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Abstract
Acoustic impedance is the product of the density of a material and the speed at which an acoustic wave travels through it. 
Understanding this relationship is essential because low acoustic impedance values are closely associated with high porosity, 
facilitating the accumulation of more hydrocarbons. In this study, we estimate the acoustic impedance based on nine different 
inputs of seismic attributes in addition to depth and two-way travel time using three supervised machine learning models, 
namely extra tree regression (ETR), random forest regression, and a multilayer perceptron regression algorithm using the 
scikit-learn library. Our results show that the R2 of multilayer perceptron regression is 0.85, which is close to what has been 
reported in recent studies. However, the ETR method outperformed those reported in the literature in terms of the mean 
absolute error, mean squared error, and root-mean-squared error. The novelty of this study lies in achieving more accurate 
predictions of acoustic impedance for exploration.
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List of symbols

Latin letters
B  N_estimator, the number of decision 

trees in the forest
f(x) = max(0,x)  ReLu function
fb(x

)

  The predicted target variable for the input 
data point x by the bth decision tree in 
the random forest

whj  Weights between the first and middle or 
hidden layer

xo = + 1  Bias of the first layer
X = xj; j=1→d  Features of the first layer
yi  Output
ŷ  Predicted target variable for the input 

data point x
Z = zj; j=1→d  Features of the middle layer

Greek letters
η  Learning rate, which is set to a value 

greater than zero
vih  Weights between the middle and upper or 

output layer
Δv

h
  Incremental weight between the hidden 

and output layers
Δw

hj  Incremental weight between the first and 
hidden layers

Abbreviations
AI  Acoustic impedance
ANN  Artificial neural network
MLPR  Multilayer perceptron regression
RFR  Random forest regression
ETR  Extra tree regression
MAE  Mean absolute error
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MSE  Mean squared error
RMSE  Root-mean-squared error
ReLu  Rectified linear unit

Introduction

The best definition of acoustic impedance is given in medi-
cal physics (Suzuki et al. 2019). They defined it as the resist-
ance to the propagation of ultrasound waves through tis-
sues. In parallel, the Earth’s layers can be likened to these 
biological tissues. The acoustic impedance is derived within 
each layer by multiplying the density of the material by its 
acoustic velocity (g/cm3 × m/s). Based on the lithology of 
the layer, it is understood that porosity is typically high in 
sand and low in shale. An increase in acoustic impedance 
implies a decrease in porosity (Agbadze et al. 2022). Since 
low acoustic impedance and high porosity are conducive to 
accumulating additional hydrocarbons in each layer, sands 
are more likely than shales to accumulate hydrocarbons (Ali 
and Al-Shuhail 2018). Recognizing this, there is a grow-
ing emphasis on developing methods to determine acoustic 
impedance as an intrinsic property of rock layers. Current 
research methodologies for estimating acoustic impedance 
can be broadly categorized into nonmachine learning-based 
and machine learning (ML)-based techniques. Some exam-
ples of nonmachine learning-based methods include direct, 
iterative, and nonlinear inversion methods (Liu et al. 2018).

A review of the latest ML techniques for acous-
tic impedance estimation was conducted by Zeng et al. 
(2021). They introduced new ML methods to predict res-
ervoir parameters using both post- and prestack seismic 
attributes. Hampson et al. (2001) utilized multiattribute 
transforms and neural networks to predict log characteris-
tics from seismic data. Cracknell and Reading (2013) ana-
lyzed aircraft and satellite data using random forest (RF) 
and support vector machines to identify lithologic contact 
zones. Harris and Grunsky (2015) employed geophysical 
and geochemical data to predict lithology using RF. Zhang 
et al. (2018) conducted an experiment using deep neural 
networks and convolutional neural networks (CNNs) to 
predict seismic lithology. Biswas et al. (2019) and Das and 
Mukerji (2020) advocated for pre- and poststack seismic 
inversion using CNNs. Priezzhev et al. (2019) compared 
various machine learning-supported regression models, 
including random forest, nearest neighbor, neural network, 
and adaptive classifier-ensemble models. According to a 
recent review by Zeng et al. (2021), the random forest 
method is deemed one of the most effective methods for 
addressing highly nonlinear problems. Our research aims 
to explore the methodology proposed by Mardani, which 
employs multilayer neural backpropagation to estimate 
acoustic impedance using six distinct seismic attribute 

inputs: amplitude, second derivatives, trace gradient, 
quadrature amplitude, instantaneous frequency, and gra-
dient magnitude (Mardani and Thrust 2020).

This study aims to estimate acoustic impedance with 
enhanced well log resolution using various machine learning 
methods. These methods leverage extended inputs of seismic 
attributes to achieve greater accuracy. Several techniques 
can assess the accuracy of our predictions, with one notable 
approach being the coefficient of determination (R2) values. 
This research aims to achieve R2 values near one, signifying 
that our predictions closely align with the actual acoustic 
impedance values. To meet these objectives, we face sev-
eral challenges: How can we determine the acoustic imped-
ance on a continuous well log scale using seismic attribute 
inputs that differ from those reported earlier in the literature? 
For instance, how does the extra trees regressor algorithm 
compare to the random forest and the multilayer perceptron 
regression algorithm? Moreover, how can we effectively 
apply these methods to real-world data for interpretation?

Methodology

This study primarily explored the application of machine 
learning in predicting acoustic impedance, contrasting it 
with the conventional band-limited impedance (BLIMP) 
inversion method. The groundwork data for the tradi-
tional and ML approaches were described in a prior paper 
(Mardani and Thrust 2020). In our study, we utilized BLIMP 
acoustic impedance solely for comparative analysis.

The implementation of acoustic impedance based on 
recursive inversion using poststack time-migrated seismic 
data and well logs results in a band-limited inversion. This 
inversion has a surface seismic frequency ranging from 
approximately 10–50 Hz (Mardani and Thrust 2020; Rus-
sell 1988).

Machine learning methods

Machine learning methods are utilized through the scikit-
learn 1.2.1 library (Pedregosa et al. 2011). In regard to 
training and prediction, the input consists of depth, two-way 
travel time, and various seismic attributes. These attributes 
encompass amplitudes, their integrals, trace gradients, quad-
rature amplitudes, second derivatives, gradient magnitudes, 
instantaneous frequencies, phases, and cosine phases. The 
primary target for these procedures is the well log acoustic 
impedance, commonly referred to as the true AI. The output 
generated is the predicted acoustic impedance at the well 
log resolution.
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Algorithms

In this study, three models were employed: multilayer 
perceptron regression (MLPR), random forest regression 
(RFR), and extra tree regression (ETR). A brief descrip-
tion of each is given below.

Multilayer perceptron regression (MLPR) The multilayer 
perceptron (MLP) is encapsulated within the MLPRegres-
sor class, which employs a backpropagation-trained multi-
layer perceptron. Given that the output consists of a series 
of continuous numbers, the square error serves as the loss 
function (Pedregosa et  al. 2011). Broadly speaking, the 
inherent specifications of the MLPR function include a 
hidden layer size of 100, the rectified linear unit (ReLU) 
activation function (which outputs the input directly if it is 
positive and zero if it is negative), the Adam optimizer for 
optimization, an autobatch size, a constant learning rate, 
and a maximum iteration count of 1000, among others.

(1)

Random forest regression (RFR) A random forest operates as a meta-estimator aggregating numerous decision trees, each 
trained on various subsamples of datasets. This aggregation aims to enhance the prediction accuracy and curtail overfitting 

(Pedregosa et al. 2011). The built-in function encompasses 
several estimators set at 100 and employs the squared error 
as its criterion, among other features.

Step-by-step mathematical derivation of random forest 
regression using scikit-learn (Pedregosa et al. 2011):

(2)ŷ =
1

B

B
∑

b=1

fb(x)

Initialize max_depth as the maximum depth of each tree 
and n_estimators as the number of trees in the forest.
For every forest tree, create a new dataset by randomly 
selecting a portion of the training data (with replace-
ment), choose a subset of the features at random to con-
sider while dividing each tree node, and build a decision 
tree using the new dataset and selected characteristics, 
with a maximum depth of max_depth.
To predict a new data point, each tree in the forest was 
predicted, and the predictions were averaged to obtain 
the final prediction.

The mathematical formulation for the random forest algo-
rithm, as outlined by Pedregosa et al. (2011), is as follows:

1. Initialization

• n_estimators: This represents the number of trees in the 
forest.

• max_depth: This denotes the maximum depth of each 
decision tree.

2. For each tree in the forest
a. Dataset creation

• Let D be the original dataset containing N samples.
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• D′, a new dataset of size N′ (where N′ ≤ N), is constructed 
by randomly selecting N′ samples from D with replace-
ment.

b. Feature Selection.

• Let n be the total number of features in the dataset.
• Here, n′ is defined as the number of features to consider 

when splitting each node in the tree, ensuring that n′ ≤ n.
• Let F represent the set of all features in the dataset.
• F′, a new set of features, is constructed by randomly 

selecting n′ features from F without replacement.

c. Decision Tree Construction.

• A decision tree, denoted as T, is built using dataset D′ 
and feature set F′, ensuring that it does not exceed the 
specified maximum depth.

Fig. 1  Comparison between 
BLIMP (nonmachine learning) 
and machine learning methods 
for estimating the acoustic 
impedance (Maurya and Singh 
2018, 2019; Mardani and Thrust 
2020)

Fig. 2  Inputs and outputs for the 
ML models

yi

ih

zh

whj

xj xdx0 = +1

Z0 = +1

Fig. 3  Graphical illustration of the multilayer perceptron regression 
algorithm (Petre 2021)
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 4. Prediction for a New Data Point:
 5a. Individual Tree Predictions:

• Let T1, T2…., and Tn be the n decision trees in the forest.
• For a new data point x to be predicted, let yi be the pre-

diction made by tree Ti for x.

b. Final Prediction:
  The final prediction y for x is determined by averaging 

the predictions y1, y2...., yn.

Extra tree regressor For implementation in this class, aver-
aging is employed as part of the meta-estimator approach. 
This method fits multiple randomized decision trees, often 
referred to as "extra trees," on various subsamples of the 
dataset. This strategy aims to enhance the prediction accu-
racy and mitigate overfitting (Pedregosa et al. 2011) (Figs. 1, 
2, 3, 4, 5).

Results and discussion

Data visualization and analysis

We utilized the dataset from Mardani and Thrust (2020) 
to illustrate our selected method. The data are depicted 
in Fig. 6, which comprises an extension to nine inputs of 
seismic attributes in addition to those of depth and TWTT. 
The details and definitions of each attribute can be found in 
Appendix A. A plot of the zero-offset seismic trace is shown 
in the first track on the left. Seismic traces for all wells are 
used to extract the following training input attributes: the 
amplitude of the seismic trace, integral, second derivative, 
quadrature amplitude, trace gradient, gradient magnitude, 
instantaneous frequency, phase, and cosine of the phase as 
the nine of eleven input features, while the acoustic imped-
ance at well log resolution is the target (Mardani and Thrust 
2020).

The relationships between the attributes are more clearly 
visualized in the cross-correlation matrix presented in Fig. 7. 
Within this matrix, values closer to 1 indicate a positive 
correlation, while those nearing -1 signify a negative cor-
relation. Leveraging the data splitting feature, we designate 
the AI log (acoustic impedance derived from the well log) 
as both the target and output. Other than AI_HRS_inv are 
treated as inputs. The AI_HRS_inv represents the band-lim-
ited inversion from prior research, generated using Hampson 
Russel software (Mardani 2020). According to the matrix, 
the most robust input‒output relationship exists between 
Quadr and AI_Log.

To evaluate the performance of the selected methods, we 
present the errors in the prediction results for RFR, MLPR, 
and ETR using the default parameters in Table 1. The com-
parison reveals that ETR consistently exhibits lower val-
ues for MAE, MSE, and RMSE than the other methods. 
To illustrate the performance of the three selected methods, 
we compare the R2 values between the actual and predicted 
impedance values in Fig. 8. Notably, the R2 value for the 
ETR surpasses those for both the RFR and MLPR. Spe-
cifically, ETR achieves the highest R2, followed by RFR, 
outperforming MLPR. These findings further reveal that, 
in comparison to Mardani and Thrust (2020), who achieved 
an R2 of 0.88 using the TensorFlow platform, both our ETR 
and RFR methods yield superior R2 values, while our MLPR 
produces a slightly inferior result. Such discrepancies can 
arise due to variations in parameters such as the number of 
features, and platforms including different libraries utilized. 
In our study, we employed the sci-kit Learn 1.2.1 librar-
ies for computations, whereas Mardani and Thrust (2020) 
utilized TensorFlow and Keras. Furthermore, we compare 
histograms of the prediction errors of the selected methods 
in Fig. 9. It is evident that the prediction error of the ETR 

Fig. 4  Graphical illustration of the random forest regression algo-
rithm

Fig. 5  Graphical illustration of the extra tree regressor algorithm 
(Chu et al. 2021; Geurts et al. 2006)



 Journal of Petroleum Exploration and Production Technology

method primarily spikes at zero error, unlike that of the 
RFR and MLPR methods, which display a broader spread 
of nonzero errors. This observation leads to the ranking 
of prediction error quality for the three-based methods as 
ETR > RFR > MLPR.

Fig. 6  This figure shows a single well location with a zero-offset seis-
mic trace in the first track on the left. Seismic traces for all wells are 
used to extract the following training input attributes: the amplitude 
of the seismic trace, integral, second derivative, quadrature ampli-

tude, trace gradient, gradient magnitude, instantaneous frequency, 
phase, and cosine of the phase as the input features, while the acous-
tic impedance at well log resolution (AI) is the target (Mardani and 
Thrust 2020)

Fig. 7  The cross-correlation matrix was computed for the input fea-
tures, including the seismic attributes, depth and TWTT, while the 
AI log was the target variable. The results revealed positive correla-
tions among all the input features, except for the second derivative, 
trace gradient, and frequency, which exhibited negative correlations. 

Despite their negative correlations, these three features were retained 
for evaluation, aiming to compare their performance with that of the 
previously referenced model. In relation to the AI log, the highest 
positive correlation was observed with the quadrature trace, while the 
lowest negative correlation was associated with the trace gradient

Table 1  Error values in prediction using the three methods

Algorithm MAE MSE RMSE

MLPR 598.098 635,512.706 797.190
RFR 107.103 37,646.143 194.026
ETR 60.334 13,910.160 117.941
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The learning characteristics of the three regression meth-
ods can be discerned from Fig. 10. The training and test-
ing scores of the RFR method gravitate toward 1, whereas 
the MLPR hovers approximately 0.6, although it continues 
to rise with an increase in training size. This suggests that 

the RFR method requires only a minimal training size, as 
it plateaus with a flat curve after reaching a training size 
of approximately 4000. This indicates that, given the same 
training size, the learning efficacy of RFR surpasses that of 
the MLPR method. Notably, the ETR, which stands out as 
our most effective method, consistently delivers outstanding 
training outcomes, ranging from a training size of 500 and 
maintaining this performance consistently to the endpoint, 

Fig. 8  R2 (determination coefficient) values depicting the correlation 
between actual and predicted acoustic impedance from multilayer 
perceptron regression (MLPR), random forest regression (RFR), and 
extra tree regression (ETR). The results reveal that the predictions 

from the ETR model closely align with the real data, indicating supe-
rior performance in capturing the relationship between the predicted 
and actual acoustic impedance

Fig. 9  Prediction errors for the MLPR, RFR, and ETR methods. This 
figure employs error bars to convey the variability in prediction accu-
racy. Notably, the ETR method exhibits smaller error bars, signify-

ing a reduced margin of error compared to both the MLPR and RFR 
methods. This underscores the superior predictive performance of the 
ETR model in these data analyses

Fig. 10  The learning curves of three regression models—multilayer 
perceptron regression (MLPR), random forest regression (RFR), 
and extra tree regression (ETR)—are shown. Notably, for the same 

amount of training data, the learning curve of ETR stands out, dem-
onstrating superior performance with the best training and testing 
scores among the three models
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akin to the other two methods, ultimately yielding the most 
commendable test scores.

The final estimations of the acoustic impedance are 
shown in Fig. 11. The band-limited AI was reproduced using 
available data from Mardani and Thrust (2020) to investigate 
how the property changes with varying depth. They gener-
ally follow a similar trend but are unable to match the same 
variation for localized parts (Mardani and Thrust 2020). This 
figure juxtaposes the acoustic impedance derived from well 
logs, the predicted AI using the extended inputs, and the 
band-limited inversion. From the figure, it is evident that 
the AI predicted by the RFR method, represented by a red 
line, aligns more closely with the true AI, depicted by a blue 
line, than the AI predicted by the MLPR method, which 
is indicated by a yellow stripe. Overall, the most accurate 
prediction is rendered by the ETR method, highlighted by 
the green line. Furthermore, the predicted acoustic imped-
ance reveals insights suggesting that hydrocarbons are 
likely to accumulate at depths ranging from approximately 
3100–3200 m and 3300–3400 m.

Conclusions

1. The estimation of acoustic impedance, utilizing extended 
inputs of depth, two-way travel time and seismic attrib-
utes, employed regression methods, including multilayer 
perceptron regression, random forest regression, and 
extra tree regression with the scikit-learn library.

2. Our RFR and ETR studies exhibited improved determi-
nation coefficient values, surpassing those reported in 
the literature, even with a larger dataset due to additional 
features.

3. Among the tested models, the extra tree regression 
model demonstrated superior performance in terms of 

the coefficient of determination and was particularly 
suitable for highly nonlinear well log scales.

4. We conclude that for hydrocarbon exploration based on 
the available acoustic impedance data, the ETR model 
with default parameters represents the optimal choice 
for more accurate predictions. Other datasets may have 
different options.

5. Future studies should consider adopting the ETR method 
with diverse real datasets, incorporating additional seis-
mic attributes, and exploring alternative machine learn-
ing models. This comprehensive approach aims to iden-
tify an even more accurate machine learning model that 
can then be validated using real-world data.

Appendix 1. Seismic Attributes (Barnes 
2016)

Amp (amplitude)

A measure of the raw amplitude of seismic trace values

D2 (Second Derivative)

If raw amplitude profiles do not manage to present continuity 
well enough, interpreters might consider the second deriva-
tive attribute quite helpful.

Int (Integral)

The integration of the raw trace amplitude over time

Quadr (quadrature amplitude)

Quadrature amplitude is the imaginary component of the 
analytical signal that is derived from the 90° phase of the 
original trace, through the Hilbert transform. When com-
bined with the real part, they create the analytical signal.

Trace gradient

The gradient along the trace. The most significant gradient 
occurs at the most significant change.

Gradient magnitude

The magnitude of the instantaneous gradient in 3 dimensions 
utilizing adjacent traces.

Fig. 11  This figure presents the estimated acoustic impedance 
derived from various methodologies, contrasting the real target AI 
with predictions from RFR, MLPR, and ETR. Notably, ETR-pre-
dicted AI exhibits the highest agreement with the true values. Addi-
tionally, band-limited AI, recreated using data from prior research, 
explores property changes across different depths. While generally 
following a similar trend, it falls short of reproducing identical varia-
tions in localized sections (Mardani & Thrust, 2020)
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Instantaneous frequency

The first time derivative of the instantaneous phase scaled 
to Hertz units.

Phase

The average value of a signal's phase spectrum; the relative 
position along a sinusoid.

CosPhase

Cosine of the phase.
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