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Abstract
Integrating petrophysical and geomechanical parameters is an efficient approach to evaluating shale gas reservoir potential. 
The high cost of corings and their limited number, coupled with time-intensive investigation, led researchers to use this 
alternative combination approach. In the Jiaoshiba area, from single-pilot well core data and log measurements, petrophysi-
cal and geomechanical parameters such as shale volume, total organic carbon, gas content, as well as pore pressure, stress 
components, and mineral brittleness were first estimated using established methods. In the second phase, based on logging 
curves, the reservoir electro-facies (EF) classification was performed using the unsupervised multi-resolution graph-based 
clustering method on a series of twenty wells, identifying five EF with different intrinsic characteristics. Unsupervised analy-
ses were developed using the multilayer artificial neural network while incorporating the K-nearest neighbors and graphical 
classification algorithms. The results from the first and second phases indicate reservoir richness in organic matter, with the 
best reservoir exhibited by EF2 and EF3. In addition, effective stress components (SV, SH, and Sh) evaluation shows a nor-
mal stress regime with hydraulic fracture systems perpendicular to the minimum horizontal stress at each measured depth 
of the reservoir (Sv > SH > Sh). This research workflow can efficiently evaluate shale reservoirs with a realistic approach for 
identifying favorable fracturing positions while reducing errors due to human interference.

Keywords Multi-resolution graph-based clustering method · Gas reservoirs classification · Sichuan Basin · Brittleness 
index · Geomechanical parameters

List of symbols

Latin letters
ai  Multinominal coefficient at a given 

temperature
BI  Brittleness index (%)
Dist (x, y)  Euclidian distance between two samples x and 

y
E  Young’s modulus
EE  Eaton exponent (range between 1 and 1.9 for 

old basins)
Gads  Adsorbed gas  (m3/ton)
Gfree  Free gas in pores  (m3/ton)
GRindex  Linear gamma ray (GAPI)

Gtotal  Total gas content  (m3/ton)
KRI  Kernel representative index
LOM  Indicator of organic matter maturity
NI  Neighboring index function
PLT  Initial volume of absorbed gas  (m3)
Pp  Pore pressure (MPa)
pri  Reduced pression coefficient
Rc  Gas constant
s(x)  Sum of the weighted ranks for a given meas-

urement at point x
SH  Horizontal maximum stress (MPa)
Sh  Horizontal minimum stress (MPa)
Sv  Vertical stress (MPa)
Sw  Water saturation (%)
T  Reservoir temperature (K)
TOC  Total organic carbon (%)
V  Pore volume  (m3/g)
VLC  Gas absorbed in the solid adsorbent  (m3)
Vp  Compressional velocity (m/s)
Vs  Shear velocity (m/s)
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Vsh  Shale volume (V/V)
Z  Compressibility factor of methane

Greek letters
α  Biot alpha coefficient (range between 0.3 and 

0.8)
Ɛ  Strain factor
ɸeff  Effective porosity (%)
β  Geomechanical constant (β = 106)
Δ  Difference between two parameters
μ  Poisson’s ratio
ρ  Density (g/cm3)
υ  Coefficient relative to Poisson’s ratio

Abbreviations
AC  Acoustic log
ANN  Artificial neural network
CAL  Caliper log
CNL  Neutron porosity log
DEN  Density log
DT  Sonic log
ECS  Elemental capture spectroscopy
GR  Gamma-ray log
KNN  The K-nearest neighbor
LLD  Deep resistivity log
LLS  Shallow resistivity log
MRGC   Mult-resolution graph-based clustering
NMR  Nuclear magnetic resonance
SOM  Self-organizing map
SP  Spontaneous potential log

Introduction

In recent years, shale gas development activities have 
expanded from North America to the rest of the world, 
mainly because of the continued increase in social demand 
for clean energy, a better understanding of unconventional 
gas resource accumulation conditions, the rising price of 
natural gas, and the continuous advancement of drilling 
technology (Ou et al. 2018; Gou et al. 2021). Shale gas has 
emerged as an important unconventional natural resource 
and represents a new bright spot for the oil and gas indus-
tries. According to the composition and distribution of 
China’s global resources, the estimated reserves of shale 
gas are equivalent to conventional gas resources. Moreover, 
multiple exploration projects were conducted, especially in 
the Sichuan Basin from the north to the south, resulting in 
two phases of gas production in this area (Chen et al. 2018). 
However, systematic techniques are required to increase 
the efficacity of exploration and production in order to sat-
isfy the continued demands of the market (Sakhaee-Pour 
and Bryant 2012; Hu et al. 2018). Consequently, different 
workflows for integrating petrophysical and geomechanical 

parameters are essential for an accurate reservoir evaluation. 
The development of a model that combines the petrophysi-
cal and geomechanical characteristics of shale rock has a 
significant impact on engineering applications, such as gas 
reserve evaluation, rock properties determination, and field 
development (Alipour et al. 2021; Song et al. 2023).

Many research works combining petrophysical and 
geomechanical data on distinct segments of China recov-
erable shale gas resources were conducted using different 
methods to characterize reservoirs (Dong et al. 2018; Zheng 
et al. 2018; Jia et al. 2021; Nie et al. 2021; Xiong et al. 
2022). These studies indicated that petrophysical charac-
teristics, essentially shale volume (Vsh), porosity (CNL), 
total organic carbon (TOC), and gas content (Gtotal), can be 
obtained from standard procedures. Vsh is often calculated 
using the linear gamma-ray shale volume expression, while 
porosity is commonly estimated using basic logging data 
such as formation resistivity (LLD), sonic (DT), acous-
tic (AC), density (DEN), and nuclear magnetic resonance 
(NMR) or by cross-plots of DT, DEN, and CNL logs. TOC, 
which corresponds to the organic richness of the rock, is 
determined using core testing, wireline logging curves, or 
by combining the two methods (Liu et al. 2020). Zhu et al. 
(2018) used the Passey et al. (1990) method, coupled with 
results from X-ray diffraction (XRD) core analysis and min-
eral models, to estimate organic-rich source rock. Gtotal was 
typically obtained from core data analysis through the ele-
ment capture spectrum (ECS) coupled with the formation 
micro-imager tests (FMI), as the presence of gas in shales 
is in the form of free phase within pores and fractures and 
as gas sorbed onto organic matter (Yu et al. 2018; Alipour 
et al. 2022).

Geomechanical characterization includes pore pres-
sure (Pp), brittleness index (BI), and in situ stress (Sv, SH, 
and Sh), which are critical indicators for shale gas reser-
voir hydraulic fracturing. Different concepts and empirical 
equations were used to evaluate these parameters (Meng 
et al. 2020; Qian et al. 2020; Xia et al. 2022). BI was deter-
mined using a measure of rock energy consumption dur-
ing drilling processes (mechanical approach) or by physical 
measurements of rock properties (mineralogical composi-
tion). The presence of carbonate, feldspar, and quartz is the 
principal brittleness factor of the reservoir rock; typically, 
the presence of carbonate and quartz makes the rock more 
brittle (Mews et al. 2019). The other way to estimate BI 
is in terms of mechanical characteristics, which suggests 
that shale with a lower Poisson’s ratio (μ) associated with a 
high Young’s modulus (E) tends to be more brittle, highly 
susceptible to complex fractures, and easy to break. Pp pre-
diction approaches include the basic Eaton method (Eaton 
1975), which derives pore pressure from compressional 
velocity and acoustic transit time. This approach assumes 
that porosity decreases as a function of depth in most shale 
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gas reservoirs, following a trend depending on the normal 
hydrostatic pressure, fluid pressure, and burial depth, sup-
ported by the Terzaghi effective stress principle (Terzaghi 
et al. 1996). On the other hand, the Bowers approach (Bow-
ers 1995) evaluates reservoir effective stress using overbur-
den pressure data. Previous modeling of Sv, SH, and Sh in the 
Sichuan Basin reveals that most in situ stress works were 
based on well-log interpretations and laboratory measure-
ments (Sakhaee-Pour and Li 2016). The main widely used 
approaches include the finite element and stress polygon 
models, which consider the influence of the geo-structure 
and basin history (Dong et al. 2018; Alipour and Sakhaee-
Pour 2023).

These methods, essentially based on relationships 
between different response parameters (well logs and lab-
oratory measurements), are, in most cases, efficient for a 
specific segment and under certain assumptions. Jiaoshiba 
shale gas field is characterized as a complex system (forma-
tions and tectonic evolution) with challenges to accurately 
evaluate the main reservoir properties (Hu et al. 2018; Gou 
and Xu 2019; Esatyana et al. 2020). Furthermore, these 
parameters vary horizontally and vertically, making deter-
mining their intrinsic characteristics difficult. Therefore, a 
systematic multiparameter integration approach is necessary 
to increase the comprehensiveness of reservoir quality.

The present study aimed to propose a model combining 
petrophysical and geomechanical parameters for a series of 
wells to find the best reservoir quality in the Jiaoshiba shale 
gas field. Firstly, the main petrophysical and geomechanical 
characteristics, including Vsh, TOC, Gtotal, Pp, Sv, SH, Sh, and 
BI, were estimated based on conventional wireline logging 
and core testing results for the pilot well. Secondly, clas-
sify reservoir EF sequences using the unsupervised multi-
resolution graph-based clustering (MRGC) method on the 
set of wells. The unsupervised MRGC method integrates 
the artificial neural network (ANN), K-nearest neighbors 
(KNN), and graphical classification algorithms. The results 
were then correlated and integrated to define and classify the 
reservoir. The proposed approach can be applied to reduce 
some time-intensive conventional processes and is efficient 
for prospect modeling and rock properties characterization.

Geological setting

The Jiaoshiba onshore gas field is on the southeastern mar-
gin of the Sichuan Basin, in Southwest China. The geology 
of this zone is dominated by multiple tectonic movements 
that cause formations to uplift, accompanied by wide and 
steep anticline belts along the northeast direction. This stra-
tum underlies the Hanjiadian and Xiaoheba formations and 
overlies the Jiaocaogou and Baota Ordovician formations 
(Fig. 1a).

During the late Ordovician period, the continental shelf 
environment changed from a deep shelf to a shallow shelf 
in the northeast of the Yangtze area, resulting in the deposi-
tional formation of organic-rich shale with abundant grap-
tolites along the northeast direction (Gou et al. 2021; Nie 
et al. 2021). The Jiaoshiba area environment evolution is 
characterized by a series of northeast-oriented structural 
deformations surmounted by faults and fractures associated 
with two global transgressions developed in the middle 
part. The Wufeng-Longmaxi formations general mineral-
ogy composition is essentially dominated by siliceous and 
black carbonaceous, with a lower proportion of carbonate 
and clay minerals resulting from a series of complex colli-
sions, assemblages, and formations of the Yangtze blocks 
(Chen et al. 2018).

In the regional stratigraphy, the layers include mud-
stones, siltstones, and limestones (Fig. 1b), forming a rich 
organic shale layer that can be classified as a sand-shale 
system (sand with thinly bedded shales) of deep marine shelf 
deposits (Hu et al. 2018; Xiong et al. 2022). Figure 1 pre-
sents the location and the geological description of the pilot 
well, named JY-1X, vertically drilled in the Jiaoshiba gas 
field. This well has a total depth of 2440 m and crosses the 
Wufeng-Longmaxi formations.

Materials and methods

Data description and workflow

The data from the pilot well JY-1X are composed of conven-
tional wireline logs and core testing results of the Wufeng-
Longmaxi for a measured depth range of 2262.3–2372 m, 
and data from this well were used to calibrate the results. 
Core sample interpretations were used to describe the shale 
formation of Wufeng-Longmaxi units. Figure 2 shows an 
image of core samples from each geological sublayer (reser-
voir zones) of the pilot well JY-1X before testing. Core test 
results for the target zone include mineral composition and 
formation pressure tests. Geological data consist of lithology 
interpretation and stratification. A total of nine zones, num-
bered 1#–9#, were identified based on core analysis and log-
ging characteristics. These zones are located between depths 
ranging from 2262.3 to 2372 m, and their thickness varies 
between 1.0 and 21.5 m. Samples numbered from S-01 to 
S-09 correspond to zones 9# to 1# following the sample 
depth (Table 1). In this study, a total of 20 wells with the 
necessary well-logs were used for the electro-facies (EF) 
study. Given the large extension of the research area and 
the practical impossibility of evaluating core data from all 
these drilled wells in the Jiaoshiba area, the present study 
widely used well-log data for this study. Conventional logs, 
essentially porosity (DEN and CNL), resistivity (LLS and 
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LLD), gamma ray (GR), sonic (DT), spontaneous potential 
(SP), and acoustic (AC) logs, were available in most of the 
wells with data that can be considered consistent for this 
study. Compressional velocity (Vp) and shear wave veloc-
ity (Vs) were generated from the inverse of interval travel 
times from sonic and dipole shear logs, respectively. They 
were then correlated with DT, CNL, and GR logs to ensure 
consistency.

Total organic carbon (TOC) was evaluated using LLS, 
LLD, and AC. Horizontal minimum stress (Sh), horizontal 
maximum stress (SH), and vertical stress (Sv) were predicted 
at each depth section after estimating elastic properties from 
log data. DT was used as an indicator of porosity by recording 
the interval transit time for the compressional acoustic wave 
traveling through the formation. The brittleness index (BI) was 
determined by considering CNL, DEN, Vsh, and DEN logging 
curves to generate Poisson’s ratio (μ) and Young’s modulus 
(E). The Eaton–Yale pore pressure (Pp) method and forma-
tion properties were added to account for the Jiaoshiba thin 
shaly-sand effect on reservoir complexity. The multi-resolution 
graph-based clustering method (MRGC) was used to perform 
multiparameter analysis, predict EF, and comprehensively 

evaluate the formation anisotropy of the reservoir. The work-
flow was implemented in Geolog software, and a summary of 
these parameters and steps is presented in Fig. 3.

Petrophysical parameters

The most direct and reliable method to determine TOC is to 
use core data for laboratory measurement. However, due to 
the high cost of coring and the incapacity to obtain continuous 
data for all wells, conventional log curves to calculate TOC 
appear to be a convenient and accessible method. In this study, 
TOC was calculated using the baseline superposition of LLD 
and AC difference of the ΔlogR method (Zhao et al. 2017). 
Details of this approach are given in Eqs. (1), (2), and (3).

(1)ΔlogR = log
R

RBase

+ K ∗
(

Δt − ΔtBase
)

(2)K =
log

(

Rmax∕Rmin

)

Δtmax − Δtmin

Fig. 1  a Location of the Jiaoshiba shale gas field and b Description of the reservoir regional stratigraphy and depositional environment. Modi-
fied from Gou et al. (2021)
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where R is the value of LLD, and ΔlogR is the differentiation 
amplitude of LLD and AC curves, which includes source 
rock characteristics and rock properties. LOM is an indicator 
of organic matter maturity, ranging between 6.0 and 10.5. K 
is Passey’s organic carbon determination coefficient. Δt is 
the variation in acoustic time measurement. ΔtBase and RBase 
are LLD and AC differences in base values.

Knowing that the linear Vsh method tends to overesti-
mate the content of shale in the reservoir (Mkinga et al. 

(3)TOC = (ΔlogR) ∗ 102.297−0.1688∗LOM 2020), Vsh was estimated by computing Clavier equation 
(Clavier et  al. 1971) using GR curve, as described in 
Eq. (4).

where GRindex=
GRlog−GRma

GRsh−GRma

 is the linear Vsh from gamma ray, 
GRlog is gamma-ray reading in every depth of the reservoir, 
GRsh is gamma-ray reading in 100% shale zone, GRma is 
gamma-ray response in the 100% matrix rock, and Vsh is 
shale volume (Clavier et al. 1971; Mkinga et al. 2020).

(4)Vsh = 1.7 −

√

3.38 −
(

GRindex + 0.7
)2

Fig. 2  Core samples from well JY-1X before geomechanical tests. On the gamma-ray log curve (left), sample depths are highlighted with green 
triangles. The representative cores numbered from S-01 to S-09 (right) correspond to sublayers 9# to 1# according to sample depths

Table 1  Reservoir zonation and 
depth shifts of well JY-1X

Gas layer 
number

Zone section (m) Thickness (m) Formation Sample Sample depth (m)

9# 2262.3–2283.8 21.5 Upper Longmaxi S-01 2278.58
8# 2283.8–2301.3 17.5 Lower Longmaxi S-02 2290.37
7# 2301.3–2313.3 12.0 S-03 2303.21
6# 2313.3–2322.7 9.4 S-04 2315.94
5# 2322.7–2332.8 10.1 S-05 2325.36
4# 2332.8–2343 10.2 S-06 2339.67
3# 2343–2356.3 13.3 S-07 2349.71
2# 2356.3–2357.3 1.0 Wufeng formation S-08 2356.60
1# 2357.3–2372 14.7 S-09 2364.25
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Shale gas is naturally trapped within the pores of this 
sedimentary rock, as shale is a fine-grained formation that 
acts as both creator of the gas through the decomposition 
of organic matter (source) and storage material (reservoir). 
Gas content was estimated for the pilot well by combining 
logging and core data, knowing that gas is present and stored 
in pore spaces and cracks in free and adsorbed states (Shen 
et al. 2023) (Eq. 5).

where Gtotal is total gas content  (m3/ton). Gfree and Gads are 
free and adsorbed gases, respectively, in pores. The Lang-
muir isotherm equation was used to determine the volume 
of adsorbed gas (Eq. 6), assuming that gas attaches to the 
shale surface, forming a single layer (Gou and Xu 2019; 
Shen et al. 2023).

where P is reservoir pressure, VLC is gas absorbed in the 
solid adsorbent, and PLT is the initial volume of absorbed 
gas. Gfree is computed using the equation related to effective 
porosity and effective gas saturation (Eqs. 7 and 8), at stand-
ard temperature and pressure (60 °F and 14.7 psi).

where Z is the compressibility factor of methane, related to 
pressure and temperature. ai is the different multinominal 
coefficients at a given temperature. pri is the reduced pres-
sure. ɸeff is effective porosity, Sw is water saturation, Rc 

(5)Gtotal = Gfree + Gads

(6)Gads=
VLC.P

P+PLT

(7)Gfree=
Φeff.V .

(

1 − Sw
)

ZRcT

(8)Z=

n
∑

i=0

aipri

is gas constant, T is reservoir temperature, and V is pore 
volume, respectively.

Geomechanical parameters

Mineral brittleness estimation is an essential characteristic 
in reservoir fracturing operations and can be obtained by 
different methods. In this study, two different approaches 
were used to define the rock BI. The first approach cal-
culates BI using the core data results of brittle mineral 
fractions such as limestone, dolomite, and quartz in the 
total amount of shale. The presence of these particular 
minerals causes shales to become more brittle, and it is 
easier to develop fracture networks during fracturing oper-
ations (Meng et al. 2020; Xia et al. 2022). In contrast, 
more clay causes shales to become more ductile. Rock 
mineral composition was provided by the elements capture 
spectrum (ECS) test combined with the nuclear magnetic 
resonance (NMR) analysis of the whole rock. In this case, 
BI is quartz and carbonate content ratio to the sum of other 
minerals (Eq. 9).

where BI1 is brittleness index obtained from rock mineral 
composition. w(qz) is the content of quartz, w(car) is the 
content of carbonate minerals, w(felds) is the content of 
feldspar, and w(clays) is the content of clay minerals. The 
second BI approach used rock mechanical properties from 
logging curves (Qian et al. 2020). The calculation method is 
the Poisson–Young method, which defines BI based on μ and 
E. Shale is more brittle with high E and low μ (Mews et al. 
2019; Liu et al. 2023). The calculation process is described 
by Eqs. 10–12.

(9)BI1 =
w(qz) + w(car)

w(qz) + w(felds) + w(clay) + w(car)

Fig. 3  Workflow used for the 
study



Journal of Petroleum Exploration and Production Technology 

where ρb is bulk density, Δtp is compressional wave time 
difference (μs/m), Δts  is the shear wave time difference 
(μs/m), and β is a mechanical constant equal to 106. The 
subscripts min and max refer to the minimum and maximum 
values of the considered parameters, respectively. This sec-
ond approach was applied to the other set of wells for the 
EFs classification. The degree of brittleness was evaluated 
according to Perez and Kurt (2013) and Omer et al. (2018) 
classification method. The formations are brittle when BI is 
greater than 48%. Conversely, they are considered less brit-
tle when comprising between 32 and 48%, less ductile when 
varying from 16 to 32%, and ductile between 0 and 16%.

Pore pressure is a crucial part of shale gas reservoir char-
acterization especially for complex systems due to compac-
tion mechanisms, formation–tectonic evolution, and lithol-
ogy variations. As the Jiaoshiba area is part of the Sichuan 
Basin, which is identified as a complex and old basin, the 
Eaton–Yale pore pressure method (Yale et al. 2018) was 
used to reliably estimate pore pressure using logging curves. 
This method extends the Eaton and Bowers methods to more 
lithified and complex basins while correcting overpressure 
zones (Eq. 13).

where Pp is Eaton–Yale pore pressure, Vi is the porosity 
corrected by the measured Vp, OBP is the overburden pres-
sure, Vp is the lithology adjusted by the Vp normal pressure 
trendline, and C is a calibration factor of the basin. α is Biot 
alpha coefficient, which varies between 0.3 and 0.8, Phyd is 
the hydrostatic pressure, and EE is Eaton exponent.

The in situ stress profile, which includes Sv, SH, and Sh, 
was investigated using different approaches. The magnitude 
of Sv was computed by integrating rock density from the 
surface to the bottom of the measured depth profile (Eq. 14).

where ρ(z) is depth-dependent density, ρ is average overbur-
den density, and g is the gravitational acceleration constant. 

(10)� =
1

2
∗

Δt2
s
− 2Δt2

p

Δt2
s
− Δt2

p

(11)E =
�b

Δts
∗

Δts − Δtp

Δts − Δtp
∗ �

(12)
BI2 =

[

100 (E−Emin)
(Emax−Emin)

+
100 (�−�max)
(�min−�max)

]

2

(13)
PP =

[

OBP −
(

OBP − �Phyd

)

∗ C ∗
(

Vi

Vp

)EE
]

�

(14)SV = ∫
z

0

�(z)gdz ≈ ρgz

SH and Sh were computed using the poroelastic theory. The 
poroelastic theory is effective in reservoir elastic matrix, 
where variations in reservoir are caused by stress deforma-
tion (Gou et al. 2021). The Jiaoshiba area results from tec-
tonic plate movement, which causes tectonic strain and stress 
within the reservoir, resulting in increased strain and stress 
components in the rock (Nie et al. 2021). Therefore, SH 
and Sh were generated from the relationship between Biot’s 
parameter, overburden stress, pore pressure, and Poisson’s 
ratio (Zoback et al. 2003) (Eqs. 15 and 16).

where Ɛ is the strain factor, α is Biot’s coefficient (was 
set to 1), and υ is a coefficient relative to Poisson’s ratio. 
E is Young’s modulus, and Pp is pore pressure from the 
Eaton–Yale method.

Clustering implementation

EF classification is an essential component in the identifica-
tion and characterization of shale reservoirs. Its application 
contributes to prospect modeling and permits the bypass of 
some time-consuming stages of unconventional reservoir 
characterization techniques (Al Hasan et al. 2023). The 
clustering algorithm recognizes different groups (clusters) 
of identical properties in a large set of data and attempts to 
increase the similarity within each cluster while reducing it 
between different clusters. However, conventional clustering 
algorithms suffer from essentially three limitations. Firstly, 
they are very sensitive to the quality and quantity of initial 
data. Secondly, they give approximative results when the 
data are not homogeneous or contain inconsistent values. 
Third, the number of clusters to be differentiated must be 
known before the start of the computation process (Dos Pas-
sos et al. 2020). MRGC was proven to be free of these limi-
tations and better than the conventional clustering method. 
As a modern clustering method, MRGC is an unsupervised, 
nonparametric approach that uses an artificial neural net-
work (ANN). The unsupervised algorithm incorporates the 
K-nearest neighbors (KNN) and graphical classification 
techniques following a precise computation order process. 
Typically, the MRGC facies classification and modeling 
use data distribution density and search space dimensions 
to identify the number of EF.

In this study, petrophysical parameters (GR and TOC) 
and geomechanical characteristics (BI2, Sv, SH, and Sh) 
were selected for the set of wells to classify the reservoir 
using MRGC. These parameters account for key reservoir 

(15)Sh =
�

1 − �

(

Sv − �Pp

)

+ �Pp +
E�

1 − �2

(16)SH =
�

1 − �

(

Sv − �Pp

)

+ �Pp +
E�

1 − �2
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Fig. 4  Histograms showing a mineral content and b clay mineral composition in well JY-1X

Table 2  Results of the quantitative minerals analysis

Layer number Zone section meter (m) Siliceous (%) Clay (%) Carbonates (%) Pyrite (%) TOC (%) Gtotal  (m3/ton)

9# 2262.3–2283.8 55.0 42.1 2.6 0.2 1.1 1.0
8# 2283.8–2301.3 44.3 44.4 9.4 1.8 1.8 2.59
7# 2301.3–2313.3 39.9 48.3 10.7 1.1 1.7 2.29
6# 2313.3–2322.7 40.0 48.8 10.2 1.0 1.7 2.09
5# 2322.7–2332.8 36.7 52.1 9.3 2.0 2.4 3.53
4# 2332.8–2343 31.4 52.9 13.7 2.1 2.4 3.26
3# 2343–2356.3 20.7 66.5 9.8 3.1 3.5 5.0
2# 2356.3–2357.3 14.6 68.5 12.3 4.6 4.7 6.97
1# 2357.3–2372 19.7 69.7 8.1 2.4 3.6 5.67

Fig. 5  Conventional logs curves 
distribution of well JY-1X 
before a and after b standardiza-
tion process
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attributes and can be totally obtained using logging data. 
Additionally, it can be remarked that the integration of 
these parameters can reliably evaluate reservoir sequence 
and cluster behaviors. The method was computed using 
the face image module of Geolog 20.0, and the algorithm 
can be summarized essentially in five steps with different 
corresponding mathematical relationships.

(1) Using logging input data, the neighbor index (NI) is 
calculated, helping to estimate the connection between 
similarity measures (graph construction). The Euclid-
ean distance between two samples x and y is defined by 
Eq. (17), while the NI calculation for a given measure-
ment point x is presented below (Eq. 18):

(2) Using a hierarchical clustering algorithm, the KNN 
attractions are generated based on the calculated NI 
values in the first step (graph partitioning):

(3) Calculate the kernel representative index (KRI) neces-
sary for generating a confident range in the determina-
tion of the number of clusters. The KRI integrates NI(x) 
with both a neighborhood function (M) and a distance 
function (D). The subgraphs are successively refined by 
recursively applying graph partitioning until the desired 
level of resolution is reached (clustering at multiple 
resolutions):

(17)Dist (x,y) =

√

√

√

√

N
∑

i=1

(xi − yi)
2

(18)s(x) =

N=1
∑

n=1

exp( − m∕a)

(19)Smax=Max
i=1,N

{

S
(

xi
)}

(20)Smin=Min
i=1,N

{

S
(

xi
)}

(21)NI(x) =
S(x) − Smin

Smax − Smin

(4) Merging those initial small groups to form final clus-
ters based on the nearest neighbors’ attraction power. 
Clusters are identified based on the final partitioned 
subgraphs. Different clustering criteria, such as modu-
larity or conductance, are used to define and evaluate 
the quality of the resulting clusters (cluster identifica-
tion);

(5) Final distribution of the new data is accomplished, and 
clusters are analyzed by applying a multi-resolution 
approach to classify the reservoir. Geological charac-
teristics and formation delimitations of the reservoir 
were considered during the MRGC process to minimize 
errors.

Results and discussion

Mineral comprehensive evaluation

Mineral composition results from ECS and NMR tests 
(Fig. 4) show that shale composition of the pilot well JY-1X 
is heterogeneous, with four different groups of minerals in 
different proportions (Fig. 4a). The principal identified min-
erals are siliceous minerals, essentially quartz and feldspar, 
with an average mass percentage relatively high; carbonate 
minerals (calcite, dolomite, and limestone); clay content 
(illite, chlorite, and kaolinite); and sulfide mineral (pyrite). 
This depth-based mineralogical composition sequence var-
iation suggests substitutions in shale structure within the 
reservoir with new pore occupations during the burial pro-
cess and therefore reflects the basin complexity (Omer et al. 
2018). TOC content from cores has an average of 2.5%, and 
shale gas quality of layers 1#–5# can be considered relatively 
good, with TOC superior to 2%. Gtotal has a range of aver-
age values that are relatively low, between 1 and 6.97  m3/
ton, with highest values in the deep zones of the well. This 
observation was expected as old sediments under physico-
chemical factors tend to generate more organic matter than 
relatively young layers (normal diagenesis process). Miner-
als, Gtotal, and their equivalent proportions are presented in 
Table 2. Figure 4b indicates that the clay in these samples 

(22)KRI(x) = NI(x) ×M × D

Table 3  Statistics of the main 
conventional logging parameters 
of well JY-1X

GR (GAPI) DEN (g/cm3) DT (μs/m) CNL (V/V) LLD (Ohm.m) LLS (Ohm.m)

Minimum 31.99 2.41 51.65 0.63 5.40 5.32
P10 90.78 2.54 59.54 4.88 15.80 14.95
Mean 166.12 2.63 75.21 14.00 173.33 164.74
P90 208.42 2.71 84.43 20.97 573.58 537.22
Maximum 279.24 2.79 90.72 29.07 2829.73 2614.25
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mainly contains illite, with an average percentage of 65%. 
Chlorite and kaolinite average contents are 12.3 and 13.9%, 
respectively, while the mixtures of illite and smectite have 
a proportion of 8.8%.

Main reservoir properties

The modeling curves were selected from pilot well JY-1X, 
which include Vs, DEN, CNL, Vsh, LLD, and Vp, as presented 

in Fig. 5. To eliminate the dimensional error between dif-
ferent modeling curves, the curves were standardized before 
modeling. The ANN method was used to fit the conven-
tional logging curves of the pilot well, and the model was 
applied to other wells. ANN is a common neural network 
modeling technique for classification and recognition (Dixit 
et al. 2020). The method has three layers: input, hidden, 
and output, and it exhibits a multilayer feed-forward net-
work trained via error backpropagation (Zhao et al. 2022). 

Fig. 6  Display of the main logging attributes of well JY-1X
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Therefore, Fig. 5a displays curves before standardization 
(original curve distributions), and Fig. 5b displays the results 
of the standardization process.

The statistical results of conventional logs are presented 
in Table 3 in terms of minimum, mean, percentiles (P10 and 
P90), and maximum. Logging responses show that the skel-
etal formation density is about 2.63 g/cm3. Additionally, the 
measured density in well JY-1X is relatively smaller in the 
lower section of Longmaxi and upper section of Wufeng for-
mations (2320–2360 m), which is a sign of rich organic shale 
presence. Higher LLD values were obtained in the deepest 
zones, with average values ranging from a few and several 
tens of ohm-meters to more than five hundred ohm-meters.

Figure 6 presents a summary of conventional logging 
curves for well JY-1X. From the left of the plot, parameters Fig. 7  Correlation between Gtotal and TOC 

Fig. 8  Different cross-plots results. a Vs versus Vsh, b Vs versus CNL, c Vs versus Vp, and d Vs versus DEN of well JY-1X
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in track 1 are SP, CAL, and GR logs. Tracks 4 and 5 present 
DT, CNL, DEN, LLD, and LLS. The relatively low mean 
GR values are associated with the deep and semideep shale 
sedimentary environment, which generates a low number of 
absorbed radioactive substances. CNL values indicate high 
values of neutrons in the reservoir due to the fine-grained 
reservoir composition. Moreover, due to the high bound 
water content, neutrons in the reservoir quickly attenuate, 
resulting in these high CNL curve responses. Track 6 illus-
trates the superposition of LLD and DT curves, which indi-
cate the presence of clay minerals and organic matter. Track 
7 shows the superposition of LLD and DEN curves, which 
suggests the presence of light minerals and low conductiv-
ity of organic matter. Track 8 displays the combination of 
LLD and CNL, confirming the organic matter richness of the 
reservoir. Therefore, this approach based on logging curves 
characteristic responses can be extended to other wells to 
qualitatively identify the reservoir.

Figure 7 presents the intersection of Gtotal and TOC. The 
positive correlation between the two parameters is high 
 (R2 = 0.783) and suggests that organic matter plays a sig-
nificant role in controlling the reservoir gas content. The 
regression shows that Gtotal increases by an average of 2.962 
 m3/ton for each additional increase in TOC percentage. Fur-
thermore, it shows that older layers are rich in organic matter 
and generate more gas than younger layers, which reveals 
a normal sediments depositional environment in this sec-
tion. Figure 8 compares the correlations between Vsh, DEN, 
CNL, and Vp versus Vs and identifies two trends. The nega-
tive linear correlation of Vs versus CNL and DEN indicates 
a change in shale structure (substitutions) and the apparition 
of new minerals such as mica, siderite, anatase, and different 
crystallites into the pores (Sakhaee-Pour and Bryant 2015; 
Gou et al. 2019). On the other hand, the positive correlation 

of Vs versus Vsh and Vp indicates a proportional shale distri-
bution horizontally and vertically in the reservoir.

The main geomechanical properties results, which 
include the brittleness index and anisotropy component of 
well JY-1X, are presented in Table 4 and Fig. 9. BI values for 
both methods mainly increase with depth and exhibit brittle 
shales. Only BI2 of formation layers 6# and 9# can be con-
sidered less brittle. The other seven layers are brittle, with 
average values varying between 48 and 70.50%. BI1 values 
are higher than BI2, with variations of ± 10% in the zones. 
Thus, gas in the high brittle layers of the reservoir can be 
considered highly compressible and susceptible to hydraulic 
fracturing. The increase in SH, Sh, and Sv is non-uniform with 
depth, and the relationship is nonlinear due to reservoir het-
erogeneity and complexity. However, Sv > SH > Sh suggests 
a normal stress regime with fault systems essentially ori-
ented NWW (main deformation direction) at each reservoir 
depth. Pp ranged between 30.35 and 33.96 MPa, averaging 
32.66 MPa. The earth pressure coefficient, defined as the 
ratio of horizontal and vertical effective stresses in the res-
ervoir, is relatively high for most zones. Values range from 
0.10 to 0.39, except zone 2#. These values reflect the natural 
stability of this well reservoir and can be used as a basis for 
evaluating the other wells during the reservoir development 
phase. Figure 9 summarizes the logging curves of geome-
chanical parameters. Track 4 contains Vp and Vs. Fracture 
pressure gradients, E and μ, are presented in track 5. Track 
6 displays Pp from Eaton–Yale method and rupture pressure 
curves. Sh, SH, SV, and the horizontal stress difference are 
illustrated in track 7, while BI2 is presented in track 8.

Electro‑facies analysis

Facies classification and modeling were performed on 
the set of wells based on GR, TOC, BI2, Sv, SH, and Sh. 

Table 4  Average rock mechanical properties in well JY-1X

Layer umber SH (MPa) Sh (MPa) SV (MPa) Pp (MPa) SH–Sh
(MPa)

SV–Pp (MPa) (SH–Sh)/
(SV – Pp)

E (MPa) μ (MPa) Brittleness (%)

BI1 BI2

9# 50.17 48.62 55.52 32.33 1.55 23.19 0.06 28.16 0.29 50.25 42.12
8# 50.34 47.62 53.68 33.45 2.72 20.23 0.13 25.63 0.40 55.45 48.56
7# 48.11 42.23 49.25 33.95 5.88 15.3 0.38 33.23 0.36 65.50 53.69
6# 46.31 40.62 51.74 32.63 5.69 19.11 0.29 31.26 0.28 59.47 47.32
5# 47.33 43.46 50.17 30.35 3.87 19.82 0.19 25.4 0.19 60.25 52.33
4# 49.07 46.99 53.68 33.96 2.08 19.72 0.10 27.4 0.29 69.45 59.3
3# 50.25 45.02 51.09 32.04 5.23 19.05 0.23 30.5 0.32 69.50 58.96
2# 48.26 41.23 51.13 33.22 7.03 17.91 0.39 24.7 0.29 59.20 48.96
1# 48.63 46.02 52.32 32.05 2.61 20.27 0.12 32.6 0.29 70.50 56.99
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Figure 10 illustrates the distribution characteristics of 
these parameters before and after the standardization 
process. It can be observed that the raw values of these 
six curves were dimensionally dispersed, especially for 
the computed stress curves. Standardization eliminated 
these curve errors caused by the dimensional differences 
while removing eventual outliers within the logs. After the 
merging process and based on the final cluster weights, 

five main EFs were identified with the clustering sequence 
of the six parameters. The corresponding histograms from 
the normalized self-organizing map (SOM) of each param-
eter (Fig. 11) indicate a homogeneous shale sequence with 
the five EFs and a relatively good clustering effect. From 
the cross-plots and reports in Fig. 11, it can be observed 
that EF2 and EF3 provide the best reservoir quality with 
characteristics similar to the lower Longmaxi formation 

Fig. 9  Results of rock geomechanical properties for well JY-1X
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(see Tables 1, 2 and 3). On the other hand, EF4 and EF5 
show characteristics that suggest a medium reservoir 
quality, with similar features associated with the upper 
Longmaxi formation. The worst reservoir can be associ-
ated with EF1 in the deepest depths of the well (Wufeng 
formation).

Figure 12 displays the distribution of the obtained EFs 
within the well JY-1X. GR and TOC are presented in track 
2, while Sv and BI2 are displayed in tracks 3 and 4. Track 
5 contains SH and Sh, whereas EFs by MRGC and reser-
voir classification results are indicated in track 6. Figure 13 
shows box diagrams that give the final description of the 
EFs distributions of the set of wells. This interpretation is 
based on the integration of their different characteristics cor-
related with the pilot well JY-1X. Therefore, EF2 and EF3, 
identified in the lower Longmaxi unit, are characterized by 
medium GR response values and relatively high mean values 
of TOC coupled with high quantities of brittle (Table 5). 
Furthermore, the mean values of SV, SH, and Sh vary between 
43.89 and 53.96 MPa, suggesting favorable reservoir sec-
tions. The medium-quality reservoir in the upper Longmaxi 
section with EF4 and EF5 is characterized by medium brit-
tle minerals with GR values of 185.98 and 193.44 GAPI, 
respectively. SV and SH mean values vary between 38.63 and 
45.04 MPa, while TOC is 2.92% and 2.10%, respectively, 
for EF3 and EF4. EF1 has the worst reservoir quality due to 
its high GR responses, which reach more than 200 GAPI, 
low TOC (less than 1.50%), and less brittle minerals (about 
44.56%). Table 5 summarizes these statistical results of the 
clustering and EFs parameters corresponding values in terms 
of mean values.  

Implications for reservoir development

The main purpose of reservoir characterization is to provide 
a basis for hydraulic fracturing operations and reservoir sim-
ulation models (Omer et al. 2018). Additionally, identifying 
brittle zones is essential in fracture design to evaluate frac-
ture barriers that control vertical development. Therefore, 
accurate BI is crucial in these processes, knowing that this 
parameter is subject to uncertainties. BI was evaluated in 
well JY-1X using two methods (BI1 and BI2), and Fig. 14 
presents their intersection results. Though the correlation 
coefficient is relatively high  (R2 = 0.723), two trends can be 
identified in this reservoir section. A trend with a perfect 
correlation between the two estimated BI methods (layers 4#, 
6#, and 9#). Homogenous mineralogy and physicochemical 
parameter variations could explain this, as sediment remains 
compact in these zones (Liu et al. 2020). The second trend, 
where the two types of BI are not perfectly correlated, is 
dominant and includes reservoir layers 1#, 2#, 3#, 5#, 7#, 
and 8#. This difference can be explained by variations in 
BI evaluation based on mineral composition because this 
approach only depends on rock mineral composition and 
does not consider the interaction between internal factors 
in the reservoir, such as mineral replacement, dissolution 
or overgrowth, and the impact of confining pressure mecha-
nisms (Mews et al. 2019; Meng et al. 2020). Furthermore, BI 
determination approach based on elastic parameters major 
limitation is that many of the formulas and techniques used 
are only applicable and effective in certain cases, which 
limits their applicability and efficiency (Qian et al. 2020). 
Therefore, as this study reduced the difference between the 

Fig. 10  Logs data distribution 
before a and after b the stand-
ardization process
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two BI methods by including external petrophysics param-
eters, it suggested using the appropriate method based on 
the case.

As related in the literature (Hu et al. 2018; Gou et al. 
2021; Xiong et al. 2022), development studies on the Jia-
oshiba area are still in the early exploration stages with 
unsolved problems. Therefore, the proposed workflow can 
be used to identify barriers and potential favorable lay-
ers for fractures. Hydraulic cracks are extended perpen-
dicular to the least principal stress, particularly in deep 
formations, due to significant overburden stress in the 

reservoir. Thus, Sh is the least principal stress and can 
be considered, in this case, to be critical for pre-fracture 
stimulation (Zoback et al. 2003; Alessa et al. 2022). How-
ever, this approach is limited because Sh can mainly be 
extended laterally, causing difficulty in developing a sys-
tem for gas recovery (Hakiki and Shidqi 2018; Esatyana 
et al. 2021). This study categorized shale into brittle and 
less brittle types with relatively favorable petrophysi-
cal characteristics. Therefore, parameters such as rock 
brittleness and shale porosity integrated into the model 
ensure its efficiency and reliability. Figure 15 illustrates 

Fig. 11  SOM classification and derived EF histograms based on standardized data from GR, TOC, BI2, Sv, SH, and Sh
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a correlation between brittleness index, mineralogy, and 
other petrophysical and geomechanical characteristics. A 
strong lateral correlation is observed between Sh, EFs, BI, 
and potential fracture zones. There are many blue-colored 

layers, considered favorable for fracturing because their 
organic richness and total porosity are also relatively high, 
while there are certain visible fracture barriers that are 
black in color, possibly representing fracture attenuators. 

Fig. 12  EFs classification of shale sequence in well JY-1X
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This approach, which combines these parameters, could be 
further developed and completed with reservoir simulation 
tests during the reservoir development phase. Formation 
porosity and shale porosity are, respectively, presented in 
tracks 3 and 4. Tracks 11 and 12 contain mineral com-
position, favorable fracture zones, and barriers. Fracture 
characteristics were computed and extracted from the 
integration of stress parameters, mineral brittleness, and 
petrophysical properties.

Conclusions

In this study, an approach that combines the main petro-
physical and geomechanical properties was developed for 
shale gas reservoir evaluation and electro-facies (EF) clas-
sification. Parameters, including shale volume (Vsh), total 
organic carbon (TOC), brittleness index (BI), and stress 
components (Sv, SH, and Sh), were estimated using wireline 
logs in a series of wells. Reservoir classification was investi-
gated through cluster analysis using the nonparametric unsu-
pervised multi-resolution graph-based clustering (MRGC) 
method, which uses the artificial neural network (ANN). The 
approach combines K-nearest neighbors (KNN) and graphi-
cal algorithms for reservoir evaluation. The unsupervised 
method provided clusters with mathematical limits while 
removing the subjectivity associated with manual interpreta-
tions. Output clusters were differentiated according to their 
intrinsic properties, which are associated with the reservoir 
characteristics. Based on the results, the following conclu-
sions were reached:

• Petrophysical and geomechanical characteristics of the 
pilot well JY-1X were extracted to provide a basis for the 
correlation and integration of the series of wells. Nec-
essary corrections were made to the raw logging data 

Fig. 13  Boxplot showing the summary characteristics of the reservoir

Table 5  Reservoir EFs statistics 
from MRGC 

Facies Weight GR (GAPI) TOC (%) BI2 (%) Sh (MPa) SH (MPa) Sv (MPa)

EF1 137 207.25 1.26 44.56 29.20 31.29 32.59
EF2 936 162.12 3.63 66.52 46.89 50.29 51.32
EF3 798 150.80 4.56 69.96 43.89 51.89 53.96
EF4 298 185.98 2.92 62.36 38.63 39.08 40.98
EF5 359 193.44 2.10 50.36 41.36 43.78 45.04

Fig. 14  Cross-plot of measured and calculated BI 
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for the set of wells to eliminate curve errors caused by 
dimensional differences and remove outliers for each log.

• TOC values of the reservoir range between 1.1 and 4.7%, 
with an average value of 2.54%. Sv, SH, and Sh evaluations 
indicate a normal stress regime with hydraulic fracture 
systems that are perpendicular to the minimum horizon-
tal stress component at each measured depth of the res-
ervoir (Sv > SH > Sh). The Eaton–Yale method, correcting 
overpressure and considering basin history, was used to 
determine pore pressure, with values ranging from 30.35 
to 33.96 MPa.

• BI results were classified as brittle (conducive to frac-
tures) and less brittle, depending on the layer. Carbonates 

and quartz are considered brittle minerals in this reser-
voir, while clay minerals are the most ductile minerals.

• The clustering process by MRGC after the merging pro-
cess and the final cluster weight properties identified 5 
EFs, with results correlated to the pilot well interpreta-
tions. EF2 and EF3 displayed the best reservoir quality 
with medium gamma-ray (GR) values, high TOC coupled 
with high BI and CNL. EF4 and EF5 were characterized 
as medium reservoir quality with relatively high GR and 
medium CNL readings. EF1 showed the worst reservoir 
quality due to its high GR (about 207.25 GAPI), low 
TOC (less than 1.50%), and less BI (about 44.56%).

Fig. 15  Integrated model for identifying potential favorable zones and fracture barriers in well JY-1X
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• The research findings represent significant time-saving 
and low-cost analysis in the interpretation of a large set 
of data. The combined results of rock BI characteristics 
with SV, SH, Sh and petrophysical properties can be used 
as the basis for reservoir simulation and hydraulic fractur-
ing processes. Further studies can extend the developed 
approach by including additional reservoir characteristics 
such as capillary pressure and relative permeability.
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