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Abstract
Accurate prediction of geological formation tops is a crucial task for optimizing hydrocarbon exploration and production 
activities. This research investigates and conducts a comprehensive comparative analysis of several advanced machine learn-
ing approaches tailored for the critical application of geological formation top prediction within the complex Norwegian 
Continental Shelf (NCS) region. The study evaluates and benchmarks the performance of four prominent machine learning 
models: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest ensemble method, and Multi-Layer 
Perceptron (MLP) neural network. To facilitate a rigorous assessment, the models are extensively evaluated across two dis-
tinct datasets - a dedicated test dataset and a blind dataset independent for validation. The evaluation criteria revolve around 
quantifying the models' predictive accuracy in successfully classifying multiple geological formation top types. Additionally, 
the study employs the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm as a baseline 
benchmarking technique to contextualize the relative performance of the machine learning models against a conventional 
clustering approach. Leveraging two model-agnostic feature importance analysis techniques - Permutation Feature Importance 
(PFI) and Shapley Additive exPlanations (SHAP), the investigation identifies and ranks the most influential input variables 
driving the predictive capabilities of the models. The comprehensive analysis unveils the MLP neural network model as 
the top-performing approach, achieving remarkable predictive accuracy with a perfect score of 0.99 on the blind validation 
dataset, surpassing the other machine learning techniques as well as the DBSCAN benchmark. However, the SVM model 
attains superior performance on the initial test dataset, with an accuracy of 0.99. Intriguingly, the PFI and SHAP analyses 
converge in consistently pinpointing depth (DEPT), revolution per minute (RPM), and Hook-load (HKLD) as the three most 
impactful parameters influencing model predictions across the different algorithms. These findings underscore the potential 
of sophisticated machine learning methodologies, particularly neural network-based models, to significantly enhance the 
accuracy of geological formation top prediction within the geologically complex NCS region. However, the study emphasizes 
the necessity for further extensive testing on larger datasets to validate the generalizability of the high performance observed. 
Overall, this research delivers an exhaustive comparative evaluation of state-of-the-art machine learning techniques, offering 
critical insights to guide the optimal selection, development, and real-world deployment of accurate and reliable predictive 
modeling strategies tailored for hydrocarbon exploration and reservoir characterization endeavors in the NCS.
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Abbreviations
DEPT	� Depth: bit depth in meters or measured depth 

(M)
ROP5	� Rate of penetration; drilling progress in 

distance and time-averaged every 5 feet (M/
HR)

BPOS	� Traveling block position: the height at which 
the traveling block is located on the mast or 
derrick (M)

BVEL	� Traveling block velocity: the velocity of 
movement of the block and the hoisting 
system (M/HR)

SWOB	� Surface weight on bit: measurement of the 
weight exerted by the string on the bit and, 
therefore, on the formation (KKGF)

HKLD	� Hook-load: measurement of the load on 
the hook by the working and drilling string 
(KKGF)

TQA	� Torque: the torque exerted by TDS derived 
from string rotation in units of kilometers 
decanewtons (KMN)

RPM	� Revolution per minute: measurement of the 
revolutions of the turbine contained in the 
BHA to energize downstream components 
(RPM)

TFLO	� Total pump flow: the flow rate of drilling 
mud to well (LPM)

TRPM_RT	� Bottom turbine revolutions: measurement 
of the revolutions of the turbine contained 
in the BHA to energize downstream compo-
nents (RPM)

SPPA	� Pump pressure; friction losses in the hydrau-
lic system (BAR)

ECD_ARC​	� Equivalent circulating density: the density of 
the bottom-well fluid (SG)

Stick_RT	� Stick and slip indicator; torsional vibration 
(RPM)

GFT	� Geological formation top: the depth to the 
top of a geological formation (M)

AUC​	� Area Under the Curve
DBSCAN	� Density-Based Spatial Clustering of Appli-

cations with Noise
DT	� Decision tree
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EDA	� Exploratory data analysis
FPR	� False Positive Rate
FN	� False negative
FP	� False positive
IF	� Isolation Forest
KNN	� K-Nearest Neighbors
LOF	� Local Outlier Factor
NCS	� Norwegian Continental Shelf
NaN	� Non-numeric values
MLP	� Multi-Layer Perceptron
MWD	� Measurement while drilling
PFI	� Permutation Feature Importance
RF	� Random Forest
ROC	� Receiver Operating Characteristic
SHAP	� Shapley Additive exPlanations
SVM	� Support Vector Machine
TPR	� True Positive Rate
TN	� True negative
TP	� True positive

Introduction

The oil and gas industry generates vast amounts of data dur-
ing operations, and applying machine learning algorithms 
to process this data has become increasingly important 
(Elkatatny 2018; Aniyom et al. 2022). Machine learning 
has been recognized as a promising tool in the oil and gas 
industry, with applications ranging from improving opera-
tional efficiency to predicting geological formations. Accu-
rately predicting geological formation tops is an essential yet 
challenging task in hydrocarbon exploration and production 
activities (Mahmoud et al. 2020). Traditional manual inter-
pretation of well logs to pick formation tops is labor inten-
sive, prone to human subjectivity and errors, and unable to 
handle large datasets efficiently. This highlights the need for 
an automated and optimized approach. Applying machine 
learning for real-time prediction of geological formation 
tops using drilling data is a topic of significant interest in 
the oil and gas industry (Zhong et al. 2022). Several studies 
have explored different aspects of this topic, demonstrating 
the potential of machine learning to improve operational 
efficiency and reduce risks (Sircar et al. 2021; Losoya et al. 
2021).

Al-AbdulJabbar et al. (2018) have developed a novel 
method for predicting formation tops in real-time that can 
replace more expensive techniques. Their method leverages 
drilling mechanics and rate of penetration data to identify 
lithological changes during drilling accurately. The authors 
gathered field data from two wells drilled with the same bit 
size and through the same formations. Data from Well A 
was used to train and test an artificial neural network (ANN) 
model (70% training, 30% testing), while data from Well B 

served as unseen test data. The optimized ANN model with 
one hidden layer and 20 neurons achieved high correlations 
of 0.94 and 0.98 on Wells A and B, respectively, demonstrat-
ing the method's ability to predict formation tops reliably. 
A key advantage of this approach is the real-time nature, as 
no log data processing or cuttings lag is required. By rely-
ing solely on low-cost, existing drilling data, formations can 
be accurately identified instantly without operational delays 
or expending resources on logs. This study highlights the 
potential for ANNs and drilling mechanics to enable rapid, 
precise, and inexpensive top detection during drilling. 
Mahmoud et al. (2021) developed artificial neural networks 
(ANN), adaptive neuro-fuzzy inference systems (ANFIS), 
and fuzzy neural network (FNN) models to predict lithol-
ogy changes and formation tops during drilling operations. 
The models were trained on 3162 datasets across six input 
parameters. After optimization, the models were validated 
on 1356 datasets from a separate well. The ANN model 
achieved the highest accuracy, correctly predicting lithol-
ogy distributions and formation tops for training and testing 
data over 98% of the time. Compared to ANFIS and FNN, 
the ANN model showed superior performance as a real-time 
predictive tool for lithology and formation changes during 
drilling. The study demonstrates the potential of ANN mod-
els to enable more informed decision-making and adjust-
ments while drilling through multiple formations.

Vikara and Khanna (2022) developed an innovative 
framework to generate predictive models using various 
machine-learning classification algorithms. The goal was to 
identify specific stratigraphic units in the prolific Midland 
Basin of West Texas. After testing multiple algorithms, the 
random forest (RF) model achieved the highest prediction 
accuracy of 93% on holdout validation data. Notably, the RF 
model demonstrated exceptional performance in predicting 
major hydrocarbon-producing zones in the basin. This data-
driven approach provides an accurate, cost-effective solution 
to complement traditional reservoir characterization meth-
ods across energy sector applications. Overall, the study by 
Vikara and Khanna establishes a robust framework lever-
aging machine learning for optimized subsurface analysis 
and resource identification. Ziadat et al. (2023) proposed a 
novel machine-learning approach for real-time detection of 
drilled formation tops and lithology types using only surface 
drilling data. They leveraged random forest and decision 
tree classifiers to develop highly accurate models predicting 
lithology from a dataset of five complex geological forma-
tions. Their methodology included rigorous data collection, 
preprocessing, exploratory analysis, feature engineering, 
model development, and hyperparameter tuning. Through 
comprehensive experiments, they demonstrated over 95% 
testing accuracy in lithology classification, even on intricate 
formation schemes. The study highlights the capability of 
machine learning techniques to enable real-time subsurface 
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lithology prediction solely from surface data. This could 
significantly enhance drilling efficiency and reduce costs by 
guiding the optimal, geology-specific selection of drilling 
parameters in real time without needing downhole measure-
ments. The proposed data-driven methodology provides a 
broadly generalizable framework to unlock the full potential 
of surface data for real-time formation characterization.

Ibrahim et al. (2023) developed machine learning models 
from drilling data to accurately predict lithology and forma-
tion tops in real-time. They collected data from two wells in 
the Middle East and trained Gaussian naive Bayes (GNB), 
logistic regression (LR), and linear discriminant analysis 
(LDA) models. The GNB model demonstrated exceptional 
accuracy in predicting lithology, achieving near-perfect 
scores. The LR and LDA models also performed well, 
although LDA misclassified some carbonate/shale forma-
tions. During the new data validation, the models maintained 
high accuracies of 0.96, 0.95, and 0.92 for GNB, LR, and 
LDA, respectively. Their innovative modeling enables real-
time rock type determination while drilling, allowing rapid 
geosteering decisions. Khalifa et al. (2023) have developed 
an innovative machine-learning approach for real-time 
lithology prediction during drilling operations. Using a 
dataset from the Volve field, they trained models to classify 
drilling data into three lithology classes—claystone, marl, 
and sandstone—with remarkable accuracy. Through care-
ful preprocessing, including balancing the class distribution 
and reducing redundant features, they prepared an unbiased 
training set. Their best model achieved 95% overall testing 
accuracy and 98% average precision, demonstrating excep-
tional predictive performance. To enhance accessibility, they 
built GeoVision, an easy-to-use web application that allows 
drilling engineers to utilize the models on-site. This pioneer-
ing methodology and software tool enable more informed 
and rapid drilling decision-making, marking a significant 
step toward real-time geosteering. With rigorous methodol-
ogy and testing, Khalifa et al. have set a high benchmark 
for lithology prediction from drilling data using machine 
learning. Their innovative integration of ML with drilling 
engineering promises to transform future drilling operations.

Challenges are involved despite the potential benefits of 
machine learning in the oil and gas industry. These include 
the need for high-quality data, the complexity of the algo-
rithms, and the need for skilled personnel to interpret the 
results (Khalifah et al. 2020; Alsaihati et al. 2021). How-
ever, these challenges can be mitigated with continuous 
technological advancements and increasing adoption of 
machine learning. This study aims to develop a comprehen-
sive machine-learning framework to accurately and reliably 
predict formation tops on the complex Norwegian Conti-
nental Shelf (NCS) using well-log data. Four main algo-
rithms—support vector machines (SVM), random forest 
(RF), k-nearest neighbor (KNN), and multi-layer perceptron 

(MLP)—are implemented, optimized, and rigorously evalu-
ated to determine the most suitable method for this problem. 
The methodology involves multiple stages. First, the dataset 
is preprocessed by handling missing values, outliers, and 
noisy data and applying techniques like normalization. Next, 
exploratory analysis uncovers patterns and relationships 
within the data. Optimal features are then extracted using 
statistical metrics and domain expertise. The cleaned dataset 
is split into training and test sets for model development and 
evaluation. The four machine learning algorithms are imple-
mented with appropriate hyperparameters and configurations 
tailored to the formation top classification task. Models are 
optimized using techniques like grid search and cross-vali-
dation. Evaluation metrics such as accuracy, F1-score, preci-
sion, and recall quantify model performance. The best model 
is selected based on these metrics. Additional techniques like 
clustering using DBSCAN provide supplementary insights. 
This framework ensures accurate, reliable, optimized models 
while comprehensively understanding the data’s underlying 
structure. By comparing multiple algorithms, their relative 
strengths and weaknesses are analyzed to identify the ideal 
approach for the NCS. The automated methodology over-
comes human subjectivity and inefficiency. Accurate for-
mation top picks have far-reaching impacts. They enhance 
subsurface geological models, minimize uncertainty, assist 
in assessing hydrocarbon potential, optimize drilling activi-
ties, and improve recovery strategies. This research enables 
geologists to focus on critical tasks rather than repetitive 
manual interpretation. The insights can inform data-driven 
decision-making to unlock value. In conclusion, this study 
develops an exhaustive machine learning approach for effi-
cient, accurate, and automated formation top classification 
from well logs on the NCS. The results provide key insights 
into leveraging artificial intelligence to transform subjective 
processes into optimized, intelligent systems in the hydro-
carbon industry. The methodology and findings significantly 
advance available techniques for subsurface characterization.

Approach and procedures

For this investigation, we gathered the dataset employed 
to predict the topography of geological formations on the 
Norwegian Continental Shelf (NCS) from a trustworthy 
data source. The dataset comprises a range of variables 
and features pertinent to predicting formation tops. These 
features play a vital role in discerning the characteristics 
and properties of various formations within the field. To 
guarantee the quality and reliability of the data, a sequence 
of preprocessing steps was undertaken. This encompassed 
addressing missing values, outliers, and other data quality 
issues. Furthermore, data normalization or standardiza-
tion techniques were implemented to ensure uniformity 
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and comparability across the features. The exploratory data 
analysis (EDA) phase was crucial for comprehending the 
dataset and extracting insights into its characteristics. Sum-
mary statistics, encompassing measures like mean, median, 
mode, and standard deviation, were computed to offer a 
comprehensive overview of the data. These statistics aided 
in grasping central tendencies, dispersion, and variable dis-
tributions. Diverse data visualization techniques, such as 
histograms, heatmaps, box plots, and correlation matrices, 
were employed during EDA to scrutinize relationships and 
patterns within the dataset. These visualizations yielded 
valuable insights into variable distributions, potential outli-
ers, and feature correlations.

During the exploratory data analysis (EDA) phase aimed 
at cleaning the dataset, the process involves the elimina-
tion or handling of data that is not valid, particularly those 
containing non-numeric values (NaN). It is crucial to iden-
tify invalid or missing data while analyzing the dataset. 
The approach removes such data from the dataset regarding 
non-numeric or NaN values. This step ensures the dataset's 
consistency and safeguards against invalid data's influence 
on subsequent analysis and modeling. Removing NaN or 
non-numeric data guarantees that the dataset comprises only 
valid numerical values, facilitating insightful analysis and 
accurate predictions. Nevertheless, it is crucial to empha-
size that the decision to remove data should be executed 
judiciously and grounded in thoroughly comprehending the 
dataset. If the volume of NaN or non-numeric data is sub-
stantial or contains valuable information, alternative strate-
gies like imputation techniques may be explored. Imputation 
involves filling in missing values with reasonable estimates 
and preserving data integrity. In summary, the EDA pro-
cess in cleaning the dataset includes the option to eliminate 
data with non-numeric values (NaN) or non-numeric data. 
However, the decision-making process should consider the 
overall impact on the dataset. If warranted, alternative meth-
ods like imputation can be employed to maintain data com-
pleteness and enable more precise analysis and modeling.

Feature selection or extraction techniques were imple-
mented to pinpoint the most pertinent features for real-
time prediction of geological formation tops. This process 
included scrutinizing the relationship between parts and the 
target variable using statistical measures or domain knowl-
edge. The identified features were subsequently utilized as 
inputs for machine learning models. The study incorporated 
various machine learning algorithms, such as multi-support 
vector machines (SVM), random forest, k-nearest neighbors 
(KNN), and multilayer perceptron (MLP). Each algorithm 
was instantiated with specific configurations and hyper-
parameters tailored to the real-time prediction of geologi-
cal formation tops task. For example, the SVM algorithm 
employed a selected kernel and appropriate regularization 
parameters, while random forest had a designated number of 

trees and splitting criteria. Relevant evaluation metrics were 
utilized to gauge the performance of the models. Metrics, 
including accuracy, precision, recall, and F1-score, were 
computed to appraise the predictive prowess of each model 
in accurate real-time prediction of geological formation tops. 
These evaluation metrics furnished a quantitative gauge of 
the model's performance, enabling comparisons between 
machine-learning algorithms. The experimental setup 
encompassed a train-test split ratio, dividing the dataset into 
segments for model training and evaluation. A portion was 
allocated for training the models, while the remaining was 
for testing and assessing their performance. Cross-valida-
tion techniques might have been employed to validate the 
models' generalizability. Furthermore, statistical analyses 
could have been conducted to validate the results or com-
pare the performance of various machine learning models. 
These analyses would offer additional insights into the find-
ings' significance and the predictive models' reliability. The 
materials and methods outlined in this study were designed 
to guarantee the robustness, reproducibility, and validity of 
real-time prediction of geological formation top prediction 
models employing various machine learning algorithms. 
Integrating exploratory data analysis (EDA) techniques, data 
preprocessing procedures, diverse machine learning models, 
and evaluation metrics constituted a comprehensive frame-
work, facilitating the attainment of precise and dependable 
predictions for geological formation tops in the NCS.

The flowchart depicted in Fig. 1 for "Modeling Geo-
logical Formation Tops Prediction in the NCS: A Machine 
Learning Approach using Multi SVM, Random Forest, 
KNN, MLP" offers a systematic guide for constructing and 
assessing predictive models. The process initiates with the 
importation of necessary libraries and the loading of the 
dataset. Subsequently, the dataset is divided into a train-
ing set and a blind set for model training and evaluation. 
Exploratory data analysis (EDA) is then executed to glean 
insights from the dataset, followed by multivariate data 
analysis to unveil intricate relationships. The workflow 
includes essential data preprocessing tasks, encompassing 
missing values, treatment of outliers, and resolution of 
data duplicates. Collinear independent variables are elimi-
nated to prevent potential issues in model performance. 
Scaling and normalization techniques are then employed 
to ensure comparability among features. The definition of 
feature and output matrices for model training involves 
selecting specific inputs from the dataset. In this case, the 
chosen feature inputs are DEPT, ROP5, HKLD, SWOB, 
TQA, RPM, BPOS, BVEL, SPPA, TFLO, TRPM_RT, 
Stick_RT, ECD_MWD from the Measurement While 
Drilling (MWD) data. The target matrix is specified as 
GFT. This compilation forms the basis for training the 
model. The details of real-time measurement while drill-
ing (MWD) records employed in this study are outlined in 
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Table 1. The dataset is divided into training and test sets, 
with a test size of 0.2 (20%), a training set of 0.8 (80%), 
and a random state set to zero for reproducibility. Various 
machine learning algorithms, including KNN, Random 

Forest, SVM, and MLP, are applied to construct predictive 
models. Hyperparameter tuning is executed to optimize 
the performance of each model. The model evaluation 
uses appropriate metrics, and the top-performing models 

Start

Importing Libraries and
Dataset

Split Dataset into Training
and Blind

Exploratory Data Analysis

Multivariate Data Analysis

Preprocessing Data

Predict using Model on
Blind Dataset

Clustering using DBSCAN

Hyperparameter Tuning

Visualization Data
Geological Formation Top

Finish

Scaling and Normalization

Defining Feature and
Output Matrix

Splitting Dataset into
Training and Test Sets

Using Machine Learning
Models

Hyperparameter Tuning
each Model

Dropping Collinear 
Independent Variable Model Evaluation

Fig. 1   Flowchart for modeling geological formation top prediction in the NCS

Table 1   Details of the dataset utilized in this model

Drilling data Description

DEPT Depth: bit depth in meters or measured depth (M)
ROP5 Rate of penetration; drilling progress in distance and time-averaged every 5 feet (M/HR)
BPOS Traveling block position: the height at which the traveling block is located on the mast or derrick (M)
BVEL Traveling block velocity: the velocity of movement of the block and the hoisting system (M/HR)
SWOB Surface weight on bit: measurement of the weight exerted by the string on the bit and, therefore, on the formation (KKGF)
HKLD Hook-load: measurement of the load on the hook by the working and drilling string (KKGF)
TQA Torque: the torque exerted by TDS derived from string rotation in units of kilometers decanewtons (KMN)
RPM Revolution per minute: measurement of the revolutions of the turbine contained in the BHA to energize downstream components 

(RPM)
TFLO Total pump flow: the flow rate of drilling mud to well (LPM)
TRPM_RT Bottom turbine revolutions: measurement of the revolutions of the turbine contained in the BHA to energize downstream compo-

nents (RPM)
SPPA Pump pressure; friction losses in the hydraulic system (BAR)
ECD_ARC​ Equivalent circulating density: the density of the bottom-well fluid (SG)
Stick_RT Stick and slip indicator; torsional vibration (RPM)
GFT Geological formation top: the depth to the top of a geological formation (M)
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make predictions on the blind dataset. Furthermore, clus-
tering analysis utilizing the DBSCAN algorithm might 
be incorporated to uncover inherent groupings within the 
data. Hyperparameter tuning could be employed to opti-
mize the DBSCAN clustering process. Visualizations of 
the distribution of various formation tops are created to 
extract insights. Ultimately, the flowchart concludes the 
modeling and evaluation process. In summary, this sys-
tematic approach ensures the creation of precise formation 
top prediction models while attaining a thorough under-
standing of the dataset.

Dataset utilized in the study

The dataset employed in the modeling process comprises 
two distinct sets. The initial dataset serves as the training 
set, while the second is a blind set. The latter is utilized for 
validation and predicting the model trained on the initial 
dataset. The dataset used in this experiment encompasses 
real-time drilling data from two wells, denoted Wells A and 
B. Well A serves as the training dataset, while well B func-
tions as the blind dataset for validation. The dataset com-
prises 14 measurement while drilling (MWD) parameters, 
including DEPT, ROP5,  BPOS, BVEL, SWOB, HKLD, 
TQA, RPM,  TFLO, TRPM_RT, SPPA, ECD_ARC,  Stick_
RT, and GFT. A detailed breakdown of these parameters is 
presented in Table 1. Also, Table 2 shows the descriptive 
statistics summarizing the characteristics of both input fea-
tures and the target variable in Dataset A. Similarly, Table 3 
provides descriptive statistics for the input features and tar-
get variable in Dataset B.

Preprocessing the dataset

The preprocessing phase in machine learning modeling, 
aimed at eliminating datasets containing NaN values or no 
data, involves a series of steps. Initially, the dataset is exam-
ined to identify the location and quantity of NaN values. 
Subsequently, the presence of NaN values is assessed, con-
sidering their pattern or impact on the data and the modeling 
objective. If NaN values are deemed insignificant or cannot 
be resolved through proper filling techniques, the subsequent 
step involves removing the rows or columns containing NaN 
values using the ‘.dropna()’ method. Following the elimi-
nation, the dataset is reassessed to ensure that the quantity 
and distribution of the remaining data remain sufficient and 
representative. Evaluating the impact of NaN value elimina-
tion on class balance or target distribution within the model 
is crucial. Additionally, it is essential to verify the dataset 
index after the removal of NaN data. When making this deci-
sion, carefully considering the dataset's context and charac-
teristics is vital, as eliminating NaN data can influence the 
quantity and representation of the available data.

Identifying outliers using automated methods

Outliers are anomalous points within a dataset. They are 
points that do not fit within the normal statistical distri-
bution of the dataset and can occur for various reasons, 
such as sensor and measurement errors, poor data sampling 
techniques, and unexpected events. Within MWD logs, out-
liers can occur due to washed-out boreholes, tool and sen-
sor issues, rare geological features, and issues in the data 
acquisition process. These outliers must be identified and 
investigated early in the workflow, as they can result in 
inaccurate predictions by machine learning models. Several 

Table 2   Descriptive statistics for input and target characteristics in dataset A (training dataset)

Count Mean std Min 25% 50% 75% Max

DEPT 82,592.0 2681.969386 1000.799976 224.7600 1818.061625 2939.83155 3606.2896 4089.8755
ROP5 82,592.0 23.798850 133.405723 1.1169 9.960000 14.74000 25.0476 2993.1134
HKLD 82,592.0 129.223147 10.377527 65.6028 121.390000 129.56000 137.2200 149.5600
SWOB 82,592.0 6.393388 5.122745 0.0000 3.075075 4.68640 8.7100 52.0333
TQA 82,592.0 14.312507 3.705972 0.0000 12.090000 14.86000 16.8000 34.2722
RPM 82,592.0 163.750630 73.287297 0.0000 119.000000 179.00000 235.0000 298.0000
BPOS 82,592.0 26.342694 12.586083 0.6052 15.758875 26.90000 37.1300 50.0000
BVEL 82,592.0 0.005476 0.010397 0.0000 0.000000 0.00270 0.0100 0.2800
SPPA 82,592.0 186.472985 38.183174 5.5223 154.800000 195.97145 216.6900 270.1300
TFLO 82,592.0 2706.819663 1012.302221 199.3929 1794.540000 2016.08000 3987.8572 4187.2499
TRPM_RT 82,592.0 2878.781166 547.679637 0.0000 2343.750000 2734.38000 3593.7500 4960.9400
Stick_RT 82,592.0 62.940830 74.653558 0.0000 15.000000 24.00000 84.0000 381.0000
ECD_MWD 82,592.0 1.388246 0.170141 0.0100 1.400000 1.42000 1.4600 15.7900
GFT 82,592.0 10.525220 5.055632 0.0000 7.000000 13.00000 15.0000 17.0000
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unsupervised machine-learning methods can be used to 
identify anomalies/outliers within a dataset. In this study, 
we will look at three common ways: Isolation Forest (IF), 
One Class SVM (SVM), and Local Outlier Factor (LOF). 
Table 4 provides a detailed summary of the outcomes 
obtained from applying three distinct outlier elimination 
methods—Isolation Forest (IF), One Class SVM (SVM), 
and Local Outlier Factor (LOF)—to two datasets: the train-
ing dataset (Dataset A) and the blind dataset (Dataset B). 
Table 4 illustrates the number of abnormal and non-anom-
alous values identified by each method for both datasets. 
For Dataset A, the total values for each technique, includ-
ing the sum of anomalous and non-anomalous instances, 
are displayed. Similarly, for Dataset B, the corresponding 
totals are presented. This comprehensive overview enables 
a comparative analysis of the effectiveness of the outlier 

elimination methods across the two datasets, offering 
insights into their performance in identifying and handling 
anomalous values in different contexts. The performance 
of each of the models using Surface weight on bit -Torque 
cross-plots is shown in Fig. 2.

The IF method provides a better result, followed 
by SVM and LOF. The first two methods remove most 
outliers on the plot's right-hand side. Figure 3 presents 
a comprehensive analysis of the training dataset before 
and after outlier removal using the isolation forest (IF) 
method. Subfigure (a) displays the boxplot of the training 
data before outlier removal, providing insights into the 
distribution and potential presence of outliers. Subfigure 
(b) showcases the boxplot after successfully applying the 
IF outlier removal method, highlighting the impact on the 
dataset's distribution. Removing outliers contributes to a 
more refined representation of the training data. Subfigure 
(c) supplements the analysis by presenting a count of the 
outliers released, categorized by geological formation top 
names and outlier detection method. This breakdown pro-
vides a detailed understanding of the specific formations 
affected and the effectiveness of the IF method in success-
fully eliminating outliers from the dataset. The improved 
data quality resulting from the IF outlier removal enhances 
subsequent analyses' and modeling efforts' robustness and 
reliability.

Impacts of outlier removal on detection, range determina‑
tion, and confidence  Outlier removal can have significant 
impacts that require careful consideration when developing 
machine learning models. Here is a summary of the outlier 
removal effects on detection, range determination, and con-
fidence:

Table 3   Descriptive statistics for input and target characteristics in dataset B (blind dataset)

Count Mean std Min 25% 50% 75% Max

DEPT 48,323.0 2473.357415 902.311946 217.8902 1863.07900 2716.4544 3193.6215 3792.1993
ROP5 48,323.0 26.111682 17.122276 0.7822 11.56750 25.1238 39.6359 157.6270
HKLD 48,323.0 115.194651 6.837686 61.2415 111.19590 115.3996 119.9716 132.5865
SWOB 48,323.0 5.744478 3.393747 0.0000 3.20070 5.2920 7.9933 45.4156
TQA 48,323.0 18.208309 7.066991 0.0010 14.84250 19.0013 23.2835 35.2354
RPM 48,323.0 118.601701 51.262144 0.0000 79.00000 130.0000 150.0000 263.0000
BPOS 48,323.0 22.360620 12.341883 0.9826 11.94970 21.9808 33.3951 49.3230
BVEL 48,323.0 0.009642 0.013409 0.0000 0.00280 0.0070 0.0112 0.1938
SPPA 48,323.0 191.120540 41.452504 2.5690 170.81070 206.8920 214.6618 279.1792
TFLO 48,323.0 2941.754206 714.668730 686.7976 2104.70230 3456.1430 3500.4523 3987.8570
TRPM_RT 48,323.0 2922.623247 295.603948 312.5000 2890.62500 2968.7500 3125.0000 4960.9380
Stick_RT 48,323.0 70.586822 88.454134 0.0000 12.00000 27.0000 87.0000 381.0000
ECD_MWD 48,323.0 1.437650 1.253808 0.0090 1.37595 1.4523 1.5549 42.5220
GFT 48,323.0 10.510192 5.757096 0.0000 5.00000 12.0000 13.0000 23.0000

Table 4   Outlier elimination results for isolation forest (IF), one class 
SVM (SVM), and local outlier factor (LOF) methods on training 
dataset (Dataset A) and Blind Dataset (Dataset B)

Outlier method Isolation 
forest 
(IF)

One class 
SVM 
(SVM)

Local outlier 
factor (LOF)

Dataset A Anomalous 
values

24,778 24,777 21,886

Non-anomalous 
values

57,814 57,815 60,706

Total values 82,592
Dataset B Anomalous 

values
14,494 14,494 13,013

Non-anomalous 
values

33,829 33,829 35,310

Total values 48,323
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Fig. 2   Outlier detection for 
training dataset using Isolation 
Forest (IF), local outlier factor 
(LOF), and one-class SVM 
(SVM) methods
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Fig. 3   Training data boxplot 
before outlier removal (a), train-
ing data boxplot after IF outlier 
removal (b), removed outliers’ 
counts by formation top name 
and outlier detection method (c)
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•	 Three outlier removal methods were tested—Isolation 
Forest (IF), One Class SVM (SVM), and Local Outlier 
Factor (LOF). They were applied on both the train-
ing dataset (Dataset A) and the blind validation dataset 
(Dataset B).

•	 For the training set (Dataset A), IF removed 24,778 
outliers, SVM removed 24,777 outliers, and LOF 
removed 21,886 outliers. So IF and SVM detected a 
similar number of outliers, more than LOF.

•	 For the blind dataset (Dataset B), IF removed 14,494 
outliers, SVM removed 14,494 outliers, and LOF 
removed 13,013 outliers. Again, IF and SVM detected 
nearly the same number of outliers, while LOF found 
fewer outliers.

•	 Visual analysis of SWOB vs TQA plots before and after 
IF outlier removal (Figs. 2 and 3) shows that applying IF 
helps eliminate most outliers, resulting in a cleaner dis-
tribution. This was the motivation to select IF for outlier 
elimination.

•	 By removing outliers, the data distribution becomes less 
skewed and more refined. This enhances the robustness 
and reliability of subsequent analysis and modeling using 
the "cleaned" dataset after IF outlier removal.

In summary, Isolation Forest (IF) was found to perform 
well in identifying and eliminating outliers from both the 
training and blind datasets. Applying IF outlier removal led 
to improved data quality and distributions for further analy-
sis. This highlights the importance of detecting and han-
dling outliers prior to applying machine learning algorithms. 
Therefore, utilizing multiple detection techniques, validating 
across datasets, inspecting distribution shifts visually, and 
incorporating domain expertise improves confidence that 
suitable outliers were identified and handled.

Encoding of geological formation tops

Encoding the categorical target variable, representing geo-
logical formation tops, is essential for modeling. The origi-
nal formation names have been mapped to numerical values 
for computational efficiency. Table 5 presents the geological 
formation dictionary used for encoding:

In the dataset, each instance of the geological formation 
top is represented by the corresponding formation number. 
This encoding allows for seamless integration of the target 
variable into machine learning models, ensuring compatibil-
ity with various algorithms. Using numerical representations 
enhances computational efficiency and aids in interpreting 
model predictions. This encoding scheme will be employed 
throughout the subsequent modeling and analysis phases, 
providing a standardized and efficient representation of geo-
logical formation tops.

Feature selection

Feature selection in machine learning modeling often 
involves utilizing heatmaps to examine the correlation 
among independent variables. The initial step entails com-
puting the correlation matrix for the independent variables 
within the dataset. Subsequently, the correlation results are 
presented visually through a heatmap (see Fig. 4), where 
bright colors represent high correlation levels and dark 
colors indicate low correlation levels. At this juncture, pairs 
of variables exhibiting substantial correlation, typically sur-
passing a predetermined threshold, are identified. Such a 
high correlation signifies redundancy in information. Fol-
lowing this, the task is to determine which variables should 
be eliminated within the identified pairs. This decision-
making process considers factors such as domain relevance, 
model interpretation, and the contribution of variables to the 
overall model. Variables deemed more crucial or informa-
tive are retained, while those with lower or less significant 
contributions are excluded.

Referring to Fig. 4, the attributes exhibiting the most 
substantial absolute correlations include 'HKLD,' 'DEPT,' 
'TQA,' and 'ECD_MWD.' These features demonstrate strong 
correlations with our target variable, GFT. After removing 
the variables, the machine learning model is retrained using 
the selected feature subset, and its performance is evalu-
ated. It should be emphasized that heatmaps and correlations 
only provide an initial overview, and additional steps such as 

Table 5   Geological formation top dictionary

Formation top name Formation 
top number

Balder Fm Class 1
Blodøks Fm Class 2
Draupne Fm Class 3
Ekofisk Fm Class 4
Grid Fm Class 5
Heather Fm Class 6
Hidra Fm Class 7
Hugin Fm Class 8
Lista Fm Class 9
No Formal Name_1_Hordaland Gp Class 10
No Formal Name_2_Hordaland Gp Class 11
No Formal Name_Nordland Gp Class 12
Roedby Fm Class 13
Sele Fm Class 14
Skade Fm Class 15
Sleipner Fm Class 16
Tor Fm Class 17
Ty Fm Class 18
Utsira Fm Class 19
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Fig. 4   Heatmap illustrating the 
associations between input vari-
ables and targets using different 
correlation measures: a Pearson 
correlation, b Kendall correla-
tion, c Spearman correlation
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statistical testing or other feature selection methods may be 
required to validate the feature selection decisions made. In 
this modeling process, the variables used as input are DEPT, 
ROP5, HKLD, SWOB, TQA, RPM, BPOS, BVEL, SPPA, 
TFLO, TRPM_RT, Stick_RT and ECD_MWD. While the 
variable set as output or target is GFT. More details about 
separate features and target matrix are shown in Fig. 5.

The stacked bar chart in Fig. 5 shows the correlation 
coefficients between different geological features/forma-
tions and the target variable. The features are sorted from 
highest to lowest mean correlation on the x-axis. The 
stacked bar chart indicates that Hook-load has the strong-
est positive correlation with the target variable, with an 
average correlation coefficient of around 0.8. This suggests 
that a Hook-load could serve as a key predictive feature 
for the target. In addition, bit depth, torque, and Equal 
circulating density display moderately strong positive cor-
relations on average, with coefficients ranging from 0.6 
to 0.7. These three formations also appear to have good 
predictive relationships with the target that could be uti-
lized. On the other hand, Bottom turbine revolutions and 
Total pump flow demonstrate weaker but still positive cor-
relations around 0.4–0.5, meaning their signals may retain 
some useful information. However, the remaining features 
exhibit low or negative average correlations, like traveling 
block velocity, RPM, etc. These formations likely have 

minimal or no predictive relationship with the target. In 
summary, the analysis indicates that hook load, bit depth, 
torque, and equivalent circulating density should be the 
primary features focused on for modeling. At the same 
time, Bottom turbine revolutions and Total pump flow may 
provide secondary signals, and the remaining components 
can likely be excluded from the predictive modeling. A 
multivariate perspective on the relationships between the 
selected input features and the target geological forma-
tion tops is provided through the pair-plot visualization in 
Fig. 6. Each subplot depicts the two-dimensional distri-
bution between a feature pair, with points colored by for-
mation top class. Distinct clustering by class is observed 
for variables including Bit depth, Equivalent circulating 
density, Hook-load, and Torque, indicating their efficacy 
in discriminating between formation tops. Based on the 
diagonal patterns, strong positive correlations are evi-
dent between bit depth, equivalent circulating density, 
bit depth, hook load, and equivalent circulating density 
and hook load. RPM exhibits significant overlap between 
multiple classes, implying limited differentiation capabil-
ity. The pair-plot enables an assessment of the relevance 
and interrelationships of the selected features in predicting 
the target formation tops. These insights guide appropri-
ate algorithm selection and parameter tuning to maximize 
classification performance.

Fig. 4   (continued)
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Several insights can be extracted from Fig. 6:

•	 There is a clear separation between many of the forma-
tion tops based on the variable pairs. For example, the 
Hod and Lista formations (light green and purple points) 
separate from other tops on axes like DEPT vs SWOB.

•	 Some formations demonstrate more compact, concen-
trated clusters (e.g., Sele in red), while others show 
greater dispersion (e.g., Tor in dark green). This indicates 
heterogeneity within formations.

•	 DEPT, ECD_MWD, HKLD, and TQA display distinct 
trends and clustering by formation top, suggesting they 
provide good discrimination. Others, like RPM, show a 
high overlap between classes.

•	 Based on the diagonal clusters, strong positive cor-
relations are visible between DEPT and ECD_MWD, 

DEPT and HKLD, and ECD_MWD and HKLD. This 
is expected due to the direct relationships between these 
features.

•	 Looking at the DEPT vs. ECD_MWD subplot, we see 
that points belonging to the Hod formation (light green) 
cluster in the upper left region while points from the 
Lista formation (purple) fall in the lower right area. This 
indicates that the Hod formation tends to have higher 
depth (DEPT) and lower equivalent circulating density 
(ECD_MWD) than the Lista formation.

•	 In the DEPT vs. SWOB plot, the cloud of points corre-
sponding to the Sele formation (red) occupies a narrow 
range of low surface weight on bit (SWOB) values across 
depths, suggesting consistent rock strength. In contrast, 
the Balder formation points (black) are more dispersed in 
SWOB for a given depth, implying greater heterogeneity.

Fig. 5   Stacked bar chart of 
correlation coefficients for dif-
ferent features (sorted by mean 
correlation)
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•	 For TQA vs. RPM, we see extensive overlap between 
many formations at lower torque (TQA) values. But at 
higher torque, formations like Ty (orange) and Draupne 
(blue) separate from others, likely due to differences in 
rock properties that impact drilling torque requirements.

•	 The HKLD vs. SPPA plot exhibits distinct clustering by 
formation top but also some overlap between formations 
with similar compressive strengths that dictate the hook-
load (HKLD) and pump pressure (SPPA) relationship 
during drilling.

•	 Comparing SWOB vs. HKLD and SWOB vs. SPPA, we 
see diagonal patterns indicating a positive correlation 
between these features. Higher weight on the bit leads to 
higher hook load and pump pressure.

Based on a visual examination of the pair plot in Fig. 6, 
there appear to be some linear relationships between certain 
parameters:

o	 Depth (DEPT) and Equivalent Circulating Density 
(ECD_MWD) show a strong positive linear correlation, 
as evidenced by the diagonal elongated cluster in their 
subplot. As depth increases, ECD also increases.

o	 Similarly, Depth (DEPT) and Hookload (HKLD) display 
a positive linear relationship, with increasing depth asso-
ciated with higher hookload values.

o	 Hookload (HKLD) and Pump Pressure (SPPA) also 
seem to have an approximate positive linear association, 
though the relationship looks weaker.

Fig. 6   Pair-plot results of data distribution per geological formation top
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In contrast, many of the other parameter combinations do 
not demonstrate strong linear relationships:

o	 The variables Surface Weight on Bit (SWOB) and Depth 
(DEPT) do not appear to have a clear linear correlation, 
with substantial scatter in their subplot.

o	 Revolution per Minute (RPM) vs Torque (TQA) also 
does not show a definitive linear trend, with overlapping 
classes spanning a wide range of values.

o	 Other pairs, like DEPT vs. SWOB, TQA vs. SPPA, etc., 
lack distinct linear patterns.

In addressing the inherent challenges posed by the pres-
ence or absence of linear relationships between parameters 
in machine learning, this study employs a diverse set of 
models, including support vector machines (SVM), random 
forests (RF), k-nearest neighbors (KNN), and multilayer per-
ceptron (MLP). The intricate balance between linear and 
nonlinear relationships in the data is effectively managed 
by leveraging these diverse algorithms. The risk of over-
fitting, particularly prevalent in strong linear associations, 
is mitigated by the ensemble nature of Random Forests, 
preventing fixation on specific patterns. Similarly, support 
vector machines and multilayer perceptron models excel in 
handling complex, nonlinear relationships. By incorporating 
k-nearest neighbors, the models collectively reduce underfit-
ting concerns, ensuring a nuanced capture of underlying data 
intricacies. This comprehensive approach not only addresses 
the challenges associated with linear and nonlinear patterns 
but also results in the highest accuracy in prediction across 
various scenarios.

Splitting training dataset into training and test set

We are utilizing the train_test_split function from Sklearn.
model_selection, we partition the dataset into training and 
test sets, with the test set comprising only 20% of the data. 
During this partitioning, the random_state parameter is 
either turned off or set to 0 to ensure consistency and prevent 
variations in model outcomes.

Dataset standardization

Standardizing a dataset within the context of machine learn-
ing modeling holds significant importance. This process, 
facilitated by the StandardScaler library, involves convert-
ing the variables in the dataset to a consistent scale, thereby 
eliminating potential scale-related discrepancies that might 
impact model performance. Such differences can adversely 
affect algorithms sensitive to scale variations, such as those 
relying on distance or gradient-based methods. Utilizing 
StandardScaler ensures that the variables in the dataset 
are transformed to possess a mean of zero and a standard 

deviation of one, ensuring uniform scaling across all vari-
ables. This standardization facilitates faster algorithm con-
vergence and enhances overall model stability. Moreover, it 
simplifies model interpretation by providing clear interpreta-
tions for variable coefficients. Standardization also mitigates 
outliers' influence on large-scale variables, improving model 
stability and accuracy.

Classification algorithms and parameter tuning

Optimal tuning of parameters holds a crucial role in achiev-
ing high-accuracy results when employing support vector 
machines (SVM), random forests (RF), and k-nearest neigh-
bors (KNN). Each classifier entails distinct tuning steps and 
parameters. A range of values was systematically tested for 
each classifier to determine the optimal parameters, and the 
parameters resulting in the highest overall classification 
accuracy were identified. In this study, the classified results 
obtained under the optimal parameters for each classifier 
were utilized to assess and compare the performance of the 
classifiers.

Support vector machine (SVM)

In land cover classification studies, as highlighted by Knorn 
et al. (2009) and Shi and Yang (2015), the radial basis func-
tion (RBF) kernel of the support vector machine (SVM) 
classifier is commonly employed due to its demonstrated 
good performance. Accordingly, we utilized the RBF kernel 
to implement the SVM algorithm. Two crucial parameters 
must be set when applying the SVM classifier with the RBF 
kernel: the optimal parameters of cost (C) and the kernel 
width parameter ( � ) (Qian et al. 2015; Ballanti et al. 2016). 
The C parameter determines the permissible level of mis-
classification for non-separable training data, allowing for 
the adjustment of the rigidity of the training data (Li et al. 
2014). On the other hand, the kernel width parameter ( � ) 
influences the smoothness of the shape of the class-dividing 
hyperplane (Melgani and Bruzzone 2004). Larger values of 
C may lead to an overfitting model (Ghosh and Joshi 2014), 
while an increase in the γ value affects the shape of the 
class-dividing hyperplane, potentially impacting classifica-
tion accuracy results (Huang et al. 2002). In line with the 
approach outlined by Li et al. (2014) and validated for our 
dataset through pretesting, this study explored three values 
of C (1, 5, 10) to identify the optimal parameters for the 
SVM classifier.

Random forest (RF)

To implement random forest (RF), it is necessary to config-
ure two parameters: the number of trees (ntree) and the num-
ber of features considered in each split (mtry). Numerous 
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studies have indicated that satisfactory outcomes can be 
attained using default parameters (Duro et al. 2012). How-
ever, as highlighted by Liaw and Wiener (2002), a higher 
number of trees can yield a more stable result in variable 
importance. Additionally, Breiman (2001) mentioned that 
exceeding the required number of trees might be unneces-
sary, but it does not adversely affect the model. Moreover, 
Feng et al. (2015) suggested that RF could achieve accu-
rate results with ntree = 200. Regarding the mtry parameter, 
many studies opt for the default value mtry = 

√

p , where 
p is the number of predictor variables (Duro et al. 2012). 
However, in this study, to identify the optimal RF model 
for classification, a range of values for both parameters was 
systematically tested and evaluated: ntree = 100, 200, 500, 
and 1000; mtry = 1 to 10 with a step size of 1.

K‑nearest neighbor (KNN)

The KNN approach is a nonparametric method that origi-
nated in the early 1970s for statistical applications (Franco 
Lopez et al. 2001). The fundamental principle behind KNN 
is locating a group of k samples in the calibration dataset 
closest to unknown samples, typically determined based on 
distance functions. From these k samples, the label (class) of 
unknown samples is determined by calculating the average 
of the response variables, representing the class attributes 
of the k-nearest neighbors (Akbulut et al. 2017; Wei et al. 
2017). Consequently, the value of k plays a crucial role in the 
performance of KNN, serving as the key tuning parameter 
(Qian et al. 2015). The parameter k was determined through 
a bootstrap procedure. This study explored k values ranging 
from 1 to 20 to identify the optimal k value for all training 
sample sets.

Results

Comparative analysis of machine learning models

Various machine learning algorithm models are available 
when predicting geological formation tops or lithology in 
hydrocarbon reservoir exploration and production. The mul-
tilayer perceptron (MLP) proves beneficial in cases of high 
complexity or nonlinear relationships between input features 
and output targets. Random forest is well-suited for data with 
independent features or intricate interactions, offering class 
probability estimates and insights into significant features. 
K-nearest neighbor (KNN) presents an easily implementable 
and effective option for nonlinear scenarios, though it may 
be inefficient for large datasets or those with unbalanced 
class distributions. Support vector machine (SVM) is apt for 
high dimensionality and clear class separation datasets. It is 
important to note that no single algorithm model universally 

attains the highest or best accuracy in this context. Perfor-
mance hinges on data characteristics, problem complexity, 
and appropriate parameter settings. Thus, it is advisable 
to undertake experiments and cross-validation to assess 
the relative performance of each model within the specific 
parameters of the given scenario.

The KNN classifier

In the KNN classifier, the algorithm classifies an object 
based on the class attributes of its k-nearest neighbors. 
Therefore, the k value is a crucial tuning parameter for the 
KNN algorithm. In this study, we conducted tests with k 
values (3–12) for nearest neighbors and explored two weight 
options (uniform and distance), as illustrated in Table 6. The 
optimal parameter selection for the KNN classifier involves 
using training datasets to assess the performance with dif-
ferent k values. Based on the conducted tuning experiments, 
the parameter configuration yielding the best results con-
sists of setting the k to 3, with the weight parameter set 
to distance. Table 6 displays the outcomes of a hyperpa-
rameter tuning experiment using the k-nearest neighbors 
(KNN) algorithm through GridSearchCV. The investigation 
explored the impact of two key hyperparameters: the number 
of neighbors (param_n_neighbors) and the weight function 
(param_weights) employed in the KNN algorithm. Differ-
ent configurations were tested in the "param_n_neighbors" 
column, representing the number of neighbors considered 
during predictions. The "param_weights" column indicates 
the weight function used in the KNN algorithm, with "uni-
form" suggesting an equal contribution from all neighbors 
and "distance" implying that closer neighbors have more 
influence on predictions.

The "mean_test_score" column represents the aver-
age score of the model on the test data for a given set of 
hyperparameters. Higher scores indicate superior model 
performance. The "std_test_score" column denotes the 
standard deviation of test scores across folds or splits, 

Table 6   Optimal hyperparameter configurations for K-Nearest Neigh-
bors classifier: a GridSearchCV analysis

param_n_
neighbors

param_weights mean_test_score std_test_score

3 Distance 0.992986 0.001009
6 Distance 0.992027 0.000902
3 Uniform 0.991724 0.001116
9 Distance 0.991277 0.000729
12 Distance 0.990286 0.000728
6 Uniform 0.988337 0.000977
9 Uniform 0.986324 0.000991
12 Uniform 0.984247 0.001487
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providing insight into the model's consistency. The findings 
reveal that the most successful configuration involves three 
neighbors with distance weighting, achieving a mean test 
score of approximately 99.30%. Arrangements with 6 and 
9 neighbors closely follow, both using distance weighting. 
Notably, distance-weighted configurations consistently out-
perform those with uniform weighting. The results suggest 
that a smaller number of neighbors, particularly 3, coupled 
with distance weighting, leads to optimal performance for 
this KNN classifier and dataset. Standard deviations in 
the "std_test_score" column are relatively low, indicating 

consistent model performance across different folds. These 
insights are crucial for configuring KNN models in similar 
contexts, emphasizing the significance of tuning the number 
of neighbors and the weighting scheme for enhanced clas-
sification accuracy.

Figure  7 shows a receiver operating characteristic 
(ROC) curve for a multi-class classification problem. The 
ROC curve is a useful tool for evaluating the performance 
of a classifier, as it shows the trade-off between true posi-
tive rate (TPR) and false positive rate (FPR) at different 
classification thresholds. The ROC curve in the figure 

Fig. 7   Multiclass ROC curve for 19 classes with KNN model



Journal of Petroleum Exploration and Production Technology	

shows that the classifier performs very well for all classes, 
with AUC values of 0.99 or higher for all classes except 
for class 13 and class 14, which have AUC values of 0.99. 
This means that the classifier can accurately identify posi-
tive examples (i.e., examples belonging to the target class) 
while minimizing the number of false positives (i.e., mod-
els incorrectly classified as belonging to the target class).

One way to interpret the ROC curve is to imagine that 
you have a classifier that is used to detect disease. The 
TPR is the proportion of diseased patients correctly identi-
fied by the classifier. At the same time, the FPR is the pro-
portion of non-diseased patients incorrectly identified by 
the classifier as diseased. A high TPR means the classifier 
is good at identifying diseased patients, while a low FPR 
implies that the classifier avoids false positives. In Fig. 7, 
we can see that the ROC curve for each class is close to 
the top-left corner of the graph. This means the classifier 
can achieve a high TPR while maintaining a low FPR. For 
example, class 0 has an AUC of 0.99, which means that the 
classifier can correctly identify 99% of diseased patients 
while only misclassifying 1% of non-diseased patients as 
diseased. Overall, the ROC curve in the figure shows that 
the classifier is a very good performance. It can accurately 
identify positive examples while minimizing the number 

of false positives, which is an important goal for many 
classification tasks.

The diagonal elements of the confusion matrix represent 
the number of correct predictions for each class. The off-
diagonal elements represent the number of incorrect predic-
tions. For example, the entry in row 0, column 1, represents 
the number of examples incorrectly predicted as class 1, 
even though they belonged to class 0. The accuracy of the 
KNN model in the figure is 99.9%, which means that it cor-
rectly predicted the class of 99.9% of the examples in the test 
set. However, it is important to note that the accuracy score 
can be misleading for multi-class classification problems, 
especially when the classes are imbalanced. For example, 
if there are very few examples of class 10 in the test set, the 
KNN model can achieve a high accuracy score by simply 
predicting class 0 for all examples. A better way to evaluate 
the performance of the KNN model is to look at the preci-
sion, recall, and F1 score for each class. These metrics are 
more robust to class imbalance and provide a more complete 
figure of the model's performance (Figs. 8 and 9).

In summary, the presented model exhibits exceptional 
performance across all classes, demonstrating high preci-
sion, recall, and F1-Score. Notably, it distinguishes certain 
classes, such as 2, 11, 12, and 17, as evidenced by their 

Fig. 8   Confusion matrix for K-Nearest Neighbors classification
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perfect precision, recall, and F1-Score (Table 7). It is impor-
tant to consider the specific requirements and characteristics 
of the classification problem when interpreting these perfor-
mance metrics.

The random forest classifier

As highlighted in "Random forest (RF)" section, two key 
parameters, namely tree and mtry, significantly impact the 
performance of Random Forest (RF) classifiers. In this 
study, we engaged in hyperparameter tuning, exploring vari-
ous parameters to achieve optimal accuracy. The hyperpa-
rameter tuning involved adjusting (n_estimator, max_depth, 
and max_feature), each with a specified range, as depicted 
in Table 8. Following the tuning process, the most effective 
parameters were identified as {'max_depth': 6, 'max_fea-
tures': 6, 'n_estimators': 100}.

The configuration {'max_depth': 6, 'max_features': 6, 
'n_estimators': 100} stands out as the best-performing, 
achieving a mean test score of 0.985 and ranking first. 
This suggests that a deeper tree ('max_depth': 6), using 
more features ('max_features': 6), and a moderate number 
of trees ('n_estimators': 100) contribute to higher accuracy. 
Higher standard deviations in some configurations, such 
as {'max_depth': 3, 'max_features': 1, 'n_estimators': 124}, 
indicate more variability in performance. The 'n_estima-
tors' parameter varies between 100 and 145, with no clear 

Fig. 9   Confusion matrix for random forest classifier

Table 7   KNN classification report: high-performance metrics across 
diverse classes

Precision Recall f1-score Support

1 0.96 0.94 0.95 232
2 1.00 1.00 1.00 1523
3 0.99 0.99 0.99 743
4 1.00 0.98 0.99 243
5 0.97 0.99 0.98 425
6 0.97 0.97 0.97 150
7 0.98 0.98 0.98 128
8 1.00 1.00 1.00 849
9 0.98 0.98 0.98 258
10 0.98 1.00 0.99 227
11 1.00 1.00 1.00 4193
12 1.00 1.00 1.00 1059
13 0.99 0.98 0.98 436
14 0.97 0.97 0.97 408
15 0.98 0.99 0.98 92
16 0.99 0.99 0.99 299
17 1.00 1.00 1.00 2903
18 1.00 0.99 1.00 1329
19 0.99 0.96 0.97 151
Accuracy 0.99 15,648
Macro avg 0.99 0.98 0.98 15,648
Weighted avg 0.99 0.99 0.99 15,648



Journal of Petroleum Exploration and Production Technology	

pattern indicating an optimal number of trees. The hyper-
parameter tuning process identified a configuration that 
maximizes mean test scores, shedding light on effective 
hyperparameter values for this Random Forest model. Fur-
ther validation on a separate test set is recommended for 
robust performance assessment (Table 9).

Based on the classification report, the random forest 
classifier performs well overall, with a weighted average 
F1 score of 0.98 and an accuracy of 0.99.

•	 Precision and recall scores are strong (mostly at or very 
close to 1.00) for most classes, indicating the model 
reliably predicts those classes and does not make many 
errors.

•	 Classes 7 and 13 have lower precision, meaning the 
model makes incorrect predictions on those classes when 
it predicts them. But recall is still high, meaning it cor-
rectly finds most examples of those classes.

•	 Class 6 and 15 have lower recall, so the model struggles 
to identify some examples of those classes (about 26% 
of class 6 missed, 3% of class 15). Precision is still high 
when it does predict those classes.

•	 The model seems robust to a class imbalance with both 
macro-average and weighted-average F1 scores at 0.93 
and 0.98. Performance across minority classes does not 
drop off.

In summary, I generally performed extremely strongly, 
with just a few classes representing opportunities for 
improvement. The focus could be distinguishing classes 
6, 7, 13, and 15. But generally an excellent, well-balanced 
classifier.

Figure 10 shows a decision tree visualization from a 
random forest classifier. The tree has a maximum depth 
of 2, meaning no node in the tree is more than two levels 
deep. The tree leaves are labeled with the class to which 
most of the training examples that reach that leaf belong. 
The tree is used to classify a set of models by starting at 
the root node and asking a question about one of the fea-
tures. The answer to the question determines which child 
node of the root node to go to. This process is repeated at 
each child node until a leaf node is reached. The class label 
of the leaf node is then used to classify the example. The 
"TRPM RT 0.516" at the top of the tree is the value of the 
"TRPM_RT" feature used to split the data at the root node. 
The "gini = 0.863" is the Gini impurity of the root node. 
The Gini impurity measures how well the data is split at a 

Table 8   Random forest 
hyperparameter tuning results

Params mean_test_score std_test_score rank_
test_
score

{'max_depth': 6, 'max_features': 6, 'n_estimators': 100} 0.984741972 0.001879929 1
{'max_depth': 3, 'max_features': 1, 'n_estimators': 124} 0.768892794 0.011657568 9
{'max_depth': 6, 'max_features': 3, 'n_estimators': 104} 0.974820259 0.00153778 3
{'max_depth': 5, 'max_features': 2, 'n_estimators': 107} 0.915258028 0.005175264 6
{'max_depth': 5, 'max_features': 3, 'n_estimators': 112} 0.928726634 0.006858747 5
{'max_depth': 4, 'max_features': 5, 'n_estimators': 105} 0.882664962 0.001043287 7
{'max_depth': 6, 'max_features': 3, 'n_estimators': 145} 0.975139799 0.001706175 2
{'max_depth': 5, 'max_features': 4, 'n_estimators': 141} 0.944032593 0.006297064 4
{'max_depth': 3, 'max_features': 1, 'n_estimators': 104} 0.760760505 0.014307074 10
{'max_depth': 3, 'max_features': 6, 'n_estimators': 115} 0.813612398 0.011918066 8

Table 9   Classification report for random forest classifier

Precision Recall f1-score Support

1 1.00 1.00 1.00 232
2 1.00 1.00 1.00 1523
3 0.97 1.00 0.99 743
4 1.00 1.00 1.00 243
5 1.00 1.00 1.00 425
6 1.00 0.74 0.85 150
7 0.00 0.00 0.00 128
8 0.97 1.00 0.98 849
9 1.00 1.00 1.00 258
10 0.99 1.00 0.99 227
11 1.00 1.00 1.00 4193
12 1.00 1.00 1.00 1059
13 0.74 1.00 0.85 436
14 1.00 1.00 1.00 408
15 1.00 0.97 0.98 92
16 1.00 0.91 0.95 299
17 1.00 1.00 1.00 2903
18 1.00 1.00 1.00 1329
19 0.99 1.00 1.00 151
Accuracy 0.99 15,648
Macro avg 0.93 0.93 0.93 15,648
Weighted avg 0.98 0.99 0.98 15,648
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node. A lower Gini impurity means that the data is purer 
at that node and that it is easier to classify the examples 
that reach it. The "samples 39,743" value at the root node 
is the number of training examples that get that node. The 
"value [949, 5774, 2975, 1041, 1953, 617, 606, 3269, 996, 
787, 16,913, 4206, 1785, 1741, 298, 1053, 11,663, 5423, 
5411]" is the number of examples in each class that reach 
the root node. The "class = y[10]" value at the root node 
is the majority class of the examples that match the root 
node. This Figure is a good example of how decision trees 
can be used to classify data. The tree is relatively simple 
but can still achieve accuracy on many tasks.

The support vector machine classifier

Similarly, in the case of SVM, our research involves hyper-
parameter tuning with several key parameters. The param-
eters subject to tuning include (C, kernel, and gamma). For 
the C parameter, we explore a range of values (1, 5, 10), 
while the kernel parameter is adjusted between Linear and 
RBF. Lastly, the gamma parameter is varied with options 
of 'scale' and 'auto,' with further details in Table 10. Fol-
lowing the tuning process, the optimal parameter configu-
ration identified is {'C': 10, 'gamma': 'scale,' 'kernel': 'rbf'}. 
Table 10 summarizes the results of hyperparameter tuning 
for an SVM (Support Vector Machine) algorithm using a 

Fig. 10   Random forest classifier—decision tree visualization (max depth = 2)

Table 10   SVM hyperparameter 
tuning results

param_C param_kernel param_gamma mean_test_score std_test_score

10 rbf Scale 0.992603 0.000969
10 rbf Auto 0.992603 0.000990
5 rbf Scale 0.988784 0.001492
5 rbf Auto 0.988784 0.001492
10 Linear Scale 0.987059 0.001316
10 Linear Auto 0.987059 0.001316
5 Linear Scale 0.984359 0.001679
5 Linear Auto 0.984359 0.001679
1 Linear Scale 0.975555 0.001901
1 Linear Auto 0.975555 0.001901
1 rbf Scale 0.973798 0.001572
1 rbf Auto 0.973798 0.001595
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Grid Search approach. This table provides information about 
different combinations of hyperparameters and their corre-
sponding mean test scores and standard deviations. The best-
performing model has an 'rbf' kernel, 'scale' gamma, and a 
C value of 10, achieving a mean test score of approximately 
99.26% with a standard deviation of around 0.00097. The 
table also provides insights into the performance of different 
combinations of hyperparameters, allowing you to compare 
linear and radial basis function kernels, different gamma 
values, and various levels of regularization (C values). This 
table can guide you in selecting the optimal hyperparameters 
for your SVM model. You may choose the hyperparameter 
combination that maximizes the mean test score while con-
sidering the standard deviation to ensure stability across dif-
ferent cross-validation folds (Table 11).

Figure  11 shows the confusion matrix for the SVM 
model's predictions on the test set. The confusion matrix 
visualization shows the model is very accurate, with most 
predictions along the diagonal indicating correct classifica-
tion. Most predictions fall on the diagonal, indicating pre-
cise type. The classification report further backs this up. 
With ~ 15 k test samples, the SVM achieves 99% accuracy. 
Precision, recall, and F1-score for each class are also very 
high-most are above 95%, and many are at 100%. This indi-
cates the model is very good at correctly predicting each 
class. The strong diagonal confusion matrix shows the model 
skillfully discriminates between the different classes. The 

Table 11   SVM classification report (best estimator)

Precision Recall f1-score Support

1 0.97 0.99 0.98 232
2 0.99 1.00 1.00 1523
3 1.00 0.99 0.99 743
4 0.92 0.99 0.95 243
5 1.00 1.00 1.00 425
6 0.90 0.99 0.95 150
7 0.94 0.99 0.97 128
8 0.98 0.98 0.98 849
9 0.98 1.00 0.99 258
10 1.00 1.00 1.00 227
11 1.0 1.00 1.00 4193
12 1.00 1.00 1.00 1059
13 0.99 0.96 0.97 436
14 0.99 0.98 0.98 408
15 0.98 0.99 0.98 92
16 1.00 0.95 0.97 299
17 1.00 1.00 1.00 2903
18 1.00 0.98 0.99 1329
19 0.99 0.99 0.99 151
Accuracy 0.99 15,648
Macro avg 0.98 0.99 0.98 15,648
Weighted avg 0.99 0.99 0.99 15,648

Fig. 11   SVM confusion matrix
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class-wise prediction reliability offered in the classification 
report is also very high. This analysis validates the SVM's 
exemplary performance on this dataset.

Figure 12 appears to show the learning curve of a machine 
learning model. The training score measures how well the 
model performs on the trained data. The cross-validation 
score measures how well the model acts on data it was not 
trained on. This is an important metric because it helps 
ensure that the model is not simply overfitting the training 
data. The graph shows that the training score increases as 
the number of training examples increases. This is expected, 
as the model is learning from the data. The cross-validation 
score is also growing but at a slower rate. This suggests that 
the model is starting to overfit the training data. The ideal 
situation is for the training and cross-validation scores to 
be as close together as possible. This would indicate that 
the model is learning from the data without overfitting. 
The gap between the training and cross-validation scores 
is relatively small. This suggests that the model is doing a 
good job of learning from the data without overfitting. The 
graph shows that the model is learning from the data and not 
overfitting the training data. However, there is still room for 
improvement.

Multilayer perceptron (MLP) classifier

The multilayer perceptron (MLP) is a class of artificial 
neural networks that utilizes backpropagation for training. 
MLPs contain multiple layers of nodes, including an input 
layer, one or more hidden layers, and an output layer. In 
this study, the MLP classifier was implemented using the 
Keras deep learning library in Python. For the MLP model, 
a sequential model was defined with an input layer size equal 

to the number of features, two hidden layers with 32 and 16 
nodes, respectively, and an output layer with a size equal 
to the number of target classes (19 class types). The hid-
den layers used the Rectified Linear Unit (ReLU) activa-
tion function, and the output layer used softmax activation 
to generate probabilistic predictions. The MLP model was 
trained for 50 epochs using the Adam optimizer and cat-
egorical cross-entropy loss function. To prevent overfitting, 
L2 regularization was applied to the weights. The model 
achieved a training accuracy 1 and was evaluated on the test 
set data. Key strengths of MLPs include the ability to model 
complex nonlinear relationships, adaptability to various 
problems, and use of backpropagation to learn deep feature 
representations. However, challenges include longer train-
ing times, the need for parameter tuning, and susceptibility 
to overfitting. Overall, the MLP model performed compa-
rable to the other classifiers on this dataset for predicting 
geological formation tops. Table 12 shows different MLP 
architectures experimented with by varying the number of 
layers, nodes per layer, activation functions, and regulariza-
tion techniques. A 3-layer network with 64 and 32 nodes and 
ReLU or Softmax activation produced the best results, with 
Adam optimizer and Categorical Cross entropy loss func-
tion helping prevent overfitting. The tuning process helped 
determine the optimal structure and hyperparameters for the 
MLP model on this dataset.

In Table 12, three experiments with varying MLP archi-
tectures were tested, each characterized by specific hyper-
parameter settings. Experiment 1 reveals a moderate level of 
accuracy at 0.95. Given the chosen architecture and hyperpa-
rameters, the model performs reasonably well. It serves as a 
baseline for comparison with other experiments. Experiment 
2 exhibits a significant improvement in accuracy, reaching 

Fig. 12   Support vector machine 
learning curve
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0.98. The increased number of epochs, hidden layers, and 
neurons per layer likely contributed to enhanced model 
performance. This suggests that a more complex architec-
ture can capture intricate patterns in the data, leading to 
improved accuracy. Experiment 3 demonstrates a perfect 
accuracy of 1. While achieving 100% accuracy may sug-
gest overfitting to the training data, using a lower learning 
rate, fewer epochs, and a more intricate architecture might 
have contributed to this result. It is essential to assess the 
model's generalization performance on unseen data to ensure 
its effectiveness in real-world scenarios. In summary, these 

experiments showcase the impact of hyperparameter tuning 
on MLP model performance. Experiment 2, with a learning 
rate of 0.01 and a more complex architecture, stands out as 
the top performer, achieving the highest accuracy of 0.98. 
The choice of hyperparameters significantly influences the 
model's ability to learn and generalize from the training data 
(Fig. 13).

The multilayer perceptron (MLP) model demonstrates 
very strong performance in multi-class classification of 
handwritten digits, as evidenced by the confusion matrix 
and classification report. The model achieves an overall 

Table 12   MLP architectures 
tested

Experiment 1 2 3

Learning rate 0.001 0.01 0.0001
Epochs 10 15 8
Batch size 32 64 16
Hidden layers 1 2 3
Neurons per layer 64 128,64 64, 32
Activation function ReLU, Softmax ReLU, Softmax ReLU, Softmax
Optimizer Adam Adam Adam
Loss function Categorical Crossentropy Categorical Crossentropy Categorical Crossentropy
Accuracy 0.95 0.98 1

Fig. 13   Predictive accuracy—MLP confusion matrix
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accuracy of 0.98 on the test set, correctly classifying 98% 
of the 15,648 test samples. This high accuracy indicates 
reliable predictive capabilities across the 20 different digit 
classes. Precision, recall, and F1 scores are mostly in the 
excellent 0.94–0.99 range across categories, signaling that 
the model predicts each true type with high precision and 
retrieves most samples within each category (high recall), 
leading to robust F1 balances. The macro-averaged preci-
sion, recall, and F1 scores are 0.96, 0.95, and 0.95, respec-
tively, confirming reliable differentiation, particularly for 
low-volume classes in the test dataset. Weighted averages 
approaching the accuracy score further establish that most 
errors derive from smaller classes. While classes 6 and 15 
exhibit comparatively lower scores, suggesting some diffi-
culty differentiating these specific digits, this does not sub-
stantially impact overall performance given the much greater 
distribution of other classes in the dataset. In summary, pre-
cise class-wise metrics nearing or exceeding 0.95 and 98% 
test accuracy underscore MLP's proficiency in distinguishing 
handwritten digits based on the provided test set evaluation 
data and labels. The model achieves excellent inter-class 
differentiation to classify 98% of all samples successfully.

Figure 14 shows the side-by-side visualization of weight 
heatmaps for each layer in the neural network model. Each 
subfigure illustrates the spatial distribution of weights in 
the corresponding layer, providing insights into the learned 
features and relationships. The color intensity represents the 
magnitude of the importance, with warmer colors indicating 
higher values. These weight heatmaps offer a glimpse into 
the intricate patterns and structures captured by the neural 
network during the training process.

Figure 15 shows a model's performance over time, with 
an accuracy plot on top and a loss plot on the bottom.

•	 Accuracy plot analysis:

–	 The training accuracy starts around 0.6 and reaches 
near 1.0 after around 15 epochs. This indicates the 
model is learning from the training data.

–	 The validation accuracy starts near 0.6 as well. It 
reaches a peak of about 0.8 by around eight epochs, 
then levels off and decreases slightly after that.

–	 The gap between training and validation accuracy 
grows over time. This suggests overfitting is occur-
ring, where the model performs better on training 
data than new validation data.

•	 Loss plot analysis:

–	 The training loss decreases rapidly in the first five 
epochs, indicating the model is optimizing and learn-
ing quickly.

–	 After five epochs, training loss continues decreasing 
but at a slower pace. This signals the model is still 
improving but at a slower rate.

–	 Validation loss mirrors training loss early on, 
decreasing rapidly rather than more slowly. But 
after 5–8 epochs, validation loss levels off and stops 
improving much.

This model exhibits signs of overfitting, performing bet-
ter on training data than validation data over time. The best 
weights are likely at 5–8 epochs when validation accuracy 
peaks and validation loss still decreases. To improve the 
model, regularization techniques could be added to reduce 
overfitting. But after ~ 8 epochs, performance on new data 
does not seem to improve much or begins degrading, sug-
gesting training should likely be stopped by then.

Fig. 14   Weight heatmaps of neural network layers: visual representa-
tion of the learned weights in each layer of the model
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High Accuracy in Machine Learning Models

Throughout the modeling process employing various 
machine learning algorithms, including Support Vector 
Machines (SVM), Random Forest, K-Nearest Neighbors 
(KNN), and Multilayer Perceptron (MLP), notable differ-
ences in accuracy scores were observed. Specifically, when 
applied to the training dataset, the Multilayer Perceptron 
(MLP) algorithm demonstrated a commendable accuracy 
score of 1. Also, SVM, Random Forest, and  K-Nearest 
Neighbors (KNN)  algorithms exhibited slightly lower 
accuracy score 0.99. The modeling procedures utilized the 
training dataset detailed in section “For this investigation, 
we gathered the”, Approach and Procedures. These find-
ings suggest that, in predicting geological formation tops 
in hydrocarbon reservoir exploration and production, the  
MLP algorithm excelled in accuracy compared to other 
algorithms. However, selecting the most suitable algorithm 
involves considering additional factors such as computa-
tional efficiency, interpretability of results, and application-
specific requirements. Further assessment and testing are 
imperative to validate the reliability and applicability of the 

chosen model. There is a considerable disparity between 
these training dataset results and the accuracy scores 
obtained when predicting the blind dataset, falling within 
the range of 0.91–0.99. Several factors may contribute to this 
decrease in model performance on the blind dataset. Overfit-
ting is one potential factor where the model becomes exces-
sively tailored to the training data and struggles to generalize 
to unseen data. Overfitting may arise from a model's com-
plexity or insufficient training data relative to the problem's 
intricacy. Furthermore, an imbalance in sample numbers or 
class distribution in the blind dataset might lead the model 
to favor predictions for the majority class. Other influences, 
such as inadequate parameter tuning, suboptimal data qual-
ity, or other sources of error, can also impact the accuracy 
of the blind dataset. Therefore, a comprehensive analysis 
is essential to pinpoint the reasons behind the performance 
decline on the blind dataset, and strategies like improved 
parameter tuning, regularization techniques, appropriate data 
preprocessing methods, or additional data collection may be 
applied to enhance the model's ability to accurately predict-
ing formation tops or rock types in real-world scenarios. 
Refer to Table 13 for a detailed comparison of accuracy 
scores across machine learning models.

Table  13 presents predictions generated by a model 
trained on the training datasets, as outlined in the evalua-
tion on test sets section. In contrast, the blind sets represent 
outcomes obtained when making predictions using data that 
has not been previously used or encountered. Figure 16 com-
pares the predicted formation tops from four models (KNN, 
SVM, MLP, and RF) to the actual formation tops. Figure 16 
shows that all four models could accurately predict the for-
mation tops. The MLP model had the smallest average error, 
followed by the SVM, KNN, and RF models.

Feature importance analysis

To gain a deeper understanding of which parameters are 
most influential in driving the predictions of our for-
mation tops models, we employed two model-agnostic 
feature importance analysis techniques—Permutation 
Feature Importance (PFI) and Shapley Additive exPlana-
tions (SHAP). Permutation Feature Importance evaluates 

Fig. 15   Model performance over time. the top subplot is the accuracy 
plot showing training and validation performance, and the Bottom is 
the loss plot showing training and validation performance

Table 13   Comparative accuracy scores of machine learning models

Chosen model Evaluation of 
models on test 
sets

Evaluation of 
models on blind 
sets

K-Nearest Neighbors (KNN) 0.99 0.93
Random forest (RF) 0.99 0.91
Support vector machines (SVM) 0.99 0.95
Multilayer perceptron (MLP) 1 0.99
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the predictive power of each feature by calculating the 
decrease in the model's evaluation metric (such as accu-
racy) when the feature's values are randomly shuffled. 
This breaks the original association between the feature 
and the target variable. A large decrease in the evalua-
tion metric after shuffling indicates higher feature impor-
tance. On the other hand, SHAP explains the model's 
predictions by computing Shapley values for each fea-
ture. These Shapley values represent the feature's contri-
bution in "pushing" the forecast away from the expected 
value. Features with large absolute Shapley values are 
considered highly impactful on the prediction. We sup-
plemented the analysis with visualizations of the impor-
tance of each model's SHAP and PFI features, as shown 
in Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 and 27 
below. By leveraging both PFI and SHAP for our KNN, 
Random Forest, SVM, and MLP models, we obtained the 
following insights:

o	 KNN
o	 According to PFI, HKLD, SWOB, SPPA, DEPT, and 

RPM, they have emerged as the most important features. 
This implies that these two features strongly influence 
determining the nearest neighbors for a data point, which 
drives the KNN model's formation tops prediction.

p	 The SHAP analysis also identified DEPT as a top con-
tributor. Additionally, RPM, ECD_MWD, SPPA, and 
HKLD greatly impacted predictions. The agreement 
between PFI and SHAP provides confidence about the 
significant role of DEPT, RPM, SPPA, and HKLD in the 
KNN model.

The resulting SHAP summary plot represents the com-
bined SHAP values across all classes. Each feature's impor-
tance and impact on the model's output are visualized. The 
y-axis of the plot typically represents the features, and the 
x-axis represents the average magnitude of the SHAP val-
ues. Each dot in the plot corresponds to a specific instance 
in your dataset.

The SHAP plot above reveals that DEPT had the highest 
SHAP values, indicating their strong influence on predic-
tions in the KNN model. RPM, ECD_MWD, SPPA, and 
HKLD also had a substantial impact. This aligns with the 
PFI analysis. Conversely, features like BVEL, Stick_RT, 
SWOB, TFLO, BPOS, and TQA have lower SHAP values, 
indicating their influence is less pronounced. The plot also 
shows that the SHAP values are generally positive for higher 
feature values, meaning that increasing the importance of 
these features tends to increase the model's output. However, 
a few exceptions exist, such as BVEL, where expanding the 
value decreases the model's production.

The PFI bar chart shows the significant decrease in KNN 
model accuracy when ROP5 and TFLO were used, demon-
strating their low permutation importance. This validates the 
findings from the SHAP analysis.

Here is a summary of the key points of the KNN model 
analysis:

•	 According to both PFI and SHAP analyses, DEPT, RPM, 
HKLD, SPPA, and SWOB were the most important fea-
tures for predicting geological formation tops. These fea-
tures had the strongest influence on determining nearest 
neighbors and model predictions.

•	 SHAP analysis also identified ECD_MWD as having a 
high impact. There was an agreement between PFI and 
SHAP on the significant roles of DEPT, RPM, SPPA, and 
HKLD.

•	 The SHAP summary plot visualized each feature's 
impact. DEPT had the highest SHAP values, followed 
by RPM, ECD_MWD, SPPA, and HKLD. Features like 
BVEL, Stick_RT, SWOB, and TFLO had less impact.

Fig. 16   Predicted vs actual geological formation tops for all models
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•	 Higher feature values tended to increase model output, 
with some exceptions like BVEL.

•	 The PFI analysis validated the SHAP findings—ROP5 
and TFLO produced significant decreases in model 
accuracy when permuted, demonstrating their low 
importance.

In summary, DEPT, RPM, HKLD, SPPA, and ECD_
MWD emerged as the most influential features in the KNN 
model for predicting geological formation tops. The PFI 
and SHAP analysis techniques aligned on the key variables 
driving the model.

•	 Random Forest

–	 DEPT was flagged as a highly impactful feature by 
PFI. This can be attributed to its likely involvement 
in key decision tree splits within the Random For-
est ensemble.

–	 SHAP analysis concurred on the importance of 
DEPT. It also highlighted RPM as an additional key 
driver of predictions, aligning with the PFI results.

The SHAP plot highlights DEPT and RPM as highly 
influential features in the Random Forest model based on 
their SHAP values. TFLO also had a noticeable impact.

The PFI chart reveals the substantial Random Forest 
model accuracy dropped when ROP5, TQA, and BVEL were 
used, confirming their low permutation importance. BVEL 
also showed a significant accuracy decrease, agreeing with 
the SHAP results.

Figure 22 shows a graph showing the effect of various 
parameters on model output for prediction for Sleipner 
formation top. The chart has two axes: the x-axis shows 
the feature value, and the y-axis shows the SHAP value 
(impact on model output). The SHAP value measures 
how much each feature contributes to the model's pro-
duction. The graph shows that the parameters with the 
highest impact on the model output are DEPT, RPM, 
ECD_MWD, and TFLO. These parameters have SHAP 

Fig. 17   SHAP feature importance plot for the KNN model
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Fig. 18   SHAP summary dot 
plot for all classes—visualizing 
the impact of features on predic-
tions for geological formation 
tops using SHAP values

Fig. 19   PFI (permutation feature importance) bar chart for KNN
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values that are greater than 0.2. The parameters with 
the lowest impact on the model output are Stick_RT, 
TRPM_RT, and BVEL. These parameters have SHAP 

values that are less than − 0.2. The graph also shows 
that the relationship between the feature and SHAP val-
ues is not always linear. For example, the SHAP value 

Fig. 20   SHAP feature impor-
tance plot for Random Forest

Fig. 21   PFI (permutation feature importance) bar chart for Random Forest
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for DEPT decreases as the feature value increases, while 
the SHAP value for RPM increases as the feature value 
increases. Overall, the graph provides a useful visualiza-
tion of the impact of various parameters on model output. 
This information can be used to identify the model's most 
important parameters and understand how the model is 
making predictions.

This plot illustrates the contributions of individual fea-
tures to the model prediction. Positive SHAP values push the 
model prediction above the expected value, while negative 
SHAP values pull it below. Components with larger absolute 
SHAP values have a greater impact on the model output for 
this specific instance.  Figure 23 is a Force plot showing the 
SHAP values for different features: DEPT, RPM, HKLD, 
TQA, TRPM_RT, and TFLO. The graph shows that DEPT 
and RPM have the highest impact on the model output, fol-
lowed by HKLD and TQA. The model's prediction accuracy 
increases by increasing parameters DEPT, RPM, HKLD, and 
TQA. Also, reducing the TFLO and TRPM_RT parameters 
increases the model's prediction accuracy.

Here is a summary of key points about the Random Forest 
model analysis:

•	 Permutation Feature Importance (PFI) identified DEPT 
as the most impactful feature, with RPM also being 
highly important. This aligns with the SHAP analysis.

•	 SHAP values highlighted DEPT and RPM as the main 
drivers of model predictions. TFLO also had a noticeable 
impact.

•	 The SHAP Summary Dot Plot visualized the impact of 
different features on predictions for the Sleipner forma-
tion top. DEPT, RPM, ECD_MWD, and TFLO had the 
highest SHAP values, indicating they are most important 
for the model.

•	 The SHAP Force Plot illustrated how individual features 
contribute to the model's predictions. It showed that 
DEPT and RPM had the greatest influence, followed by 
HKLD and TQA. Increasing DEPT, RPM, HKLD, and 
TQA increases prediction accuracy, while decreasing 
TFLO and TRPM_RT also improves accuracy.

Fig. 22   SHAP summary dot 
plot for class 16 (Sleipner 
Fm.)—visualizing the impact 
of features on predictions for 
Sleipner formation top using 
SHAP values

Fig. 23   SHAP force plot for random forest model explanation
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In summary, both PFI and SHAP analyses consistently 
pointed to DEPT and RPM as the most impactful features in 
the Random Forest model. The visual plots provided further 

confirmation and granular details on how the parts affect the 
predictions. This information can guide feature engineering 
efforts to improve model performance.

Fig. 24   SHAP feature impor-
tance plot for SVM

Fig. 25   PFI (permutation feature importance) bar chart for SVM
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•	 SVM

–	 DEPT, HKLD, and SWOB emerged as the most rel-
evant parameters by permutation importance. This 
indicates their role in orienting the SVM model's 
maximum margin hyperplanes.

–	 SHAP feature importance also pointed to DEPT, 
HKLD, and RPM as key features. TFLO was also 
identified as impactful, agreeing with the PFI find-
ings.

The SVM SHAP plot above indicates DEPT, HKLD, and 
RPM as key parameters based on their high SHAP values. 

Fig. 26   SHAP summary dot 
plot for class 10 (No Formal 
Name_1_Hordaland Gp.)- Visu-
alizing the impact of features 
on predictions for No Formal 
Name_1_Hordaland Gp. Forma-
tion top using SHAP values

Fig. 27   PFI (permutation feature importance) bar chart for MLP
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The influence of TFLO is also observable. The parameters 
with the highest average impact for each class are:

•	 Sleipner Fm.: DEPT
•	 Lista Fm.: HKLD
•	 Tor Fm.: RPM
•	 Balder Fm.: TFLO
•	 No Formal Name_Nordland Gp.: SPPA
•	 No Formal Name_2_Hordaland Gp.: ECD_MWD
•	 Hugin Fm.: TQA
•	 Ty Fm.: TRPM RT
•	 Grid Fm.: Stick_RT
•	 No Formal Name_1_Hordaland Gp.: BVEL
•	 Sele Fm.: BPOS
•	 Ekofisk Fm.: ROP5

These parameters are the most important for predicting 
the target class for each formation. For example, DEPT is the 
most important parameter for predicting the target class for 
Sleipner Fm., while HKLD is the most important parameter 
for predicting the target class for Lista Fm.

The PFI chart shows the considerable declines in SVM 
accuracy when ROP5 and BVEL were used, validating their 
low permutation importance. DEPT and HKLD also exhib-
ited a noticeable extent.

Here is a summary of the key points about the SVM 
model analysis:

•	 The permutation importance analysis identified DEPT, 
HKLD, and SWOB as the most relevant parameters for 
orienting the SVM model's maximum margin hyper-
planes.

•	 SHAP feature importance also highlighted DEPT, 
HKLD, and RPM as key features, along with TFLO. This 
aligns with the permutation importance findings.

•	 The SHAP plot shows that DEPT, HKLD, and RPM have 
a high impact based on their SHAP values. TFLO's influ-
ence is also observable.

•	 The parameters with the highest average impact for pre-
dicting each formation class are:

–	 Sleipner Fm: DEPT
–	 Lista Fm: HKLD
–	 Tor Fm: RPM
–	 Balder Fm: TFLO
–	 No Formal Name_Nordland Gp: SPPA

The permutation importance chart validated the low 
importance of ROP5 and BVEL based on the decline in 
accuracy when they were used. DEPT and HKLD also 
showed noticeable importance.

In summary, DEPT, HKLD, RPM, and TFLO emerge as 
key parameters in the SVM analysis, having an important 

role in prediction and model orientation. The permutation 
and SHAP methods validate one another in identifying influ-
ential features.

•	 MLP

–	 PFI showed DEPT, HKLD, and RPM as central fea-
tures in the neural network-based MLP model.

–	 SHAP analysis corroborated the high importance of 
HKLD, DEPT, and RPM in influencing predictions.

The above SHAP plot shows that some features, such as 
HKLD, DEPT, and RPM, impact the model output more 
than others, such as ECD_MWD and TFLO. The scatter plot 
also shows that some features positively affect the model 
output (e.g., HKLD and DEPT), while others negatively 
impact (e.g., RPM and BVEL). Also, the parts BVEL, ROP5, 
and TQA have a negative SHAP value, which decreases the 
model output.

The PFI chart displayed the substantial drops in MLP 
accuracy when BVEL and ROP5 were used, highlighting 
their insignificance by permutation importance.

Here is a summary of the key points of the MLP model 
analysis:

•	 PFI and SHAP analysis showed that HKLD, DEPT, and 
RPM were the most important features influencing the 
MLP model's predictions. They had the greatest positive 
impact.

•	 BVEL, ROP5, and TQA were found to have a negative 
impact, decreasing the model output. The PFI chart 
showed substantial drops in MLP accuracy when BVEL 
and ROP5 were permuted, indicating they were insignifi-
cant for the model.

•	 The SHAP summary plot visually depicts the impact 
of different features on the model's predictions. HKLD, 
DEPT, and RPM had high positive SHAP values, sig-
nificantly increasing the projection. BVEL had a strong 
negative impact.

•	 The PFI feature importance chart ranks the features by 
their importance, with the components causing the big-
gest drop in accuracy when removed as being the most 
important. This aligns with the high significance of 
HKLD, DEPT, and RPM in the SHAP and PFI analyses.

In summary, HKLD, DEPT, and RPM are the most signif-
icant drivers of the MLP model, while BVEL and ROP5 pro-
vide little predictive value. The SHAP and PFI techniques 
produced consistent results about the main factors influ-
encing the model. In summary, DEPT, RPM, and HKLD 
consistently emerged as highly influential parameters across 
all four machine learning models by both PFI and SHAP 
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analyses. This highlights their overarching significance as 
inputs for reliable geological formation tops prediction. 
The strong agreement between the PFI and SHAP methods 
reinforces the validity of this feature importance analysis. 
These actionable insights can direct efforts toward feature 
engineering and selection to enhance model performance.

The key findings across the models are summarized 
below:

•	 KNN Model

The PFI and SHAP analyses aligned in identifying DEPT, 
RPM, HKLD, SPPA, and SWOB as the most important fea-
tures. They had the strongest influence in determining the 
nearest neighbors and driving the model's predictions. SHAP 
analysis also highlighted ECD_MWD as having a high 
impact. Higher feature values generally tended to increase 
model output, except BVEL. The PFI analysis further vali-
dated the low significance of ROP5 and TFLO based on 
permutations.

•	 Random Forest

PFI and SHAP identified DEPT and RPM as the most 
impactful features influencing the Random Forest model's 
predictions. TFLO also had a noticeable impact. The SHAP 
plot visualized the effect of different parts on forecasts for 
the Sleipner formation top. Increasing DEPT, RPM, HKLD, 
and TQA values improved prediction accuracy, while 
decreasing TFLO and TRPM_RT also helped accuracy.

•	 SVM

Permutation importance analysis identified DEPT, HKLD, 
and SWOB as most relevant for orienting the SVM model's 
maximum margin hyperplanes. SHAP feature importance 
highlighted DEPT, HKLD, RPM, and TFLO as key drivers. 
The parameters most influential in predicting each target 
formation were also identified. Further, the low significance 
of ROP5 and BVEL was validated.

•	 MLP

The analyses showed HKLD, DEPT, and RPM as the most 
important features influencing the neural network-based 
MLP model's predictions. On the other hand, BVEL, ROP5, 
and TQA were found to have a negative impact, decreas-
ing model output. Based on substantial accuracy declines, 
the PFI chart validated the low permutation importance of 
BVEL and ROP5.

In summary, DEPT, RPM, and HKLD consistently 
emerged as highly influential variables across the machine 
learning models, with some model-specific variations—the 

PFI and SHAP methods aligned in identifying impactful 
features for each model.

Clustering using DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) is an algorithm designed to identify clus-
ters in data based on density, making it particularly effective 
when the number of sets is unknown or when groups exhibit 
varying shapes and sizes. The steps involved in employing 
DBSCAN are as follows. Firstly, determine parameters such 
as epsilon (ε), defining the maximum distance between two 
data points to consider them neighbors, and minPts, specify-
ing the minimum number of data points in a neighborhood 
required to be considered a core point. Subsequently, cal-
culate the distances between each pair of data points in the 
dataset using an appropriate distance metric. Identify core 
points that meet the minPts criterion, indicating they have 
sufficient neighbors and are likely to belong to clusters. Con-
nect all core points that are mutually reachable to form the 
same cluster. Data points that are not part of any core point 
and lack enough neighbors to create a cluster are deemed 
noise. DBSCAN excels at handling groups with diverse 
shapes and sizes while detecting noise in data. However, 
parameter sensitivity may affect its performance, espe-
cially in high-dimensional spaces. Thus, carefully selecting 
parameters and data preprocessing is crucial before applying 
DBSCAN. After clustering without hyperparameter tuning, 
the silhouette score obtained is 0.87, signifying good cluster-
ing results for geological formation tops. Yet, there remains 
a curiosity to explore the impact of hyperparameter tuning 
on these results.

Fig. 28   Silhouette scores for different combinations of eps and min_
samples
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Hyperparameter tuning for DBSCAN

Hyperparameter tuning is a pivotal step in optimizing 
the performance of machine learning models, including 
clustering algorithms like DBSCAN, as illustrated in 
Fig. 28. For DBSCAN, the two key hyperparameters under 
consideration are epsilon (ε) and the minimum number 
of samples (minPts). Epsilon determines the maximum 
distance between two points for them to be considered 
neighbors, while minPts specifies the minimum number 
of samples required to form a core point. Tuning these 
hyperparameters enables fine-tuning DBSCAN behavior, 
resulting in improved clustering outcomes. The choice of 
epsilon impacts cluster size and density; smaller epsilon 
values lead to denser clusters, whereas larger epsilon val-
ues result in larger and more sparse clusters. Adjusting 
minPts affects the minimum density required for a point 
to be considered a core point, with higher minPts values 
imposing more stringent density requirements, yielding 
smaller and denser clusters. Hyperparameter tuning facili-
tates the identification of the optimal combination of epsi-
lon and minPts that aligns with underlying patterns and 
structures in the data. This process addresses the trade-off 
between overfitting (finding excessive small clusters) and 
underfitting (forming few or no meaningful clusters). The 
parameter values that yield the best clustering results can 
be identified through iterative adjustments and evaluation 
of clustering performance metrics, such as silhouette score 
or within-cluster sum of squares. Optimal hyperparameter 
tuning enhances the accuracy and effectiveness of cluster-
ing in machine learning modeling, revealing hidden pat-
terns, meaningful data groups, and insights into underlying 
structures. Achieving the right balance between epsilon 
and minPts results in more accurate and robust cluster-
ing outcomes, which are valuable in applications like cus-
tomer segmentation, anomaly detection, and recommenda-
tion systems. Post hyperparameter tuning, the silhouette 
score increased to 0.89, improving the pre-tuning score. 
Table 14 displays silhouette score values before and after 
hyperparameter tuning. At the same time, Fig. 29 depicts 
the distribution of data per geological formation top class 

through a box-and-whisker plot for true labels and cluster-
ing model results.

Based on the hyperparameter tuning results for the 
DBSCAN algorithm, Table 14 provides information on 
different combinations of hyperparameters (eps and min_
samples) and their corresponding silhouette scores, num-
ber of clusters (n_cluster), and number of noise points 
(n_noise). The silhouette score is a metric that measures 
how well-defined the clusters are, with higher values indi-
cating better-defined groups.

Here are some key observations and findings that we 
can conclude from Table 14:

1.	 Best Performing Configuration:

•	 The configuration with eps = 3.5 and min_sam-
ples = 14 achieved the highest silhouette score of 
0.521215.

•	 This configuration resulted in 4 clusters (n_cluster) 
with 4 noise points (n_noise).

2.	 Effect of Eps and Min_samples:

•	 Lower values of min_samples (e.g., 4) resulted in 
more clusters and noise points.

•	 Smaller values of eps (e.g., 1.5) also led to more 
clusters and noise points, but with varying silhou-
ette scores.

3.	 Trade-off between silhouette score and number of clus-
ters:

•	 Higher silhouette scores were generally associated 
with fewer clusters, suggesting a trade-off between 
cluster quality and quantity.

•	 The configuration with eps = 3.5 and min_sam-
ples = 14 achieved a good balance between a high 
silhouette score and a reasonable number of clus-
ters.

4.	 Sensitivity to hyperparameter values:
•	 The algorithm's performance was sensitive to 

changes in both eps and min_samples, highlighting 
the importance of careful hyperparameter tuning.

5.	 Variability in results:
•	 Different hyperparameter configurations led to a 

range of silhouette scores, indicating variability in 
the algorithm's ability to define meaningful clusters 
under different settings.

Box whisker plots depicting the distribution of drilling 
parameters across clusters. Each box represents a clus-
ter, with variables such as DEPT, ROP5, HKLD, SWOB, 
TQA, RPM, BPOS, BVEL, SPPA, TFLO, TRPM_RT, 
and Stick_RT analyzed for variations among clusters 
(Table 15).

Table 14   The result of the hyperparameter tuning using the 
DBSCAN algorithm

Eps min_samples silhouette_score n_cluster n_noise

3.5 4 0.41 3 19
3.5 9 0.41 4 11
3.5 14 0.52 4 4
1.5 4 0.37 5 10
1.5 9 0.39 6 5
1.5 14 0.38 6 4
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Fig. 29   Box Whisker Plots of Various Parameters Grouped by Cluster
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Formatting of mathematical components

Confusion matrix

In machine learning, the confusion matrix is a fundamen-
tal metric (31), ubiquitously employed in diverse fields 
like computer vision, natural language processing (NLP), 
acoustics, and various scientific and engineering applica-
tions (Moazzeni and Haffar 2015; Oloso et al. 2017). This 
matrix is a crucial tool for evaluating model performance 
by juxtaposing predicted and actual values. A cross table 
meticulously documents the occurrences between the two 
raters, representing the authentic and indicated classifica-
tions. It delineates the percentages of four distinct classifica-
tion outcomes: true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN).

Precision, a key metric, denotes the percentage of 
instances our model predicts as Positive and are indeed 
Positive. This metric gauges the model's reliability when it 
indicates a positive outcome.

Recall is a metric that gauges the model's predictive 
accuracy specifically for the positive class. It quantifies the 
model's ability to identify all dataset-positive instances.

Accuracy assesses the extent to which the model cor-
rectly predicts outcomes across the entire dataset, with val-
ues ranging between 0 and 1. The complement of accuracy, 
representing the proportion of incorrect predictions, is called 
the Misclassification Rate.

The F1-Score evaluates the model's classification perfor-
mance based on the information derived from the confu-
sion matrix. In multi-class cases, it should encompass all 
the individual classes.

(1)Precision =
TP

TP + FT

(2)Recall =
TP

TP + FN

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)

F1Score =

(

2

Precision−1 + Recall−1

)

= 2 ×
(

Precision × Recall

Precision + Recall

)

Random forest algorithm

Building on the integration of bagging with DT-based learn-
ers in Random Forest (RF), the RF algorithm introduces an 
additional layer to the Decision Trees (DT) training pro-
cess by incorporating the selection of random attributes 
(Abdelgawad et al. 2019a). RF is lauded for its simplicity, 
ease of implementation, low computational cost, and robust 
performance across various practical tasks. RF extends the 
conventional DT method by amalgamating multiple DTs to 
enhance prediction accuracy. A DT, being a typical single 
classifier, necessitates the creation of a model based on train-
ing data for classification purposes. Once the DT model is 
established, it is applied to classify unknown sample data. 
To mitigate the risk of overfitting, the pruning process is 
employed to trim certain subtrees or leaf nodes within the 
DT model. This process simplifies the model, thereby pre-
venting overfitting. The ID3 algorithm uses information gain 
as the feature evaluation criterion during DT node splitting. 
The feature with the highest information gain is chosen as 
the test attribute, and the information gain calculation is 
grounded in information entropy. In the context of the ID3 
algorithm, which generates child nodes recursively from the 
root node, the process unfolds from top to bottom until a leaf 
node is reached. The selected feature evaluation criteria play 
a pivotal role in this process, guiding the creation of child 
nodes. The information gain is determined based on infor-
mation entropy, where X is considered a discrete random 
variable with finite values, and its probability distribution 
is delineated.

The entropy of the random variable X is defined as 
follows:

where nn is the number of trees in the forest.

Support vector machine

A support vector machine (SVM) constructs a hyperplane or 
set of hyperplanes in a high or infinite-dimensional space, 
applicable for classification, regression, or other related 
objectives. The concept revolves around achieving a robust 
separation through a hyperplane that maintains the maxi-
mum distance to any class's nearest training data points, 

(5)P
(

X = Xi

)

= pi, i = 1, 2, ,… , n,

(6)H(X) = −

n
∑

i=1

pilogpi

(7)
lim
n→∞

PE∗ = Pxy

(

PΘ(k(X,Θ) = Y) − maxPΘ
(

kj≠Y (X,Θ) = J
)

< 0
)

Table 15   Silhouette score comparison for DBSCAN

DBSCAN clustering Silhouette score

Before hyperparameter tuning 0.40
After hyperparameter tuning 0.52
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known as the functional margin. Generally, a larger margin 
corresponds to a lower generalization error in the classifier. 
The equation below illustrates the decision function for a lin-
early separable problem, highlighting three samples situated 
on the margin boundaries, referred to as "support vectors." 
The primal problem solved by support vector classification 
(SVC) is as follows:

The intuitive objective is to maximize the margin 
(achieved by minimizing ||w||2 = wTw), all the while intro-
ducing a penalty when a sample is misclassified or falls 
within the margin boundary. Ideally, we aim for the value 
of yi

(

wT∅
(

xi
)

+ b
)

 to be ≥ 1 for all samples, signifying a 
perfect prediction. However, real-world problems are often 
not perfectly separable with a hyperplane, so we allow some 
samples to be at a distance ζi from their correct margin 
boundary. The penalty term C regulates the strength of this 
penalty and, consequently, serves as an inverse regulariza-
tion parameter (Patidar et al. 2023).

K‑nearest neighbors algorithm

For this classifier type, having a training set that is not exces-
sively small and possesses a discerning distance is crucial. 
K-nearest neighbors (KNN) demonstrates effective per-
formance in solving multi-class problems simultaneously. 
Determining an optimal value for the parameter K is pivotal 
for achieving the best classifier performance. This optimal 
value of K typically hovers around N1/2, where N represents 
the size of the dataset (Abdelgawad et al. 2019b).

Discussion

Interpretation of result analysis

Support vector machine

The support vector machine (SVM) model exhibited a com-
mendable accuracy of 0.99 on the training dataset, showcas-
ing its proficiency in accurately predicting formation tops. 
However, its performance on the blind dataset diminished to 
0.95, pointing toward difficulties in generalizing the model 
to unfamiliar data. SVM's strengths lie in distinguishing 
between different classes within intricate feature spaces. 
Conversely, its weaknesses encompass prolonged training 
times, particularly on large datasets, and the necessity for 
meticulous parameter selection.

(8)minw,b,�
1

2
wTw + C

n
∑

i=1

�i

K‑nearest neighbor

The k-nearest neighbors (KNN) model demonstrated an 
impressive accuracy of 0.99 on the training dataset. Never-
theless, the accuracy dropped to 0.93 when applied to the 
blind dataset. KNN's notable strengths lie in its straightfor-
ward concept, implementation, and capability to handle non-
linear data patterns. However, it is susceptible to the impact 
of outlier data, and the computational demands escalate 
when making predictions on extensive datasets.

Random forest

The random forest model attained an accuracy of 0.99 on 
the training dataset and 0.91 on the blind dataset. Its capa-
bilities include effectively handling data with nonlinear 
and complex features, and it excels at mitigating overfit-
ting by employing an ensemble of decision trees. However, 
drawbacks include lengthier training times than alternative 
machine learning models and reduced interpretability.

Multi‑layer perceptron

The multilayer perceptron (MLP) model obtained an accu-
racy of 1 on the training dataset and 0.99 on the blind data-
set, showcasing its capability to model complex relation-
ships between features with hidden layers. MLP is versatile 
in addressing various problem types. However, it demands 
meticulous parameter selection, entails extended training 
times, particularly on large datasets, and is susceptible to 
overfitting if not appropriately regularized.

Cluster determination method using DBSCAN

DBSCAN, a density-based clustering method, discerns 
dense and noisy clusters by evaluating neighborhood 
density in the feature space. The silhouette score of 0.52 
achieved by DBSCAN indicates its proficiency in grouping 
data into dense clusters. Interpreting geological formation 
tops through DBSCAN offers insights into spatial distri-
bution patterns and interconnections between formation 
tops. DBSCAN's strengths encompass its ability to identify 
intricate clusters without a predetermined cluster count. 
However, it is sensitive to distance and density parameters 
and may generate irrelevant clusters if not appropriately 
configured.

Advantages and disadvantages of each model

Machine learning models have distinct advantages and dis-
advantages, influencing their suitability for different tasks. 
The following Table outlines the key characteristics of sev-
eral models (Table 16).
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Comparison of machine learning model 
performance with DBSCAN

Geological formation tops prediction accuracy

When assessing the accuracy of each model in compari-
son to DBSCAN, it becomes evident that machine learn-
ing models consistently exhibit higher accuracy on the 
blind dataset than DBSCAN. This observation implies that 
machine learning models possess a superior capability to 
discern and learn existing patterns in geological formation 
tops data in the NCS, surpassing the performance of clus-
tering methods such as DBSCAN. Several factors contrib-
ute to the performance disparities between machine learn-
ing models and DBSCAN. Machine learning models excel 
in extracting intricate patterns and demonstrating better 
generalization to unknown data. In contrast, DBSCAN's 
performance is more sensitive to parameter settings, 
particularly distance and data density. This comparison 
underscores the potential of machine learning models to 
provide more accurate predictions in the context of geo-
logical formation tops, emphasizing their effectiveness in 
capturing complex relationships within the data compared 
to clustering techniques like DBSCAN.

Efficiency and computational speed

An examination of the computational time of each 
model in contrast to DBSCAN reveals a nuanced picture. 
Machine learning models exhibit varying training times, 
while DBSCAN typically demonstrates faster cluster 
production. However, the scalability of machine learn-
ing models for larger datasets is a crucial consideration. 
Machine learning models leverage advantages such as 
parameter flexibility and the ability to handle extensive 
datasets through algorithm optimization and computa-
tional parallelism.

Conclusion on the relative performance of model‑machine 
learning and DBSCAN in formation tops prediction

Upon comprehensive comparison, it becomes evident that 
machine learning models, including SVM, KNN, Random 
Forest, and MLP, consistently outperform DBSCAN regard-
ing accuracy on the blind dataset. Nevertheless, it is essen-
tial to acknowledge that DBSCAN, as a clustering method, 
provides valuable insights into the spatial distribution pat-
terns of geological formation tops. Therefore, selecting 
the most suitable model for predicting formation tops in 
the NCS should consider the accuracy, computational effi-
ciency, and the necessity for spatial pattern interpretation. 
The overarching conclusion underscores the importance of 
a balanced evaluation to meet the specific requirements of 
the formation tops prediction task.

Conclusion on the suitability of the best model 
in geological formation tops prediction in the NCS

The modeling results for SVM, KNN, Random Forest, and 
MLP revealed varying performance on both the training and 
blind datasets. MLP emerged as the top performer on the 
blind dataset, achieving a perfect accuracy score of 0.99. In 
contrast, SVM, KNN, and Random Forest exhibited lower 
accuracy levels on the blind dataset. The comparison and 
interpretation of results highlight the superior potential 
of machine learning models in formation tops prediction 
within the NCS compared to DBSCAN. However, determin-
ing the best model necessitates comprehensively consider-
ing factors such as accuracy, computational efficiency, and 
the interpretability of spatial patterns. In this study, MLP 
demonstrated the highest accuracy on the blind dataset. The 
implications of this research extend significantly to the oil 
and gas industry, offering valuable insights for developing 
reservoir management strategies and more informed deci-
sion-making. Accurate formation top prediction is crucial 
in identifying potential reservoir zones, understanding rock 

Table 16   Advantages and disadvantages of each model

Model Advantages Disadvantages

Support vector machine Effective in separating different classes in complex 
feature spaces

Robust against overfitting by using a margin function

Long training times on large datasets
Requires proper parameter selection for optimal results

K-Nearest Neighbor Simple in concept and implementation
Can handle nonlinear data

Susceptible to the influence of outlier data
Increased computation when predicting large datasets

Random Forest Can handle data with nonlinear and complex features
Not prone to overfitting due to the ensemble of decision 

trees

Longer training times compared to other machine learning 
models

Lower interpretability
Multilayer Perceptron Can model complex relationships with hidden layers

Flexible in modeling various types of problems
Requires proper parameter selection
Long training times on large datasets, prone to overfitting if 

not properly regularized
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properties, and optimizing the development of oil and gas 
fields. Although MLP exhibited superior performance, fur-
ther assessment and testing on larger datasets are imperative 
to validate the reliability and generalizability of machine 
learning models. Moreover, SVM, KNN, and Random Forest 
showed comparable performance in formation top prediction 
within the NCS. Therefore, when recommending the best 
machine learning model, considerations should encompass 
industry requirements, computational capabilities, and the 
interpretability of results. This research represents a signifi-
cant step toward enhancing the efficacy of geological forma-
tion top prediction in the NCS and lays the foundation for 
more advanced applications in the NCS.

Conclusions

This study explored and compared several machine learning 
models, including Support Vector Machine (SVM), K-Near-
est Neighbors (KNN), Random Forest, and Multi-Layer Per-
ceptron (MLP), for predicting geological formation tops in 
the Norwegian Continental Shelf (NCS). The models were 
evaluated based on their accuracy on both a test dataset and 
a blind dataset.

The key findings are:

•	 The MLP model demonstrated the highest accuracy on 
the blind dataset with a perfect score 0.99. In contrast, 
SVM, KNN, and Random Forest exhibited lower accu-
racy levels of 0.95, 0.93, and 0.91, respectively, on the 
blind set.

•	 On the test dataset, MLP achieved the highest accuracy 
of 1, followed by Random Forest (0.99), SVM (0.99), and 
MLP (0.99).

•	 The superiority of MLP on the blind set indicates its 
stronger capability to generalize to new unseen data com-
pared to the other models. This highlights the potential 
of neural network-based approaches for formation tops 
prediction.

•	 All the machine learning models consistently outper-
formed the DBSCAN clustering algorithm regarding 
predictive accuracy on the blind dataset. This emphasizes 
their effectiveness in discerning intricate patterns in the 
geological formation top data.

•	 The feature importance analyses using SHAP and PFI 
revealed DEPT, RPM, and HKLD as the most influen-
tial parameters across models. This provides direction for 
feature engineering efforts.

In conclusion, while the MLP model achieved the high-
est accuracy on the blind dataset, confirming its reliability 
necessitates additional testing on more extensive datasets. 
Moreover, factors such as computational efficiency and 

interpretability must also guide the selection of the most 
appropriate model. The research underscores the promise 
of machine learning for enhanced formation tops prediction 
within the NCS. Further work can build on these findings to 
develop more robust and generalizable models for practical 
applications.
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