
Vol.:(0123456789)

Journal of Petroleum Exploration and Production Technology 
https://doi.org/10.1007/s13202-024-01772-0

ORIGINAL PAPER-PRODUCTION ENGINEERING

Upper limit estimate to wellhead flowing pressure and applicable 
gas production for a downhole throttling technique 
in high‑pressure–high‑temperature gas wells

Faqing Wang1   · Deyou Qin2 · Bao Zhang1 · Jianfeng He1 · Fangzhi Wang1 · Ting Zhong1 · Zhida Zhang1

Received: 18 June 2023 / Accepted: 16 February 2024 
© The Author(s) 2024

Abstract
In recent years, China has explored and exploited several high-pressure deep gas fields. Normally, high-pressure gas wells 
are gathered and processed through multichoke manifolds on well sites, creating hazards such as high wellhead flowing 
pressure (Pt) and high risk for on-site operation personnel. Moreover, downhole chokes have been used in place of surface 
chokes. In doing this, the Joule–Thomson (JT) effect is geothermally regulated, alleviating the formation of hydrates in sur-
face facilities. However, its applicability to high-pressure gas wells is less explored. In an effort to guide its use, the objective 
of this study is to set selection criteria in terms of the allowable wellhead Pt and gas flow rate. First, isenthalpic lines are 
separately estimated for dry gas and high liquid hydrocarbon (LHC) content gas condensate at various inlet temperatures 
with the use of commercial software. Next, by analysis of the resulting isenthalpic curves, several results are obtained on 
the JT inversion curves and throttling process through a choke. Third, building on these insights, a method for projecting 
the maximum Pt is presented, leading to a value of 52.5 MPa. Finally, multiparameter models are separately run for two 
deep gas wells (8100 m and 5000 m), reinforcing the result of the pressure upper limit while maintaining a maximum daily 
gas production of 14 E4 m3. Both upper limits with a maximum Pt of 52.5 MPa and daily gas production of 14 E4 m3 are 
corroborated with field data records. These findings are vital to the selection of a viable high-pressure gas well for applying 
the downhole throttling technique.

Keywords  High-pressure gas well · Downhole throttling · Joule–Thomson coefficient · Isenthalpic curve · Pressure drop · 
Temperature drop

List of symbols
H	� Enthalpy (106 J)
P	� Pressure (MPa)
T	� Temperature (°C)
U	� Internal energy (106 J)
V	� Volume (m3)
�
J
	� Joule–Thomson coefficient (°C/MPa)

Introduction

A high-pressure–high-temperature (HPHT) well designates 
a well condition of a formation pressure gradient above 
18 kPa/m and reservoir temperature greater than 150 °C. 
It usually accompanies deep or ultradeep wells. In recent 
years, China has explored and exploited these onshore deep 
or ultradeep gas fields in the Sichuan, Tarim, and Ordos 
basins (Wu et al. 2020; Zhang and Emami-Meybodi 2020a; 
Zhu et al. 2021). During the early production of these HPHT 
gas wells, wellhead pressures are often excessively high, 
posing a high risk for on-site operation personnel. For the 
flowing well stream in the tubing, both the temperature and 
pressure of upwards-travelling gas gradually decrease. Under 
the conditions of critically low temperature and high pres-
sure, natural gas is prone to hydrate formation; hydrates can 
block wellbores and/or pipelines (Ping et al. 2022; Sadeq 
et al. 2020, 2017; Wei et al. 2021). For safe operation, the 
hydrate formations need to be avoided. Therefore, either the 
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pressure needs to be reduced or the temperature of flowing 
gases needs to be increased (Bui et al. 2018; Gambelli and 
Rossi 2023; Kakitani et al. 2019; Marsetyo et al. 2023).

Downhole chokes are being used in lieu of surface heaters 
and methanol injection for the mitigation of gas hydrate for-
mation in surface facilities. By moving the point of pressure 
and temperature reduction downhole, the Joule–Thomson 
(JT) effect across the choke is thermally regulated (Luo and 
Wu 2020; White et al. 2014). Downhole chokes are also 
extensively utilized to reduce wellhead pressures for high-
pressured and/or ultrahigh-pressure gas wells (Jiang et al. 
2015). This technique has compelling advantages compared 
to surface chokes. The latter requires more areas to accom-
modate surface manifold facilities, which often entail an 
accompanying heater to alleviate the hydrate formation and 
produce subsequent plugging problems with pipelines. A 
downhole choke is also a competitive choice in gas produc-
tion for offshore applications, where the space is very lim-
ited to accommodate the manifolds and their corresponding 
auxiliaries (Bigdeli et al. 2023). In addition, it reduces the 
surface gathering pressure, with the intended aim of heating 
cooled gas downstream of chokes.

However, during the early exploitation of HPHT gas 
wells, the pressures downstream a choke remain high enough 
and result in an undesirable JT heating effect, even if a choke 
is moved underground. Hence, a maximum wellhead flowing 
pressure (Pt) must exist for an HPHT gas well for the place-
ment of a downhole choke, ensuring a cooled downstream 
temperature. Moreover, deep or ultradeep wells have fairly 
high gas production to be economically viable. A higher 
gas flow rate correlated to a higher downstream tempera-
ture across a choke; this occurs to the extent that it exceeds 
the ambient temperature, as evidenced in the study by Li 
et al. (2012) and Jia et al. (2020). This is undesirable and 
negates the intended aim of harnessing geothermal energy. 
Therefore, an upper limit to gas production for HPHT gas 
wells also exists in the application of the downhole throt-
tling technique.

Farzaneh-Gord et al. indicated that the GERG-2008 equa-
tion of state calculated the JT inversion curve with high 
accuracy and developed a novel correlation for its estimation 
(Farzaneh-Gord et al. 2020). Agwu et al. developed a critical 
review of extant models for modelling oil and gas flow rates 
through chokes (Agwu et al. 2022; Shao et al. 2018). Xie 
et al. proposed a comprehensive model for predicting the 
production of downhole choke wells (Xie et al. 2022). For 
gas flow rate prediction through wellhead chokes in gas con-
densate fields, robust hybrid machine learning algorithms 
(Abad et al. 2022) or vector machine algorithms (Nejatian 
et al. 2014) have been used. Moreover, as a long-established 
technology, the downhole throttling technique receives wide-
spread acceptance, demonstrated by a wealth of scientific 
papers. Jiang et al. suggested its use in mitigating sustained 

casing pressure in an HPHT gas well (Jiang et al. 2015). 
White et al. showed its field applications and performance 
impact (White et al. 2014). Temperature prediction through 
chokes was performed for high-pressure gas/water/monoeth-
ylene glycol (MEG) mixtures (Jia et al. 2020), for HPHT gas 
condensates (Li et al. 2012), and in highly choked conditions 
(Teng et al. 2016). Multiphase choke performance prediction 
has also been improved (AlAjmi et al. 2015). However, to 
the best of our knowledge, few efforts have been reported 
in the literature regarding downhole throttling applicability 
in HPHT gas wells. In an effort to guide its utilization, the 
objective of this study is to set selection criteria by finding 
the maximum wellhead flowing pressure and gas flow rate 
upper limit, which are applicable for downhole throttling 
techniques in HPHT gas wells.

This paper, in relation to others, aims to address the fol-
lowing research gaps:

•	 The isenthalpic performances of both dry gas and high 
liquid hydrocarbon (LHC) content gas condensates are 
separately explored, and the pressures from both JT 
inversion curves are between 40 and 50 MPa.

•	 To utilize a downhole choke, the upper limit to the well-
head following pressure is 52.5 MPa. Otherwise, down-
hole throttling will exhibit an undesirable JT heating 
effect.

•	 To be geothermally viable for downhole throttling, the 
daily gas production needs to be less than 14 E4 m3, as 
along with the preceding pressure limit.

This paper is organized as follows: First, a brief explana-
tion is provided on the throttling process that occurs across 
downhole chokes. Next, the isenthalpic curves of both dry 
gas and high LHC content gas condensates are plotted to 
explore their respective isenthalpic characteristics, with 
temperature and pressure ranges covering field applications. 
Some intuitive observations are derived from both charts. 
Third, based on the above results, an applicability study on 
downhole throttling is performed. Finally, some important 
conclusions are drawn.

Throttling process in a nutshell

A throttling JT process is a thermodynamic process in which 
the enthalpy of the gas or the medium remains constant 
(Yarveicy et al. 2018). Enthalpy has the following defined 
expression (Li et al. 2012):

During the throttling process, no work is done by or on 
the system (dW = 0), as opposed to the turbine machinery, 

(1)H = U + PV
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and usually no heat transfer occurs from or into the system 
(dQ = 0). Specifically, during the expansion (throttling) pro-
cess, heat is not being evolved or absorbed. Thus, the process 
falls into an adiabatic process; specifically, no heat exchange 
occurs with the surroundings. In the end, the total energy 
balance reduces to the following (Teng et al. 2016):

For such a specialized case, no change in the system 
enthalpy is achieved. Therefore, the throttling process con-
tains an isenthalpic process. However, the throttling process 
cannot be isentropic; it is a fundamentally irreversible pro-
cess. The characteristics of the throttling process are as fol-
lows: 1. no work transfer; 2. no heat transfer; 3. irreversible 
process; 4. isenthalpic process.

A throttling of the flow causes a significant reduction in 
pressure because a throttling device causes a local pressure 
loss. A throttling process can be attained simply by intro-
ducing a restriction into a line through which a gas or liquid 
flows. This restriction is commonly performed by means of 
a partially open valve or a porous plug (see Fig. 1). During 
a throttling or JT process, a Joule–Thomson effect occurs, 
and its extent is quantified by the Joule–Thomson coeffi-
cient. The Joule–Thomson coefficient �

J
 is the ratio of the 

(2)ΔH = 0

temperature decrease to the pressure drop and has the fol-
lowing definition:

where T is the temperature, P is the pressure, and h is the 
enthalpy. For natural gas at low and intermediate pressures, 
�
J
 >0 and P1 > P2; thus, the gas is cooled (T1 > T2) as it 

travels in a choke.

Isenthalpic curves of dry gas and gas 
condensate

Method of experimental measurement

The experiment to perform adiabatic throttling is known as 
the Joule–Thomson lab (Huang and Yang 2019; Jia et al. 
2020; Zhu and Okuno 2015). In the setup represented 
schematically in Fig. 2(left), the inlet conditions are kept 
unchanged at position 1, the openness of the throttling unit 
is adjusted, and the different downstream states for 2a, 2b, 
2c, and so on are measured. The pressures and temperatures 
related to various outlet conditions are recorded and plotted 

(3)�
J
= (�T∕�P)

h

Fig. 1   Throttling processes in 
action

Fig. 2   Adiabatic throttling process (left), T–P diagram of a fluid (right)
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on a T versus P diagram, as shown in Fig. 2(right). Since 
the upstream enthalpy is equal to the downstream enthalpy 
of the throttling unit, a large number of state points, such as 
1, 2a, 2b, and 2c, has the same enthalpy. The line intersect-
ing these points is thus isenthalpic. By shifting the pressure 
and/or temperature at position 1 and redoing the preceding 
experiments, another isenthalpic curve is achieved. Thus, a 
cluster of isenthalpic curves is created on a T–P plane.

Figure 2 (right) shows how pressure and temperature are 
related for a series of isenthalpic (Joule–Thomson) expan-
sions. For example, if we start at point 1 (P1, T1) in the figure 
and the gas is throttled through a restriction, the pressure and 
temperature follow the isenthalpic line containing point 1. If 
the final pressure is P2, then the final temperature will be T2, 
as shown by point 2 (P2, T2). Since the Joule–Thomson pro-
cess is isenthalpic, the slope of each line can be represented 
as (�T∕�P)

h
 . This quantity is referred to as the Joule–Thom-

son coefficient �
J
.

Figure 2 (right) shows that �
J
 is negative at high pres-

sures and high temperatures. Therefore, the gas heats up as 
it expands under these conditions. At lower temperatures, the 
temperature of the gas continues to increase if an expansion 
occurs at high pressures. However, at lower pressures, the 
slope, and hence �

J
 becomes positive; thus, the gas cools 

upon expansion. The intermediate between these two effects 
is a pressure and temperature condition where �

J
= 0 , as 

labelled point M in Fig. 2 (right). This temperature is known 
as the Joule–Thomson inversion temperature TM, with the 
corresponding pressure PM as the inversion pressure. Its 
value depends on the starting pressure and temperature and 
the nature of the gas.

The Joule–Thomson inversion curve is the locus in the 
T–P plane for which �

J
= 0 (where the temperature is invari-

ant upon isenthalpic expansion). Within the region bordered 
by the inversion curve, temperature decreases when pres-
sure is reduced, resulting in a JT cooling effect ( 𝜇

J
> 0 ). 

However, outside of this region, the expansion will result 
in a JT heating effect ( 𝜇

J
< 0 ). This curve is important in 

refrigeration and liquefaction processes since the sign of the 
JT coefficient determines whether the temperature of a real 
gas rises or falls by isenthalpic expansion. The experimental 
measurement of the JT inversion curve needs the measure-
ment of the volumetric or caloric properties under certain 
conditions; therefore, its accurate measurement is difficult 
(Farzaneh-Gord et al. 2020).

Method of equations of state calculation

Values of the Joule–Thomson coefficient can be obtained 
from equations of state. Many vigorous isenthalpic flash 
methods exist in the literature (Heidari et al. 2014; Huang 
and Yang 2019; Yarveicy et al. 2018; Zhu and Okuno 
2015). Di Zhu et al. presented a robust isenthalpic flash 

for multiphase water-containing hydrocarbon mixtures. 
Desheng Huang et al. performed multiphase isenthalpic 
flash calculations for compound mixtures of water/solvent/
hydrocarbon at high pressures and elevated temperatures. 
Heidari et al. (2014) developed a highly efficient method 
for thermal compositional simulators. In this work, the 
fluids examined are dry gas and high LHC content gas 
condensate; both are well studied, and hence, the use of 
commercial software to estimate their isenthalpic curves 
for various inlet temperatures is justified.

The multiphase flow models in the OLGA program 
(Bendlksen et al. 1991), a commercial software in wide-
spread use, are utilized in this study to calculate tempera-
tures downstream of a choke in an adiabatic setting. In the 
OLGA program setup shown in Fig. 3, both “P_In” and 
“P_Out” are the pressure nodes, with the user entering 
pressures for the inlet and outlet, respectively. With a flow 
path titled “FLOWPATH_1” that is 10 m long, a valve 
model on hydrovalve is placed in its middle. A self-explan-
atory option for temperature is selected as “ADIABATIC.” 
A PVT table file is created with a third party software 
known as Multiflash and imported into this OLGA model, 
the compositions of which are listed in Table 1. 

Fig. 3   OLGA program setup for the isenthalpic curve projections

Table 1   Compositions for the dry gas and high LHC content gas con-
densate

Component Dry gas Gas condensate

Carbon dioxide 0.7 1.572
Nitrogen 1.218 1.066
Methane 97.702 89.101
Ethane 0.346 2.340
Propane 0.021 0.630
Iso-Butane 0.002 0.138
N-Butane 0.005 0.209
Iso-Pentane 0.002 0.080
N-Pentane 0.002 0.099
Hexane 0.001 0.210
Heptane 0.001 0.275
Octane 0.0 0.575
Nonane 0.0 0.586
Decane 0.0 0.477
C11+  0.0 2.642
C11+ MW 230 g/mol, Density 0.8453 g/cm3
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Method of OLGA software simulation

The OLGA simulator is one of the principal components 
in the analysis of pipeline operations and well production 
optimizations (Bruijnen and de Boer 2016; Ganat et al. 
2017; Zhang et al. 2023; Zhou et al. 2017). OLGA is a 
computational program developed to emulate multiphase 
flow in flow lines and pipeline networks, with processing 
equipment included. The program solves separate continu-
ity equations for the gas, liquid bulk and liquid droplets: 
two momentum equations, one for the continuous liquid 
and one for the combination of gas and possible liquid 
droplets; and one mixture energy equation that considers 
that both phases are at the same temperatures. The equa-
tions are solved using the finite volume method and semi-
implicit time integration. Successful designs and opera-
tions of multiphase production systems rely on a detailed 
understanding of flow behavior. OLGA provides a solu-
tion by accurately modelling true dynamics. Its transient 
simulator has an additional dimension to the traditional 
two-phase steady-state analysis by predicting the system 
dynamics, such as time-varying changes in flow rates, fluid 
composition, temperature, and operational shifts.

From wellbore dynamics for any well configuration to 
pipeline networks with many types of process equipment, 
the simulator engine provides an accurate prediction of the 
key operational conditions involving transient fluid flow 
(Bigdeli 2021; Bigdeli et al. 2019). After the model is set 
up as illustrated in Fig. 3, a table data file is created with 
the third party software Multiflash for dry gas (see Table 1 
for its compositions) and imported to OLGA through the 
FILES keyword. Next, the steps below are followed:

(1)	 For “P_In”, the pressure node, an inlet temperature of 
172 °C and inlet pressure of 98.8 MPa are entered.

(2)	 For “P_Out”, another pressure node, outlet temperature 
of 15 °C and pressure of 48.8 MPa at their respective 
box on the “Model Browser” are entered.

(3)	 The signs of “Ready to simulate” and a green circle 
on the bottom left of the main window dialog box are 
checked; this indicates that the model is ready to run.

(4)	 After the run is complete, the menu item “Profile 
Plot” is selected and the variables “PT” and “TM” are 
selected to display.

(5)	 On the resulting plot, the inputs of 98.8 MPa and 172 
°C and the outputs of 48.8 MPa and 179.952 °C are 
selected and read.

(6)	 To obtain throttling temperatures other than 48.8 MPa, 
step 2 is used, and the pressure is changed.

Steps 2 through 6 are redone and an isenthalpic line of 
172 °C in Fig. 4 is created. To obtain other lines, such as 
158, 118, 78, 58, 38, and 18 °C, separately, steps 1 through 
6 are repeatedly followed. Thus, the isenthalpic curves for 
dry gas at various inlet temperatures are obtained. With a 
high LHC content gas condensate, the preceding procedures 
are iterated for pressures from 2.54 MPa through 98.8 MPa, 
spanning a wide temperature range of 18 °C to 172 °C, and 
Fig. 5 is attained. 

In either Figs.  4 or 5, the linking maxima from each 
isenthalpic curve form a line of the JT inversion curve, which 
falls between 40 and 50 MPa for both fluids at temperature 
ranges of 18 to 172 °C. The JT inversion curve is defined as 
the locus of the points where the JT coefficient becomes zero. 
It separates the region of positive JT coefficients from nega-
tive coefficients (Farzaneh-Gord et al. 2020). Nichita et al. 
calculated two typical reservoir fluids as examples, whose 
inversion pressures had a range of 35–50 MPa for typical 
reservoir temperatures (Nichita and Leibovici 2006). The JT 
inversion curve is important because it determines the sign of 

Fig. 4   Isenthalpic curves for dry 
gas at various inlet temperatures
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the JT coefficient. To the right of these inversion curves, JT 
coefficients are negative ( �

J
<0), which results in a JT heating 

effect; this means a hotter gas after the expansion of the choke. 
Moreover, on the left-hand side of both inversion curves, the 
signs of the JT coefficients are positive, exposing the gas or 
condensate gas to a JT cooling effect. At the locus of these 
inversion curves, their JT coefficients are zero. Evidently, only 
points traversing inversions can have an invariant temperature 
during throttling processes.

By analyzing both Figs. 4 and 5, the following can be 
observed: ① For pressures above 28.8 MPa, all isenthalpic 
curves from different inlet temperatures are nearly flat. This 
indicates that downhole throttling is inapplicable for pressures 
higher than 28.8 MPa. Had downhole throttling occurred at 
pressures above 28.8 MPa, it will encounter an increase in 
temperature as pressure is reduced across a choke. This can 
contradict the aim of exploiting the geothermal energy. ② 
When the inlet temperature is above a certain value, the tem-
peratures downstream of the choke are higher than the ambient 
temperature at the location of the downhole choke. Therefore, 
downhole chokes are applicable solely for low-production gas 
wells. This is partly because positive JT coefficients occur in 
the low inlet temperature region of both charts. Furthermore, 
low inlet temperatures entails low gas flow rates. On the other 
hand, for a gas with a high enough inlet temperature, its cooled 
downstream temperature through a choke is still high, to the 
extent above ambient.

Applicability study on downhole throttling

Determination of maximum Pt

Based on preceding insights that downhole throttling is not 
suitable for downstream pressures higher than 28.8 MPa, 

the objective of this study is to find its corresponding Pt, 
which is also the maximum allowable wellhead pressure 
for economically installing downhole chokes. We make a 
point of effectively absorbing geothermal energy by cooled 
gas streams. To determine this value, the following three 
conventions are used:

1.	 On depth at which downhole chokes are placed, we 
review 69 downhole choke installations that have been 
deployed in our oil field since June 2011. Its seating 
depth scatter chart is shown in Fig. 6. Integrating it with 
applications in other oil fields in China, we find a pre-
ferred depth of 2500 m. By the same means, we obtain 
a roughly accepted wellhead flowing temperature of 28 
°C on most downhole choke installations.

2.	 The allowable pressure drop that downhole chokes can 
endure has been widely accepted to be 35 MPa (Huiyun 
et al. 2020); this correlates to 30 MPa after factoring in 
a safety allowance of 0.85. The well site back pressure, 
which is also called the wellhead downstream pressure, 
is usually set at 10 MPa for gas gathering systems. The 
geothermal temperature is 65.05 °C in our oil field, cor-
responding to a downhole choke placement depth of 
2500 m.

3.	 For the critical pressure ratio, a value of 0.546 is selected 
after performing a literature review (Huiyun et al. 2020; 
Jia et al. 2020; Naseri et al. 2016; Shao et al. 2018; Xie 
et al. 2022).

Assuming a choke is set at 2500 m downhole, a comput-
ing flow diagram, as illustrated in Fig. 7(left), is framed. 
The first step is entering an initial wellhead pressure of 
80 MPa, and then, this flow chart is followed; a maximum 
pressure of 52.5 MPa is reached after multiple iterations. 
Specifically, if the wellhead flowing pressure is below this 

Fig. 5   Isenthalpic curves for 
high LHC content gas conden-
sate at different inlet tempera-
tures
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value, then a cooled gas is achieved downstream of the 
choke.

However, even if Pt is less than 52.5 MPa, the result-
ing cooled gas temperatures can still be higher than the 
ambient temperature of 65.05  °C if gas production is 
high enough. This negates our fundamental objective of 
having downhole throttling techniques, i.e., harnessing 
geothermal energy to heat chilled gas. To illustrate this 

phenomenon, data from Zhu Guangyou et al. are drawn on 
(Zhu et al. 2021), with key parameters listed in Table 2. A 
wellbore temperature profile is plotted in Fig. 7(right) for a 
wellhead flow pressure of 52.2 MPa, gas production being 
15 E4 m3/d. From this chart, even if the downstream tem-
perature is lowered somewhat, it can still stand above the 
ambient line. Hence, suitable gas production is needed for 
a cooled gas through a choke to be geothermally heated.

Fig. 6   Scatter chart of the 
downhole choke depth versus 
the choke size in a western 
China field

Fig. 7   Flow diagram for esti-
mating the maximum Pt (left) 
and the temperature profile for 
a wellhead flowing pressure of 
52.2 MPa and gas production of 
15 E4 m3/d (right)
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Applicable gas production

Gas stream temperatures in the downstream chokes are reli-
ant on both upstream pressures and temperatures and throt-
tling pressure drops. Upstream gas stream temperatures are 
a function of the gas flow rate and temperature gradients 
where a gas well is located and its well depth. To explore the 
gas production applicable to the downhole throttling tech-
nique, a vertical gas well in western China, which has an 
ambient temperature gradient of 1.98 °C/100 m and a total 
vertical depth of 8100 m, was used. Other key parameters 
are listed in Table 2. The well stream used is dry gas, and 
its composition is listed in Table 1. The software utilized is 
commercially available and marketed as PIPESIM. In addi-
tion to a downhole choke deployed at 2500 m, a variable 
choke is installed at the Christmas tree, with the goal of safe-
guarding surface facilities in case of failures in the downhole 
choke. The outlet pressure is fixed at 10 MPa. To run mul-
tiple cases, other key variables are listed in Table 3, such as 
reservoir pressures and gas productivity indices (Kalantari-
asl et al. 2022; Zhang and Emami-Meybodi 2020b).

After entering into or choosing from an appropriate 
amount of data in the PIPESIM graphic user interface, 
the allowable pressure difference through downhole choke 
is maintained by varying the beam size of the chokes for 
either downholes or surface chokes. Then, multiple runs are 
performed for various reservoir pressure gradients and gas 
productivity indices, simulating diverse well conditions. 

Therefore, Fig. 8 shows the resulting data. In this chart, 
two flowing Pts, at 52.5 MPa and 25.8 MPa, are separately 
provided. In Fig. 8 (left) for flowing Pt at 52.5 MPa, the 
subcooling remains above zero for all daily gas productions, 
and especially as low as 2.0 E4 m3. This supports the results 
above, with a maximum wellhead flowing pressure of 52.5 
MPa, as estimated from the flow diagram.

In Fig. 8 (right) for flowing Pt at 25.8 MPa, for the daily 
gas production below 14 E4 m3, most subcooling is less than 
zero. Thus, from an engineering application viewpoint, that 
value is the applicable upper limit in the gas production to 
the downhole throttling technique. The subcooling values 
above zero are caused by a downhole throttling pressure drop 
constraint of 30 MPa. This also imposes an impact on the 
lower end of the line with pressure gradient 1.00 MPa/100 
m. For the rest of the lines in Fig. 8(right), a lower gas flow 
rate correlate to a larger subcooling. Specifically, a larger 
temperature difference between the downstream and ambient 
conditions provides better benefits in the application of the 
downhole throttling technique.

To improve the robustness of the upshots above, another 
HPHT gas well with a typical well configuration is set up 
in PIPESIM. It is differentiated from the preceding example 
well with a well depth of 5000 m and the other information 
listed in Table 4.

After performing multiple cases with various reservoir 
pressures and gas productivity indices, Fig. 9 is obtained by 
visualizing the resultant data.

Both charts in Fig. 9 reinforce the findings from Fig. 8, 
with the exception of the applicable daily gas production 
being 16 E4 m3. As the research target of this work is 
ultradeep wells, the preceding value is more desirable.

Statistical analysis of field applications

The downhole throttling technique has been deployed in a 
western China field for over a decade. In field applications, 
the maximum pressure drop across the downhole choke fol-
lows. In this work, data pairs of daily gas production and 
flowing Pt are shown in Fig. 10. The formation of pressure 
gradients, correlating to these datasets, span a range of 
1.33–0.73 MPa/100 m. For this chart, both upper limits to 

Table 2   Essential well 
parameters in use with a 
downhole choke

Parameters Value Parameters Value

Diameter of tubing φ88.9 × 6.45 mm Diameter of casing φ177.8 × 12.65 mm
Length of tubing 8080 m Casing depth range 0–8100 m
Packer fluid viscosity 28 mPa s Packer depth 8000 m
Packer fluid weight 1.7 g/cm3 Geothermal gradient 1.98 ℃/100 m
Reservoir pressure 138 MPa Wellhead temperature 15.55 ℃
Reservoir temperature 175.93 ℃ Gas specific gravity 0.64
Liquid gas ratio 0 m3/m3 Water cut 0

Table 3   Key variables used in the multi-case studies of the 8100 m 
well depth

Flowing Pt 
(MPa)

Reservoir pres-
sure (MPa)

Pressure gradient 
(MPa/100 m)

Gas productiv-
ity index [E6 m3/
(d bar2)]

52.5 138 1.70 1.124 E−7
120 1.48 1.725 E−7
80.8 1.00 1.993 E−6

25.8 138 1.70 8.692 E−8
120 1.48 1.190 E−7
80.8 1.00 3.182 E−7
50.8 0.63 1.959 E−6
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the flowing Pt of 52.5 MPa and the daily gas production of 
14 E4 m3 are verified.

Downhole throttling application in action

To facilitate the use of the conclusions from this work, 
Fig. 11 is proposed as a simple decision tree. First, produc-
tion engineers are expected to determine two inputs. One 
is flowing Pt, preferably at daily gas production as close to 
14 E4 m3 as possible. This is the flowing wellhead pressure 
before a downhole choke is deployed, and it is often avail-
able from well testing. The other is gas production, which 
is the desired gas flow rate after placing a downhole choke.

Discussion

This study has the following advantages and disadvantages.
Advantages: Isenthalpic lines of both dry gas and LHC 

content gas condensate are used to arrive at the pressure 
upper limit. Building on two deep gas gushers, multiple 
simulations are run and field data records are used to justify 
both upper limits of flowing Pt and gas production.

Disadvantages: The flowing upper pressure limit is based 
on practice; here, the allowable pressure difference through 
a downhole choke is 30 MPa. As technology advances, 
this constraint is likely to lessen. The upper gas production 
limit rests on a well site back pressure of 10 MPa, which is 
derived from the gas gathering system pressure. Since gas 
zones may mark major oil formations, their production needs 
lower well site back pressure.

Conclusions

First, a pair of T–P plots for dry gas and high liquid hydro-
carbon (LHC) content gas condensates were separately 
calculated using commercial software. Second, a method 
to estimate the maximum wellhead flowing pressure (Pt) 
was proposed, and its exact value was determined with the 
application of downhole throttling. Third, based on the 
well data from two deep gas producers in western China, 

Fig. 8   Relationship between the daily gas production and subcooling 
at various formation pressure gradients for an 8100 m well depth with 
a constant flowing Pt at 52.5 MPa (left) and at 25.8 MPa (right). The 

subcooling is calculated by subtracting the ambient temperature at 
2500 m from the downstream temperature

Table 4   Primary variables used in the multi-case studies of 5000 m 
well depth

Flowing Pt 
(MPa)

Reservoir pres-
sure (MPa)

Pressure gradient 
(MPa/100 m)

Gas productiv-
ity index [E6 m3/
(d bar2)]

52.5 85.0 1.70 5.826 E−7
74.0 1.48 1.807 E−6
69.0 1.38 1.508 E−5

25.8 64.0 1.28 5.501 E−7
44.0 0.88 2.699 E−6
38.5 0.77 1.649 E−5
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the pressure upper limit applicable to the downhole throt-
tling technique was re-confirmed while separating the 
allowable maximum gas flow rate by running multiparam-
eter modelling. Last, both upper limits were re-verified 
by statistical analysis of field data records. As such, the 
following conclusions were drawn:

1.	 The pressure upper limit for the downhole throttling 
technique was estimated to be 52.5 MPa. Otherwise, a 
hotter gas was encountered downstream of the chokes; 
this was indicative of a Joule–Thomson (JT) heating 
effect and an undesirable effect.

Fig. 9   Relationship between the daily gas production and subcooling at various formation pressure gradients for 5000 m well depth, with con-
stant flowing Pt at 52.5 MPa (left) and at 25.8 MPa (right)

Fig. 10   Cross chart of the daily 
gas production versus flowing 
Pt
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2.	 The pressure upper limit and the gas flow rate were 
important parameters. Daily gas production applicable 
to the downhole throttling technique was determined to 
be 14 E4 m3. For the low formation pressure gradients, 
a lower gas flow rate correlated to a better gain of the JT 
cooling effect on downhole throttling.

3.	 The pressures of JT inversion curves of both dry gas and 
high LHC content gas condensate fell between 40 and 
50 MPa at temperature ranges of 18–172 °C; this had 
implications in refrigeration and liquefaction processes.
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