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Abstract
The optimization of drilling parameters is crucial for resolving the drilling problems in low-pressure and leaky formations 
using the annulus aerated dual gradient drilling technology. However, the previous studies have mostly focused on engi-
neering applications and wellbore fluid flow models, with less emphasis on parameter optimization. This paper combines 
the wellbore multiphase flow model with genetic algorithms for the first time, proposing a key parameter optimization 
method for annulus aerated dual gradient drilling based on genetic algorithms. The study investigates the impact of selec-
tion operators on the performance of genetic algorithms and compares genetic algorithms with PSO algorithm and SAA. 
The results indicate that the convergence and stability of genetic algorithms can be improved by enhancing the selection 
operators. Compared to the gas–liquid ratio parameter optimization method, the IRSGA optimization method reduces the 
cost coefficient by 36.46%. Through comparative analysis of different optimization methods, the IRSGA demonstrates over 
95% accuracy in large-scale computations. The research findings contribute to the optimization of parameters design under 
low-cost conditions and are of significant importance for promoting the use of this technology to address the serious issue 
of lost circulation in drilling technology.

Keywords Genetic algorithm · Annulus aerated · Multiphase flow · Dual gradient · Multi-objective optimization

List of symbols
A  Cross-sectional area of wellbore annulus,  m2

Ai  The i-th generation population in optimiza-
tion algorithm

ai  The i-th individual in the population
Cair  Daily expenses of one air compressor, $/d
Cddp  Daily rental cost of one dual-wall drill pipe, 

$/d
Ch  Daily cost of the wellhead back pressure 

equipment, $/d
Cl  Daily cost of one drilling fluid pump, $/d
Cpg  Specific heat of gas, J/(kg⋅◦C)
Cpl  Specific heat of liquid, J/(kg⋅◦C)
Eg  Void fraction of wellbore annulus section, 

dimensionless
El  Liquid fraction of wellbore annulus section, 

dimensionless

Es  Cuttings fraction of wellbore annulus section, 
dimensionless

Fr  Annulus friction pressure drop, Pa
g  Gravitational acceleration, m/s2

Hg  Depth of the gas injection point, m
Hg0  Length of one dual-wall drill pipe, m
Hg1  Estimated drilling footage of the drill trip, m
mg  Mass flow rate of gas phase, kg/s
ml  Mass flow rate of liquid phase, kg/s
N  The size of population
P  Annulus pressure, Pa
Patm  The standard atmospheric pressure, Pa
Pcalc  Model calculation pressure at measuring 

point, MPa
Pf  Formation fracture pressure, Pa
Ph  Wellhead back pressure, Pa
Poff-line  The off-line performance
Pon-line  The on-line performance
Pp  Formation pore pressure, Pa
Psafe  Bottom-hole safety factor, dimensionless
Ptest  Test pressure at measuring point, MPa
Qg  Aerated rate of gas under standard condi-

tions,  m3/s
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Qg0  Maximum displacement of one air compres-
sor,  m3/s

Ql  Flow rate of the drilling fluid,  m3/s
Ql0  Maximum displacement of one drilling fluid 

pump,  m3/s
qg  Mass rate of aerated gas at the injection 

point, kg/(s⋅m)
Re  Relative error
T  Maximum number of iterations
Ta  Temperature in annulus, ◦C
Tf  Temperature in formation, ◦C
Tp  Temperature in drill pipe, ◦C
vg  Velocity of the aerated gas in the wellbore 

annulus, m/s
vl  Velocity of drilling fluid, m/s
vs  Velocity of cuttings, m/s
X´  Heat transfer factor between formation and 

annulus fluid, ◦C⋅m⋅s/J
Y´  Heat transfer factor between annulus fluid 

and drill string fluid, ◦C⋅m⋅s/J
θ  Well deviation angle, ◦
ρg  Density of gas under the condition of well-

bore temperature and pressure, kg/m3

ρl  Density of drilling fluid, kg/m3

ρs  Density of cuttings, kg/m3

Abbreviations
AR  The accuracy rate
C_Fitnessi  Sum of fitness values for the i individuals in 

contemporary generation
GA  Genetic algorithm
Gap  Generation gap
GC  Global convergence
IRSGA  Improved roulette selection operator genetic 

algorithm
LC  Local convergence
MWD  Measurement while drilling
ORSGA  Original roulette selection operator genetic 

algorithm
P_Cross  Crossover probability
P_Mutate  Mutation probability
PSO  Particle swarm optimization
RSGA  Ranking selection operator genetic algorithm
SAA  Simulated annealing algorithm
TSGA  Tournament selection operator genetic 

algorithm

Introduction

Lost circulation is one of the inevitable problems in drill-
ing engineering, causing economic losses of billions of dol-
lars annually (Sun et al. 2021). In order to address the safe 

drilling issues in formations with narrow pressure windows 
or lost circulation formations, numerous experts and scholars 
have proposed unconventional drilling techniques, among 
which dual gradient drilling technology is one (Stave et al. 
2014; Yang et al. 2022). Currently, offshore dual gradient 
drilling technology is developing rapidly and has certain 
commercial application value. Offshore dual gradient drill-
ing technology includes lifting drilling fluid through subsea 
mud pumps, riserless drilling, and dual-density drilling. 
Onshore, due to limited underground space and cost con-
straints, dual gradient drilling technology development is 
relatively lagging. It typically achieves dual gradient drilling 
through gas injection. Commonly used onshore dual gradient 
drilling technologies include parasitic pipe gas injection and 
concentric pipe gas injection drilling technology (Dou et al. 
2013; Gonzalez et al. 2013).

Phillips Petroleum Company conducted a parasitic annu-
lus air-injection drilling test in Gallatin County, Montana 
(Westermark 1986). By injecting air into the annulus space 
through a parasitic air-injection pipe and setting the appro-
priate air/mud ratio and depth of air injection, the equiva-
lent density of bottom-hole pressure could be reduced to 
0.719. Guo and Rajtar (1995) proposed a simple method to 
calculate the ratio of drilling fluid to gas for aerated drill-
ing, which can be used for bottom-hole pressure calcula-
tions. Lopes and Bourgoyne (1997) developed a steady-state 
numerical model to calculate parameters such as gas injec-
tion rate, maximum drilling fluid density, and riser diam-
eter for gas injection dual gradient drilling in deep water. Li 
(2007) systematically described the process flow, equipment, 
application scope, and development direction of the low-
pressure drilling technology with dual-wall drill pipe. Zimu-
zor et al. (2010) used gas injection drilling with parasitic 
pipe to solve wellbore leakage and stuck pipe problems in 
the Piceance Basin. This technology controlled the annulus 
circulating density by injecting air through a parasitic pipe 
in annulus, successfully reducing the risk of wellbore leak-
age in the Piceance Basin. Dou et al. (2013) referenced the 
Hasan-Kabir model (1986) to analyze the influence of gas 
injection rate and back pressure at the wellhead on bottom-
hole pressure in annulus air-injection drilling with parasitic 
pipe. It was found that as the gas injection rate increased, 
the bottom-hole pressure initially decreased rapidly and then 
slowly increased, indicating the existence of a critical gas 
injection rate. Ma et al. (2014) simulated the temperature 
distribution in the riser of gas injection dual gradient drill-
ing. The results showed that an increase in the inlet tem-
perature correspondingly increased the temperature in the 
annulus. Su et al. (2018) studied the physical process of gas 
migration in the riser of gas injection dual gradient drilling. 
The research results showed that a high drilling fluid flow 
rate could eliminate large bubbles and stabilize wellbore 
pressure. Wang et al. (2019) designed a new deepwater dual 
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gradient drilling method based on downhole separation. The 
research results showed that optimizing the wellbore pres-
sure profile could adapt to narrower pressure window and 
effectively avoid complex downhole accidents caused by 
improper wellbore pressure.

In summary, the previous research on the construction 
parameters of annular gas injection dual gradient drilling 
has mainly focused on engineering applications, wellbore 
fluid modeling, and drilling parameter design. Parameter 
design optimization is usually based on empirical formulas. 
There has been limited research on optimizing construc-
tion parameters, and the optimization objectives have been 
single-focused, considering only wellbore pressure safety 
without taking cost into account. Therefore, further research 
is needed to establish a method for optimizing construction 
parameters for annular gas injection dual gradient drilling 
that simultaneously considers cost and wellbore safety con-
ditions. This will provide theoretical support for the promo-
tion of this technology to address severe wellbore leakage 
in drilling operations.

This paper presents an onshore dual gradient drilling 
using dual-wall drill pipes for annulus gas injection. The 
process flow is shown in Fig. 1. This technique regulates 
the bottom-hole pressure through control of drilling fluid 
displacement, gas injection rate, gas injection depth, and 
wellhead back pressure. Compared to the aerated mud drill-
ing: (1) It effectively avoids the impact of gas on screw drill 
tools and MWD; (2) as the gas injection depth is relatively 
shallower, the gas injection pressure is lower; and (3) gas 
injection into the casing helps prevent erosion on the mud 
cake, thereby promoting wellbore stability. In comparison 
with aerated drilling with a parasitic pipe, it eliminates the 
issues associated with parasitic pipe blockage, as well as the 
challenges of repairing and replacing the pipe. GA (Chande 
and Sinha 2013) is an optimization algorithm based on the 
principles of biological evolution. Its basic idea is to simu-
late the processes of natural selection, genetic variation, 
and mutation in biological evolution to search and opti-
mize the solution space. The advantages of GA lie in their 
wide applicability, strong parallel processing capabilities, 
independence from constraints and differentiability, robust-
ness, and global search ability (Ong et al. 2019). GA can be 
particularly useful when the search space is large and the 
objective function is not well-behaved or has multiple local 
optima. In this study, a genetic algorithm is employed, with 
drilling fluid displacement, gas injection rate, gas injection 
depth, and wellhead back pressure as decision variables, and 
the safety of bottom-hole pressure and construction cost as 
objective functions for multi-objective optimization. It pro-
vides an optimal combination of parameters with low cost, 
laying a foundation for applying this technology to solve 
drilling problems in severely lost circulation formations.

In response to the issues of using empirical formulas to 
optimize parameters, limited optimization methods, and sin-
gle optimization objectives in the previous studies on annu-
lus aerated dual gradient drilling, this study has developed 
a multi-objective optimization method for parameters. The 
gaps addressed in this study include the following areas:

1) For the first time, a multi-objective optimization method 
based on genetic algorithm for parameters of annulus 
aerated dual gradient drilling was established with the 
objectives of wellbore safety and construction cost.

2) The impact of different selection operators on genetic 
algorithm was analyzed, and the efficiency of the optimi-
zation method could be further enhanced by improving 
the selection operator.

3) Several algorithms were compared to evaluate the 
parameter optimization algorithm in terms of effective-
ness, efficiency, and accuracy for algorithm improve-
ment.

Fig. 1  Schematic diagram of annulus aerated dual gradient drilling 
with dual-wall drill pipe
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Multiphase flow model for annulus aerated 
dual gradient drilling

Assumption

1) Fluid is a continuous infinitesimal material system, and 
the pressure and flow velocity of the fluid vary continu-
ously.

2) Drilling fluid is an incompressible fluid.
3) The fluid flows axially along the wellbore in one-dimen-

sional direction.

Continuity equation

Take the microelement along the axial direction of the 
annulus space to form a control volume (Meng et  al. 
2015). Analyze the components flowing into and out of 
the control volume per unit time:

(1） Gas phase

(2） Liquid phase

(3） Cuttings phase

where ρg is the density of gas under the condition of well-
bore temperature and pressure, kg/m3; vg is the velocity 
of the aerated gas in the wellbore annulus, m/s; A is the 
cross-sectional area of wellbore annulus,  m2; Eg is the void 
fraction of wellbore annulus section, dimensionless; qg is 
the mass rate of aerated gas at the injection point, kg/(s⋅m), 
and qg = 0 if there is no gas injection point in the control 
element; ρl is the density of drilling fluid, kg/m3; vl is the 
velocity of drilling fluid, m/s; El is the liquid fraction of 
wellbore annulus section, dimensionless; ρs is the density 
of cuttings, kg/m3; vs is the velocity of cuttings, m/s; and 
Es is the cuttings fraction of wellbore annulus section, 
dimensionless.

Momentum equation

The force analysis of the annulus microelement con-
trol body is shown in Fig. 2. According to the law of 
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momentum, the momentum equation of gas, liquid, and 
solid three-phase flow can be written as follows:

where g is gravitational acceleration, m/s2; θ is the well 
deviation angle, ◦; P is annulus pressure, Pa; and Fr is the 
annulus friction pressure drop, Pa.

Energy equation

Compared with non-gas injection drilling, the wellbore heat 
exchange of gas injection drilling becomes more complex. 
There is not only heat exchange between the formation and 
the wellbore fluid, but also heat exchange caused by the gas 
in the annulus. Therefore, the energy equation for the annulus 
multiphase can be expressed as follows:

where Cpg and Cpl are the specific heat of gas and liquid, 
respectively, J/(kg⋅◦C); Ta, Tf, and Tp are the temperature in 
annulus, formation, and drill pipe, ◦C; mg and ml are mass 
flow rate of gas phase and liquid phase, kg/s; X´ is the com-
prehensive heat transfer factor between formation and annu-
lus fluid, ◦C⋅m⋅s/J; and Y´ is the heat transfer factor between 
annulus fluid and drill string fluid, ◦C⋅m⋅s/J.
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Fig. 2  Force analysis of the annulus microelement control body
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Optimization of parameters design 
for annulus aerated dual gradient drilling 
based on genetic algorithm

Formulation of the optimization problem

In the issue of parameters optimization for annulus aer-
ated dual gradient drilling, the most important objective 
is to ensure the safety of the bottom-hole pressure through 
parameter combination while minimizing drilling costs as 
much as possible.

Decision variables

In the multi-objective optimization problem mentioned 
above, decision variables include drilling fluid displace-
ment, gas injection rate, gas injection depth, and wellhead 
back pressure.

Objective functions (1) The first objective function is the 
bottom-hole safety factor:

where Psafe is the bottom-hole safety factor, dimensionless; 
Pp is the formation pore pressure, Pa; Ql is the flow rate of 
drilling fluid,  m3/s; Qg is the injection rate of aerated gas 
under standard conditions,  m3/s; Hg is the depth of gas injec-
tion point, m; Ph is the wellhead back pressure, Pa; Pf is the 
formation fracture pressure, Pa; and P is the bottom-hole 
pressure under specific parameter combination, Pa.

Assuming that P = Pf, the bottom-hole safety factor 
becomes the maximum value, represented by P*

safe:

According to Eqs.(6) and (7), it is obvious that the smaller 
the Psafe value is, the higher the safety of the well bore would 
be.

(2) The second objective function is the cost index:

where Cl is the daily cost of one drilling fluid pump, $/d; 
Cair is the daily expenses of one air compressor, $/d; Ql0 is 
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the maximum displacement of one drilling fluid pump,  m3/s; 
Qg0 is the maximum displacement of one air compressor, 
 m3/s; Hg0 is the length of one dual-wall drill pipe, m; Hg1 is 
the estimated drilling footage of the drill trip, m; Cddp is the 
daily rental cost of one dual-wall drill pipe, $/d; Patm is the 
standard atmospheric pressure, Pa; and Ch is the daily usage 
cost of the wellhead back pressure equipment, $/d.

Constraints

There are some constraints that limit the search space in the 
considered optimization problem.

(1) The allowed ranges of drilling fluid displacement:

The minimum drilling fluid displacement is determined 
by meeting the minimum requirement for borehole cuttings 
transport, while the maximum drilling fluid displacement 
is determined by the capacity of the drilling fluid pumps.

(2) The allowed ranges of gas injection rate:

The minimum and maximum values of the gas injection 
velocity are determined by the air compressor.

(3) The limit depths of gas injection point:

The minimum depth for gas injection is the length of a 
dual-wall drill pipe, while the maximum injection depth is 
determined by the maximum gas injection pressure provided 
by the air compressor.

(4) Wellhead back pressure:

The minimum wellhead back pressure is atmospheric 
pressure, while the maximum value is determined by the 
capacity of the throttle valve.

IRSGA for parameters optimization

The traditional methods make it difficult to perform com-
prehensive constrained optimization of parameters design 
for annulus aerated dual gradient drilling. In this paper, an 
improved genetic algorithm is proposed for multi-objective 
optimization of parameters design for annulus aerated dual 
gradient drilling.

Initialization of population

Each individual consists of four gene segments, with each 
gene segment representing a different decision variable. A 

(9)Qlmin ≤ Ql ≤ Qlmax

(10)Qgmin ≤ Qg ≤ Qgmax

(11)Hgmin ≤ Hg ≤ Hgmax

(12)Phmin ≤ Ph ≤ Phmax
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certain number of individuals are randomly generated as 
the initial population, with each individual representing a 
potential solution to the optimization problem. Based on the 
form of the objective function, the population individuals 
can be defined as follows:

The size of population is represented by N; therefore, the 
first population is A1:

Fitness value

According to Eqs.(6) and (8), the fitness value is expressed 
as follows:

where w1 and w2 are weight coefficient. And w1 + w2 = 1.
The higher the fitness value, the better the individual in 

the population, and the more likely it is to be selected by the 
selection operator.

The sum of fitness values for the i individuals in contem-
porary generation is defined as C_Fitnessi:

Selection operator

The selection operator in genetic algorithm selects a por-
tion of individuals from the current population as parents 
for the next generation according to their fitness evaluation 
values. Common selection operators include roulette wheel 
selection, tournament selection, and rank selection (Mao 
et al. 2020; Pandey 2016). Original roulette wheel selection 
selects only one parent individual at a time, which may result 
in better individuals being selected too much and accelerat-
ing convergence, or poorer individuals being selected too 
much and reducing evolutionary efficiency. In this paper, 
an improved roulette wheel selection operator is proposed, 
which selects multiple parent individuals at a time for cross-
over and mutation operations. This approach helps introduce 
more genetic information and diversity, and enhances the 
algorithm's exploration capability.

Steps for the improved roulette selection operator are as 
follows:

(13)ai =
[
Qil,Qig,Hig,Pih

]

(14)A1 =
[
a1, a2,… ai … aN−1, aN

]T

(15)

Fitnessi =
1

ePsafe(Qil,Qig,Hig,Pih)
× w1 +

1

eCcos t(Qil,Qig,Hig,Pih)
× w2

(16)C_Fitnessi = C_Fitnessi−1 + Fitnessi

(17)C_FitnessN =

N∑

1

Fitnessi

① Firstly, let M = C_FitnessN / Nselect, and randomly gen-
erate a real number RX(RX ∈ [0, M]);

② Secondly, let j=1(j∈[1, Nselect]), i=1(i∈[1, N]), b0=0 
and C_Fitness0=0;

③ Thirdly, define bj = RX + (j-1) × M;
④ Determine whether bj-1 < fitnessi ≤ bj is valid;
⑤ If step ④ is false, let i = i + 1, and turn to step ④;
⑥ If step ④ is true, ai is selected as a parent individual. 

Then, let i = i + 1, j = j + 1, and jump to step ③. Loop until 
Nselect parent individuals are selected.

Cross recombination

To ensure the diversity of the population and improve the 
global search capability, the Nselect parent individuals are 
subjected to crossover operations:

① Choose two individuals, denoted as a1 and a2, from the 
Nselect parent individuals. Randomly generate a real num-
ber RX(RX ∈ [0, C_FitnessN]). If RX > P_Cross, b1 = a1 and 
b2 = a2. Turn to step ④.

② If RX ≤ P_Cross, a1 and a2 perform cross recombina-
tion. The parent individuals a1 and a2 are scaled by removing 
the decimal point, resulting in c1 and c2. Binary encoding 
is then applied to c1 and c2, producing binary gene frag-
ments d1 and d2. A random crossover point within the gene 
fragments is selected. The gene fragment preceding the 
crossover point in d1 and the gene fragment following the 
same crossover point in d2 are copied to create the offspring 
individual e1;

③ Similarly, the gene fragment following the same crosso-
ver point in d1 and the gene fragment preceding the crosso-
ver point in d2 are copied to create the offspring individual 
 e2. Decimal encoding is then applied to e1 and e2, resulting 
in f1 and f2. Finally, f1 and f2 are scaled to obtain the new 
offspring individuals b1 and b2. As depicted in Fig. 3, two 
new offspring individuals, b1 and b2, are created, inheriting 
the genetic traits of their respective parents.

④ Repeat the steps ①–③ until all the Nselect parent indi-
viduals are executed.

Where P_Cross is the probability of cross recombination.
Table 1 illustrates an example of the cross recombination 

operation. The parent individuals a1 and a2 consist of four 
gene fragments, representing drilling fluid displacement, gas 
injection rate, gas injection depth, and wellhead back pres-
sure. The specific steps are as follows: (1) Scale the parent 
individuals a1 and a2 by removing the decimal point, result-
ing in c1 and c2. (2) Perform binary encoding on the gene 
fragments of c1 and c2, obtaining d1 and d2. The length of 
each gene segment is determined by the maximum value 
of the corresponding parameter during the encoding pro-
cess. The maximum values of the parameters are presented 
in Table 3. The binary encoding lengths for each gene seg-
ment are 11, 13, 18, and 7, respectively. If the length of 
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the converted binary gene segment is insufficient, it will be 
padded with zeros. (3) A cross point is randomly selected. 
In this example, the total length of the parent gene is 49, and 
the cross point is set at 30. The gene fragments in the par-
ent individuals d1 and d2 are exchanged to generate binary 
offspring e1 and e2. (4) The binary offspring e1 and e2 are 
decoded to obtain f1 and f2. Finally, the target offspring b1 
and b2 are obtained by scaling f1 and f2. If any of the param-
eters in the target offspring exceed the extreme value, the 
extreme value will be used instead.

Mutation

In order to further enhance the exploration ability of solution 
space, mutation operations are performed on Nselect popula-
tions generated through crossover operations to introduce 
new gene disturbances:

① For each parent individual in the selected population 
Nselect, generate a random real number RX (RX ∈ [0,1]). If 
RX > P_Mutate, the parent individual does not undergo 
mutation. Proceed to step ④;

② If RX ≤ P_Mutate, the parent individual undergoes 
mutation. After scaling and binary encoding, a random loca-
tion on the binary gene fragment is selected for mutation. If 
the selected location is originally 0, it changes to 1; other-
wise, it becomes 0;

③The mutated binary offspring is then decoded and 
scaled to obtain the target offspring individual. If the param-
eters of the offspring individual exceed the extreme values, 
the extreme values will be used instead;

④Repeat steps ①–③ until all the Nselect individuals have 
been processed.

Where P_Mutate is the probability of mutation.

Update of population

Using the elite reservation strategy, the optimal individual of 
the t-th generation, selected based on the fitness function, is 
copied Nc times (Nc = (1-Gap) × N). These copies serve as 
newly generated offspring individuals. The newly generated 
offspring individuals Nc, along with the offspring individu-
als Nselect, form the population of the (t + 1)-th generation. 

Fig. 3  Schematic diagram of 
cross recombination

Table 1  Example of cross recombination

Operation Individual Drilling fluid displacement Gas injection rate Gas injection depth Wellhead 
back pres-
sure

/ a1 13.11 65.21 2315.79 0.34
a2 6.98 34.89 472.06 0.69

Scale c1 1311 6521 231,579 34
c2 698 3489 47,206 69

Binary encode d1 10,100,011,111 1,100,101,111,001 111,000,100,010,011,000 0100010
d2 01010111010 0110110100001 001011100001100110 1,000,101

Cross e1 01010111010 0110110100001 001011100010011000 0100010
e2 10,100,011,111 1,100,101,111,001 111,000,100,001,100,110 1,000,101

Decimal code f1 698 3489 47,256 34
f2 1311 6521 231,526 69

Scale b1 6.98 34.89 472.56 0.34
b2 13.11 65.21 2315.26 0.69
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Continue iterating until the maximum number of iterations 
is reached. Then, terminate the iteration process and output 
the optimal solution.

Where t is the number of the iterations; and Nc is the 
count of the optimal clones.

Procedure of IRSGA

The procedure of optimizing the parameters for annulus aer-
ated dual gradient drilling using IRSGA is shown in Algo-
rithm 1. The other relevant calculation functions are shown 
in Algorithms 2 ~ 7.

Algorithm 1  IRSGA for parametersoptimization

1: Function IRSGA ():

2: Let t=0, initialize population At;

3: Do while t<=T;

4: Evaluate fitness();

5: Selection();

6: Crossover();

7: Mutation();

8: Update population();

9: Let t=t+1;

10: End do;

11: Return best solution.

Algorithm 2  Function initialize population for IRSGA

1: Function Initialize population():

2: Create an empty population list At;

3: For i=1 to N;

For each individual ai, randomly generate a chromosome from the search space and add it to 

the population list At;

4: End for;

5: Return the population list At.

Algorithm 3   Function evaluate fitness for IRSGA

1: Function Evaluate fitness():

2: Let C_Fitness0=0;

3: For i=1 to N;

4: For each individual ai, calculate its fitness value Fitnessi;

5: Let C_Fitnessi= C_Fitnessi-1+ Fitnessi;

5: End for;

6: Return fitness values.
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Algorithm 4   Function selection for IRSGA

1: Function Selection():

2: Create an empty parent population list Aselect;

3: For i=1 to N;

4: For each individual ai, judge whether ai is selected by the improved selection operator 

mentioned above, and if so, add ai to Aselect;

5: End for;

6: Return the population list Aselect.

Algorithm 5   Function crossover for IRSGA

1: Function Crossover():

2: Randomly sort the individuals in Aselect;

3: For i=2 to Nselect step 2;

4: For each pair of parent individuals ai-1 and ai, perform the following steps;

5: Generate a random number r and determine if a crossover operation will be performed;

6: Select a crossover point at random from individual;

7: If r is less than the crossover probability, exchange the genes before and after the intersection 

point of ai-1 and ai;

8: If not, keep ai-1 and ai unchanged;

9: End for;

10: Return the population list Aselect.

Algorithm 6   Function mutation forIRSGA

1: Function Mutation():

2: For i=1 to Nselect;

3: For each offspring individual ai, perform the following steps;

4: Generate a random number r and determine if a mutation operation will be performed;

5: If r is less than the mutation probability, randomly select a gene position and perform a 

mutation operation on the gene at that position;

6: End for;

7: Return the population list Aselect.

Algorithm 7   Function update population for IRSGA

1: Function Update population():

2: Create an empty parent population list At+1;

3: Let Nelitism=N-Nselect;

4: Use elitism strategy to generate Nelitism individuals and add them to the new population list At+1;

5: Add Aselect to the new population list At+1;

7: Return the population list At+1.
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Results and discussion

Case data

The optimization parameters are derived from well FY-X in 
the Fuyuan block of Tarim Oilfield. The current depth of the 
well is 7150 m, with a formation pore pressure of 68.3 MPa 
and a fracture pressure of 71.7 MPa. The drill string consists 
of a combination of 5-inch dual-wall drill pipe and 3 1/2-
inch drill pipe. The annulus channel of the dual-wall drill 
pipe is utilized as a gas injection pipeline. The density of 
the drilling fluid is 1200 kg/m3. Please refer to Table 2 for 
further details on the wellbore structure.

According to the technological requirements of annulus 
aerated dual gradient drilling, the parameters must adhere 
to specific constraints, outlined in Table 3:

The involved computing environment is Inter Core TM 
i7–1165G7 running Windows 10 with 2.80-GHz processor 
and 16.00-GB RAM. The experiments are developed by C#.

Results of IRSGA optimization

This article conducts multi-objective optimization of the 
parameters for annulus aerated dual gradient drilling uti-
lizing the IRSGA. The parameters involved in the genetic 
algorithm are provided in Table 4.

Figure 4 shows the variation of population fitness and 
average fitness with the increase in iteration steps in the 
IRSGA process of the parameters optimization for annulus 
aerated dual gradient drilling. The larger the fitness value, 
the better the individual is, representing a safer and lower 
cost wellbore. The average fitness value represents the 
degree of evolution of the population. From Fig. 4, it can be 
observed that starting from the 30th generation, the popula-
tion tends to converge. Afterward, the minor fluctuations in 
the average fitness values represent mutations generated by 
a small number of individuals during the iteration process, 
which helps enhance exploration of the solution space. Fig-
ures 5 and 6 depict the variations in the bottom-hole pressure 
and cost coefficient under the optimal parameter combina-
tions for each generation during the IRSGA optimization 
process. It can be seen that the final bottom-hole pressure 

Table 2  Wellbore geometry Name Hanger depth (m) Setting depth (m) Outer diameter (mm) Wall 
thickness 
(mm)

Casing 0 7120 200.03 10.92
Name Length (m) Planed well depth (m) Bit size (mm) /
Open hole 238 7358 152.4 /

Table 3  Constraints on parameters

Number Parameter Lower limit Upper limit Unit

1 Drilling fluid flow 
rate

5 15 10–3 ×  m3/s

2 Gas injection flow 
rate

20 80 60–1 ×  m3/s

3 Dual-wall drill pipe 
depth

200 2500 m

4 Wellhead back 
pressure

0.1 1 106 × Pa

Table 4  Parameters involved in IRSGA

Number Parameter Value

1 Population size 100
2 Number of iterations 100
3 Cross probability 0.8
4 Mutation probability 0.02
5 Generation gap 0.9

Fig. 4  The variation curve of the fitness and average fitness values 
with increasing iteration
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stabilizes at 70 MPa, and the cost coefficient stabilizes at 
2670.99 $/d.

Figure 7 represents the variations of the optimal param-
eter combinations for each generation during the IRSGA 
optimization process. It is obvious that before the 20th gen-
eration, the optimal parameter combinations keep evolv-
ing. However, after that, the algorithm converges, and the 
optimal parameter combinations stabilize without further 
changes. Therefore, the final optimized parameters are 
obtained, which ensure that the bottom-hole pressure in 
the drilling process remains within the safe pressure win-
dow while minimizing the construction cost. Compared 
with the parameters designed with the empirical gas–liquid 
ratio method (Liu 2022), the cost coefficient is reduced by 
36.46%. The detailed results are shown in Table 5.

Results of comparison

Comparison of different genetic algorithms

In this study, we conducted a comparative analysis of 
the parameter optimization results of the IRSGA with 
ORSGA, RSGA, and TSGA. We evaluated the on-line and 
off-line performance and analyzed the impact of different 
selection operators on the optimization performance of 
genetic algorithms. The relevant parameters are shown in 
Table 6. Twenty simulations were conducted for each of 
the four genetic algorithms mentioned above. The optimi-
zation results are shown in Table 7.

John Holland (2013) proposed on-line performance 
and off-line performance to evaluate the performance of 
genetic algorithms.

(1) The on-line performance Pon-line:

The on-line performance represents the changes in the 
average fitness value of the population, mainly describing 
the overall performance and evolutionary ability of the 
population.

(2) The off-line performance Poff-line:

The off-line performance represents the changes in the 
fitness values of the best individual in the population, 
mainly describing the individual's evolutionary ability.

(18)Pon - line =
1

T

T∑

t=1

(
1

N

N∑

i=1

f
(
ai, t

)
)

(19)Poff - line =
1

T

T∑

i=1

f ∗
(
ai, t

)

(20)f ∗
(
ai, t

)
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{
f
(
a1, t

)
, f
(
a2, t

)
…… , f

(
aN , t

)}

Fig. 5  The variation curve of the bottom-hole pressure with increas-
ing iteration

Fig. 6  The variation curve of the cost index with increasing iteration

Fig. 7  The variations of the optimal parameter combinations during 
the IRSGA process
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where f*(ai,t) is the best individual fitness value in the cur-
rent population.

In the experiment, Figs. 8 and 9 compared the Pon-line 
and Poff-line for the four different genetic algorithms. From 
the graphs, we can analyze the following points: (1) The 
selection operator has a significant impact on the perfor-
mance of genetic algorithms. Improving the selection 
operator can enhance the algorithm's performance. (2) 
IRSGA demonstrates good performance in both search-
ing for the optimal individual and the overall evolution 
of the population. It is first quartile, median and third 
quartile of Pon-line and Poff-line are larger compared to the 
other algorithms. Additionally, the interquartile range is 
smaller, indicating a smaller fluctuation range. (3) RSGA 
and TSGA yield similar results. However, when the popu-
lation size is larger, RSGA requires more computational 
resources for sorting operations.

Comparison of different optimization algorithms

A comparative analysis was conducted between the IRSGA 
and the PSO (Iweh and Akupan 2023) as well as the SAA 

(Uday Sankar et al. 2023). The comparative experiments 
covered both small-scale and large-scale instances. The pop-
ulation size was set to 100 for the small-scale instances and 
200 for the large-scale instances. Tables 8 and 9 present the 
optimization results of fitness function values for small-scale 
and large-scale instances in the IRSGA, PSO algorithm, and 
SAA. The "Fitness" and "Ave Fitness" represent the final 
fitness value and the average fitness value for each instance. 
Table 10 shows the optimization computation time for small-
scale and large-scale instances of IRSGA, PSO, and SAA. 
The astringency of the instance is determined by Eq. (21). 
Instances that satisfy Eq. (21) are considered globally con-
vergent, denoted as GC = 1. Otherwise, they are considered 
locally convergent, denoted as LC = 1. The accuracy evalu-
ation of the algorithms is performed based on Eq. (22), and 
the results are presented in Table 11.

where  Fitnessij refers to the fitness value for the j-th algo-
rithm in the i-th case. Max_Fitness is the limit of the fitness 
function value. Max_Fitness = 0.6; ε = 0.01.

where ARj is the accuracy rate of the j-th algorithm. The m 
represents the number of algorithm runs, with m = 20. LCij 
denotes the local convergence of the optimization algorithm, 
while GCij represents the global convergence.

(21)
|||
||

Fitnessij −Max_Fitness

Max_Fitness

|||
||
≤ �

(22)
ARj =

m −
m∑

i=1

LCIJ

m
× 100%

Table 5  Comparison of optimization results for IRSGA

Name Drilling fluid flow 
rate  (10–3 ×  m3/s)

Gas injection 
rate  (60–1 ×  m3/s)

Dual-wall drill 
pipe depth (m)

Wellhead back 
pressure  (106 × Pa)

Bottom-hole 
pressure 
 (106 × Pa)

Cost index ($/d)

IRSGA method 10.45 79.01 2186.47 0.13 70.01 2670.99
Gas–liquid ratio method 13 80 3000 0.3 70.13 4203.71

Table 6  Parameters of the genetic algorithm

Number Parameter Value

1 Population size 40
2 Number of iterations 50
3 Cross probability 0.8
4 Mutation probability 0.02
5 Generation gap 0.9

Table 7  Optimization results of 
the four genetic algorithms

Method Evaluating indicator Max Min Average Square deviation Standard deviation

ORSGA Off-line performance 0.562487 0.266983 0.487149 0.005363 0.073235
On-line performance 0.501347 0.215951 0.413272 0.003857 0.062105

RSGA Off-line performance 0.596776 0.427983 0.525525 0.002383 0.048816
On-line performance 0.593431 0.375766 0.479413 0.002965 0.054450

TSGA Off-line performance 0.583491 0.344837 0.521823 0.003677 0.060635
On-line performance 0.566054 0.298546 0.462996 0.003913 0.062552

IRSGA Off-line performance 0.596929 0.519960 0.557872 0.000522 0.022840
On-line performance 0.594166 0.471065 0.516717 0.001045 0.032329
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Tables 8 and 9 show that the IRSGA demonstrates good 
effectiveness and stability in terms of fitness value and aver-
age fitness value. Table 10 shows the computation time of 
each algorithm for both small- and large-scale instances. 
For small-scale instances, the average computation time 
for IRSGA optimization is 245.93  s, while for PSO, it 
is 209.03 s, and for SAA, it is 806.90 s. For large-scale 
instances, the average computation time for IRSGA opti-
mization is 502.65 s, for PSO, it is 419.22 s, and for SAA, 
it is 1609.42 s. There is little difference in computational 
efficiency between IRSGA and PSO, while SAA exhibits 
the lowest computational efficiency. In terms of accuracy, 
the IRSGA achieves the highest optimization accuracy. For 
small-scale instances, the AR of IRSGA is 90%, while for 

large-scale instances, it increases to 95%. In conclusion, the 
IRSGA proposed in this paper demonstrates excellent per-
formance in terms of solution effectiveness, computational 
efficiency, and algorithm accuracy.

On‑line and off‑line evaluation between IRSGA and PSO

As a result of the low computational efficiency of the SAA, 
further discussion was abandoned. Instead, we conducted 
the on-line and off-line performance evaluation of the PSO 
algorithm and IRSGA. The on-line and off-line performance 
for the optimization results of both algorithms are shown in 
Table 12. Furthermore, a comparison of the on-line and off-
line performance is presented in Table 13.

In terms of on-line performance, the median and third 
quartile values of PSO and IRSGA are relatively similar. 
However, the minimum and first quartile values of PSO are 
significantly smaller than those of IRSGA, as illustrated in 
Fig. 10. This indicates that the overall evolutionary perfor-
mance of the IRSGA is superior to that of PSO. Regard-
ing off-line performance, the maximum and third quar-
tile values of PSO are approximate to those of IRSGA. 
Surprisingly, even the median value of PSO is slightly 
larger. However, the minimum and first quartile values 
of PSO are considerably smaller than those of IRSGA. 
Consequently, the individual evolution performance of the 
PSO algorithm is inferior to that of IRSGA. In summary, 
the IRSGA excels in both individual and overall evolu-
tion, demonstrating smaller evolutionary fluctuations and 
greater stability.

Conclusions and future works

In this paper, we proposed a new genetic algorithm-based 
optimization method called IRSGA for the parameters opti-
mization of annulus aerated dual gradient drilling. We con-
ducted a comprehensive comparative analysis and evaluation 
on the optimization performance of this algorithm, leading 
to the following conclusions:

(1) The IRSGA offers distinct advantages in maintaining 
bottom-hole pressure within the safe pressure window 
and simultaneously reducing drilling costs. Compared 
to traditional gas–liquid ratio parameter design meth-
ods, the implementation of the IRSGA can result in a 
substantial cost reduction of 36.46%.

(2) Improving the selection operator can significantly 
enhance the performance of genetic algorithms. In 
comparison with ORSGA, RSGA, and TSGA, the 
IRSGA proposed in this paper demonstrates better 
convergence and stability.

Fig. 8  Box plot of different genetic algorithms about on-line perfor-
mance

Fig. 9  Box plot of different genetic algorithms about off-line perfor-
mance
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Table 8  The optimization 
results for small-scale instances 
of IRSGA, PSO, and SAA

Case IRSGA PSO SAA

Fitness Ave fitness Fitness Ave fitness Fitness Ave fitness

1 0.599664 0.583899 0.599834 0.597714 0.597115 0.592185
2 0.598134 0.595384 0.599039 0.594892 0.597229 0.584805
3 0.595613 0.581316 0.425102 0.424102 0.595974 0.589946
4 0.598647 0.588102 0.599491 0.596908 0.597375 0.592061
5 0.599839 0.583796 0.599834 0.596720 0.457652 0.422661
6 0.598982 0.597941 0.599834 0.596921 0.597931 0.582307
7 0.545464 0.513522 0.594198 0.583313 0.595866 0.587847
8 0.596929 0.595110 0.595566 0.588462 0.494673 0.458253
9 0.598992 0.590992 0.425102 0.415102 0.596143 0.585084
10 0.599839 0.596054 0.598294 0.594025 0.597419 0.592878
11 0.596081 0.586156 0.599302 0.598234 0.594783 0.586137
12 0.597953 0.597478 0.431306 0.431046 0.409722 0.373132
13 0.599664 0.584626 0.599834 0.587595 0.593928 0.589809
14 0.596173 0.590204 0.599482 0.587595 0.591005 0.587927
15 0.599836 0.585681 0.598978 0.574517 0.396519 0.356674
16 0.599492 0.599232 0.598636 0.589686 0.597331 0.590628
17 0.598465 0.596609 0.454995 0.435012 0.596335 0.584073
18 0.476481 0.470603 0.597967 0.587381 0.516207 0.490121
19 0.597621 0.593784 0.597604 0.590003 0.595328 0.581846
20 0.596996 0.590032 0.596741 0.577442 0.599704 0.582916

Table 9  The optimization 
results for large-scale instances 
of IRSGA, PSO, and SAA

Case IRSGA PSO SAA

Fitness Ave fitness Fitness Ave fitness Fitness Ave fitness

1 0.597189 0.595162 0.597021 0.587136 0.495502 0.469049
2 0.598041 0.588815 0.596803 0.588863 0.595255 0.589825
3 0.595493 0.588467 0.597492 0.592968 0.597534 0.591327
4 0.595843 0.586132 0.596086 0.589237 0.595801 0.593423
5 0.599873 0.598546 0.423991 0.401139 0.599751 0.592146
6 0.597629 0.594336 0.599821 0.596263 0.408594 0.385851
7 0.596467 0.588063 0.599836 0.596906 0.598814 0.592483
8 0.597788 0.596527 0.596884 0.594882 0.595965 0.589493
9 0.596762 0.593971 0.595308 0.592455 0.596646 0.593019
10 0.596909 0.588794 0.598251 0.594321 0.595328 0.585238
11 0.595438 0.586911 0.435957 0.415888 0.598028 0.588668
12 0.595396 0.594094 0.599364 0.598115 0.595637 0.584875
13 0.496224 0.458651 0.599865 0.591675 0.526349 0.490544
14 0.597589 0.592871 0.598684 0.587978 0.599929 0.597818
15 0.598455 0.592337 0.596857 0.586530 0.596661 0.588282
16 0.599667 0.591816 0.597939 0.591559 0.598307 0.588738
17 0.598448 0.596709 0.597959 0.594495 0.597945 0.594884
18 0.599622 0.593625 0.542562 0.519628 0.599749 0.593228
19 0.599815 0.589988 0.597781 0.589986 0.449699 0.429584
20 0.597422 0.593138 0.598146 0.592974 0.596995 0.587272
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Table 10  The optimization time 
of IRSGA, PSO, and SAA

Case Small-scale Large-scale

IRSGA PSO SAA IRSGA PSO SAA

Ts(s) Ts(s) Ts(s) Ts(s) Ts(s) Ts(s)

1 240.50 195.55 822.83 519.50 418.33 1634.17
2 253.59 203.50 794.23 521.72 416.59 1619.77
3 242.64 226.91 827.73 512.53 407.58 1603.40
4 227.73 210.73 799.00 474.14 418.56 1559.12
5 253.47 212.59 785.93 521.92 426.95 1605.05
6 256.24 196.58 826.78 485.77 429.37 1596.30
7 258.14 203.78 759.78 516.66 431.46 1653.71
8 228.40 206.02 816.48 521.12 430.85 1560.97
9 259.74 205.42 812.95 507.56 427.65 1643.97
10 235.24 212.30 762.36 478.40 437.24 1633.88
11 247.34 207.58 814.37 506.47 425.28 1687.30
12 260.83 223.71 856.18 501.08 407.20 1607.63
13 236.86 214.05 801.08 535.87 410.61 1606.25
14 258.11 201.93 778.54 477.60 403.22 1565.59
15 235.37 215.21 846.97 470.89 417.62 1645.12
16 230.56 203.38 797.06 495.31 421.28 1592.34
17 249.68 216.58 848.94 469.05 401.27 1675.61
18 245.76 216.05 748.53 530.75 420.07 1520.46
19 242.21 203.21 767.62 476.09 426.91 1592.11
20 256.19 205.52 870.72 530.58 406.37 1585.58

Table 11  The optimization 
astringency and accuracy results 
of IRSGA, PSO, and SAA

Case Small-scale Large-scale

IRSGA PSO SAA IRSGA PSO SAA

GC LC GC LC GC LC GC LC GC LC GC LC

1 1 0 1 0 1 0 1 0 1 0 0 1
2 1 0 1 0 1 0 1 0 1 0 1 0
3 1 0 0 1 1 0 1 0 1 0 1 0
4 1 0 1 0 1 0 1 0 1 0 1 0
5 1 0 1 0 0 1 1 0 0 1 1 0
6 1 0 1 0 1 0 1 0 1 0 0 1
7 0 1 1 0 1 0 1 0 1 0 1 0
8 1 0 1 0 0 1 1 0 1 0 1 0
9 1 0 0 1 1 0 1 0 1 0 1 0
10 1 0 1 0 1 0 1 0 1 0 1 0
11 1 0 1 0 1 0 1 0 0 1 1 0
12 1 0 0 1 0 1 1 0 1 0 1 0
13 1 0 1 0 1 0 0 1 1 0 0 1
14 1 0 1 0 1 0 1 0 1 0 1 0
15 1 0 1 0 0 1 1 0 1 0 1 0
16 1 0 1 0 1 0 1 0 1 0 1 0
17 1 0 0 1 1 0 1 0 1 0 1 0
18 0 1 1 0 0 1 1 0 0 1 1 0
19 1 0 1 0 1 0 1 0 1 0 0 1
20 1 0 1 0 1 0 1 0 1 0 1 0
Sum 18 2 16 4 15 5 19 1 17 3 16 4
AR 90% 80% 75% 95% 85% 80%
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(3) In terms of optimization stability, efficiency, and com-
putational accuracy, IRSGA performs better than PSO 
and SAA, especially in large-scale computations, where 
its computational accuracy exceeds 95%.

(4) On the aspect of on-line and off-line performance, the 
IRSGA performs better than the PSO algorithm.

However, there are still limitations and areas for improve-
ment in this study. Local optima have not been entirely 
avoided, and there is a need to enhance computational effi-
ciency. Moving forward, there are several directions for 
future research. Firstly, it would be beneficial to further 
explore the impact of population size on convergence abil-
ity. Additionally, improvements can be made to the crosso-
ver and mutation operations in order to enhance the algo-
rithm's global exploration ability. Lastly, it is significative 

Table 12  Optimization results 
of on-line performance and off-
line performance

PSO IRSGA

On-line performance Off-line performance On-line performance Off-line performance

0.473586 0.574815 0.520004 0.565815
0.498939 0.555064 0.505025 0.546663
0.576307 0.578931 0.528933 0.571739
0.530406 0.575762 0.490584 0.532977
0.503722 0.576307 0.531037 0.572701
0.414036 0.418382 0.482386 0.534913
0.408843 0.421763 0.584886 0.596929
0.349373 0.354953 0.594166 0.594546
0.548016 0.586252 0.485122 0.531261
0.553116 0.582704 0.485722 0.538745
0.512661 0.579777 0.506064 0.551333
0.419812 0.429675 0.533322 0.575811
0.495088 0.520823 0.535456 0.575049
0.488816 0.588135 0.534815 0.576210
0.522923 0.589706 0.535473 0.578398
0.482331 0.514347 0.474848 0.520109
0.532617 0.576751 0.503503 0.550917
0.533315 0.578657 0.471065 0.519960
0.533442 0.562195 0.531827 0.575525
0.357855 0.363675 0.500098 0.547841

Table 13  Comparison results of 
on-line performance and off-line 
performance

Method Evaluating indicator Max Min Average Square deviation Standard deviation

PSO Off-line performance 0.589706 0.354953 0.526434 0.006142 0.078372
On-line performance 0.576307 0.349373 0.486760 0.003927 0.062667

IRSGA Off-line performance 0.596929 0.519960 0.557872 0.000522 0.022840
On-line performance 0.594166 0.471065 0.516717 0.001045 0.032329

Fig. 10  Box plot of PSO and IRSGA about on-line and off-line per-
formance
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to investigate the influence of population renewal strategies 
on the overall performance of the algorithm.
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