finally, the perme-
ability contribution ratio, R can be calculated as (Wang and 
Sun 2021c):

When the pore structure texture of the given rock type is 
determined by a special geological process, the image-based 
rock typing results and the calculated permeability ratio also 
can be used to reveal the geological genesis of the rock type 
as well as its permeability contribution.

Conclusions

This paper reviews the currently popular used image-based 
microscale rock typing (IMRT) methods and their applica-
tions. According to our previous review, some conclusions 
about IMRT can be summarized as:

1. The IMRT is one of the most effective ways to quantita-
tively analyze the heterogeneity of the reservoir at pore 

(16)R =
|
|K1 − K0

|
|

K1

scale. According to the application, an IMRT task can 
be classified as a pattern recognition issue or a texture 
segmentation issue. The pattern recognition-related rock 
typing (PRRT) is carried out to solve some problems 
such as identifying lithofacies, reservoir zone, or Dun-
ham textures. In this case, the input and output of the 
process are a rock sample’s image and its correspond-
ing label that describes the class the sample belongs to, 
respectively. The texture segmentation-related rock typ-
ing (TSRT) is undertaken to categorize the target image 
into several regions and each region is a homogeneous 
rock type. TSRT is the premise of the pore scale hetero-
geneity characterization.

2. The wide application of deep learning significantly 
improves the accuracy of the IMRT. Convolutional neu-
ral networks (CNN) and its various derivatives present 
impressive accuracy in IMRT. In addition, the use of the 
transfer learning significantly reduces the training time.

3. Current self-defined features based PRRT methods could 
provide an accuracy range from 80 to 100%, which 
highly depends on the specific task, extracted features, 
and selected classifiers.

4. Phase field-based TSRT can effectively relieve the ambi-
guity in classifying the boundary pixels due to it not 
being sensitive to the image gradient, but it is currently 

Fig. 6  The workflow of the object-based rock typing, a is an example of the grain geometry-based IMRT workflow, and b is the general flow-
chart of the object-based IMRT
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challenging to deal with multiphase rock typing (more 
than 3 rock types). The performance of the Phase field-
based TSRT highly depends on the structural contrast 
among different rock types.

5. Object-based rock typing can effectively identify the 
boundaries among different rock types but with a limi-
tation that it is just suitable for grain partitionable and 
distinguishable rocks.

6. The results of the image-based rock typing can be used 
to quantitatively evaluate the porosity and permeabil-
ity contributions of each rock type in a heterogeneous 
rock sample with the help of numerical flow simulation. 
When the pore structure texture is determined by a spe-
cial geological process, the IMRT results also can be 
used to reveal the geological genesis of each rock type.

7. Currently, there are four main challenges in the field 
of the image-based microscale rock typing: (1) how to 
classify the rock types with low contrast in terms of pore 
structure; (2) how to reduce the boundary errors between 
different rock types due to the pore structure features 
are always extracted within a window with a given size; 
(3) how to reduce the manual intervention in the rock 
typing; and (4) the sample size of current image-based 
rock typing is constrained to millimeter to core sizes 
owing to the limitations of the imaging devices' field 
of view. Therefore, image-based rock typing serves as 
a complementary method to conventional rock typing 
approaches, rather than a replacement.
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