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Abstract
Drilling optimization has been broadly developed in terms of influential parameters. The assessment time and the effects 
of both geomechanical and drilling parameters were vital challenges of investigations. Drilling factors are applied force or 
rotation of drilling agents such as weight on bit (WOB), and geomechanical features represent mechanical indexes of rocks 
including unconfined compressive strength (UCS). Optimization efforts have been demonstrated on complex prediction 
methods whereas the simplicity of classification can offer some optimal ranges utilizing machine learning classifications in 
an accelerated process. In this study, a novel procedure using the supervised and semi-supervised learning approaches was 
conducted to classify and optimize the rate of penetration (ROP) and torque on bit (TOB). Firstly, in the case well, user-
defined classes were assigned based on geomechanical units (GMU) and the ranges of high ROP and low TOB, thus classes 
divided drilling factors as GMUs of the case. Secondly, the feature selection was carried out by neural pattern recognition 
with three multi-objective optimization methods for classification. The inputs of classifications were WOB, hook load, 
pump pressure, flow rate, UCS, and internal friction angle. Classification approaches were decision trees, support vector 
machine (SVM), and ensemble learning. Finally, the bagged trees permutation and Laplacian SVM (LapSVM) algorithm 
separately revealed the significance of parameters and predicted the optimal ROP and TOB regions. Findings showed (1) in 
supervised classification of the case well, the cubic SVM and bagged trees had the highest area under the curve (AUC) and 
accuracy, on average 0.97 and 0.96, respectively. (2) The average accuracy of the supervised classifications in a test well 
was 91% except for the fine SVM, which makes them reliable for the fields with the least information. (3) The permutation 
outcomes for significant features, flow rate and UCS, exposed influential parameters for ROP and TOB optimization. (4) 
The semi-supervised method, LapSVM, not only acquired both ROP and TOB labels with an accuracy of 88% but also 
presented their optimal ranges in 95% of the assessed zones. (5) LapSVM deals with a limited training section perfectly 
opposed to the supervised version, which is vital for drilling investigation. (6) Implementing machine learning classification 
approaches with rock properties is a key factor in achieving effective drilling parameters in less time. More importantly, the 
recommended drilling factors concerning geomechanical properties can ameliorate both drilling performance and perception 
of upcoming collapse.

Keywords  Drilling optimization · Drilling parameters classification · Geomechanical parameters · Semi-supervised 
method · Hybrid feature selection · Ensemble learning
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RUSB.T	� RUSBoosted trees
SVM	� Support vector machine

Latin letters
CALI (inches)	� Caliper log
CCS (MPa)	� Confined compressive strength
CCS

DP
 (MPa)	� Confined compressive strength 

based on differential pressure
CCS

sk
 (MPa)	� Confined compressive strength 

based on Skempton pore pressure
DP (MPa)	� Differential pressure (or 

confining stress)
DT (μs/ft)	� Sonic interval transmit time
DTCBest (–)	� Best of decision trees classifier
E and EE (–)	� Misclassification error and total 

error
Esta (GPa)	� Static Young’s modulus
Flow.R (Gal/min)	� Flow rate
GR and CGR (API)	� Gamma-ray and corrected 

gamma-ray
HKL (klbf)	� Hook load
IFA (degree)	� Internal friction angle
MSE (MPa)	� Mechanical specific energy
nf (–)	� Number of selected features
NPHI (V/V)	� Neutron porosity
PEF (–)	� Formation evaluation 

photoelectric factor
PHIE (V/V)	� Effective porosity
Pump.P (psi)	� Pump pressure
q and b (–)	� Exponent of cubic and quadratic 

polynomial kernel functions in 
SVM and the bias value in SVM 
function

RHOB (kg/m3)	� Density log
ROP (m/h)	� Rate of penetration
RPM (rpm)	� Rotary speed or bit revolutions 

per minute
RT (ohm m)	� Resistivity log
RRi,j (–)	� Total number of class i values
r(n) and P(n) (–)	� Re-substitution estimation 

error for misclassification and 
probability of any value equal 
with criteria

TOB (Lbf.ft)	� Torque on bit
UCS (MPa)	� Unconfined compressive strength
Vp (m/s)	� Compressional wave velocity
Vs (m/s)	� Shear wave velocity
Vshale (–)	� Shale volume
WOB (klbf)	� Weight on bit
Wtrain and Wtest	� Weights of the training and test
Xnor, Xmax, and Xmin (–)	� Normal, maximum, and 

minimum values

Greek letters
α, β, δ, and ω (–)	� Alpha, beta, delta, and omega in 

MOGWO method
� (kg/m3)	� Density
∅(x) (–)	� Mapping of x from predictor 

samples space (Rn) in SVM
σ2 (–)	� The variance of RBF or Gaussian 

kernel (kernel scale)

Introduction

The drilling costs are a significant portion of the 
expenditures in oil and gas projects. In recent years, attention 
has been given to developing analytical and data-driven 
models that could estimate and optimize important factors 
efficiently. The rate of penetration (ROP) that is obtained by 
recording the drilled depth per unit of time, is an effective 
feature for drilling optimization, and a higher rate of it can 
result in the productive rig, detection of possible kicks, and 
indicating stick–slip (Elkatatny 2019; Hegde et al. 2017). In 
the process of drilling optimization, torque on bit (TOB) is 
another critical factor, which is directly related to the amount 
of applied pressure of the drilling agent (Motahhari et al. 
2009). In addition, TOB is a vital part of the prediction of the 
specific energy (SE) proposed by Teale (1965). According 
to studies, some efforts have been made to model ROP and 
TOB, a sort of the results will be briefly explained.

Rate of penetration models

There are two categories of ROP predictive models, 
including the physics-based and data-driven models. The 
mathematical formulas are used based on the physics-based 
or the training of data-driven models via algorithms to obtain 
ROP. As regards the physics-based model, an ROP model 
was proposed by Maurer (1962) (namely perfect cleaning) 
defined a drilling mechanism consisting of the weight-on-bit 
(WOB), the rotational speed (RPM), TOB, and rock strength. 
There are studies focused on a cost-effective ROP by gaining 
the proper WOB and RPM (Galle and Woods 1963). In 
terms of data-driven models by artificial neural networks 
(ANN), Bilgesu et al. (1997) played a pioneering role and 
introduced a methodology to predict ROP. Concerning 
the usage of artificial intelligence (AI), numerous useful 
studies were presented with high accuracy (Bezminabadi 
et al. 2017; Elkatatny 2019). In this way, Table 1 expresses 
some proposed both physics-based and data-driven studies 
in terms of ROP prediction and optimization.

In addition, not all of the ROP-affecting parameters 
have been utilized in previous models due to the complex 
relationship between ROP and factors. Besides, geome-
chanical studies have introduced the influence of specific 
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properties of rocks such as the internal friction angle (IFA) 
and confined compressive strength (CCS) for drilling 
operations. Implementing vast geomechanical and drilling 
data, Mehrad et al. (2020) proposed an accurate predic-
tion ROP model by a hybrid machine learning approach. 
Delavar et al. (2021) introduced an ROP model using a 
wide range of both the drilling factors and geomechanical 
properties exerting the ANN and Bayesian approaches. As 
a result, some procedures were presented for finding the 
optimum ROP in future drilling operations.

Torque on bit models

The introduced models for TOB have relied on the type of 
recorded data and the development of measurement tools. 
The cutting-edge downhole TOB recording tools were an 
effective invention in advance, Warren (1984) presented 
a TOB model considering SE in drilling along with using 
some parameters, including WOB, RPM, ROP, and bit 
size. The torque and drag (T&D) models, in the chain of 
TOB studies, were presented to describe the mechanism of 
torque in drilling. To this extent, a T&D real-time model 
was proposed by Shahri et al. (2018), which reduced costs 
and improved drilling performance. Moreover, Hegde and 
Gray (2018), Oyedere and Gray (2020b), and Delavar et al. 
(2023) used machine learning including the random forest 
and support vector machine (SVM) with metaheuristic 
optimization methods for the TOB models.

Classification benefits and flowchart

Data-driven models of ROP and TOB have been used widely 
to improve physics-based models or introduce machine 
learning regression models via the wells data. The impact 
of influential parameters on ROP and TOB is very complex 
thus it is necessary to consider various features on the basis 
of the case study. Classification methods can deal with the 
mentioned complicated circumstance because their practical 
predictive models approximate the mapping function from 
input variables to desired ROP and TOB. Furthermore, 
the importance of representing classifications lies in the 
simplicity of predicting ROP and TOB in the evaluation of 
the drilling operation performance.

Hybrid classification approaches are accurate and 
feasible manners to determine challenges related to drilling 
and reservoir engineering (Delavar 2021; Sanei et  al. 
2023). Reservoir characteristics such as fracture density 
were classified by machine learning procedures with high 
accuracy (Li et al. 2018). Using classification, Oyedere and 
Gray (2020a) proposed ROP and TOB classification models 
to classify two classes so-called high ROP and low TOB 
using WOB, RPM, flow rate, and unconfined compressive 
strength (UCS). Here, the classes were allocated by 
geomechanical and drilling factors, and more practical 
drilling factors were determined for hybrid classification 
approaches.

Figure 1 illustrates the steps to achieve the goals of this 
effort. In the flowchart, first, the geomechanical units (GMU) 

Table 1   The details of some studies proposed for the rate of penetration (ROP) prediction

Authors Model Involved parameters Results

Warren (1987) Physics-based Drill-ability evaluation by drilling factors 
and pressure

Establishing ROP model with new 
mechanical properties

Rampersad et al. (1994) Physics-based ROP estimation and optimization via the 
geological drilling log

Improvement of ROP optimization cause of 
the innovated log

Shirkavand et al. (2009) Physics-based ROP prediction utilizing the confined 
compressive strength

Introducing ROP in underbalanced drilling 
condition

Hareland and Hoberock (1993) Physics-based ROP model exerting tools’ features Representing for polycrystalline diamond 
compact (PDC) bits

Motahhari et al. (2009) Physics-based Optimization of ROP model by pressure and 
hole condition

Effective model via positive displacement 
motor (PDM)

Bourgoyne Jr and Young Jr (1974) Data-driven Implementing eight factors for drill-ability 
examination

ROP optimization and representing a multiple 
regression procedure

Al-Betairi et al. (1988) Data-driven Optimization utilizing factors such as weigh 
on bit (WOB)

Proposed regression-based model for ROP 
optimization

Al-AbdulJabbar et al. (2019) Data-driven ROP estimation using the mud properties 
and fluid factors

ROP model via mud features and clustering 
approach

Alali et al. (2021) Data-driven Hybrid model and optimization of ROP by 
dynamic drilling factors

Minimizing the non-productive time and 
improving efficiency
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were established, and they formed the user-defined classes 
in addition to ROP and TOB bands. Second, in the feature 
selection, neural pattern recognition (NPR) was combined 
with three multi-objective optimization methods, thus the 
features were selected for the classification methods. Next, 
five supervised classification methods were applied to the 
dataset, which included the features and labels. As a result, 
the best classification method was introduced for the zones. 
Third, the important features for the classification of ROP 
and TOB in the zones were presented. Finally, based on a 
semi-supervised method using the revealed significant fac-
tors, the optimized drilling parameters were introduced for 
ROP and TOB.

Geology and data acquisition

The studied well is located in the southwest of Iran in the 
Dezful embayment. It was drilled in the Marun oilfield 
situated in the Middle East (Telmadarreie et al. 2012). In 
Marun, the Asmari reservoir was considered, which is a 
carbonate reservoir with five zones and four sub-zones. 
Here, the interval depth of the case well is 3557 to 3924 m, 
which includes 4 zones and 3 sub-zones. The lithology of the 

Asmari generally includes limestone, dolomite-limestone, 
and thin layers of both sandstone and Shale-Marne stone 
interbedded (Alavi 2004).

For feature selection methods, the conventional logs of 
the well were corrected gamma-ray (CGR), DT, NPHI, den-
sity log (RHOB), formation evaluation photoelectric factor 
(PEF), and resistivity log (RT). On the other hand, the mud 
logs and drilling measurements acquired ROP, TOB, WOB, 
hook-load (HKL), pump pressure (Pump.P), and flow rate 
(Flow.R). The dataset of the present study obtained from a 
wellbore included 2952 points as samples and 738 points of 
ROP and TOB. The petrophysical and drilling logs of the 
present study are shown in Fig. 2. As regards the lithology 
of the well (track 2 in Fig. 2), conventional logs such as CGR 
and RT, illustrated in tracks 3 and 4, are changed through the 
diversity of rocks. Concerning the drilling parameters in the 
dataset, the recorded mud logs are shown on tracks 5 and 6.

In addition, despite the fact that a section of the training 
well was divided to prepare the test part, the dataset of a 
second well was deemed to verify the performance of 
classification methods in the vicinity zones. The formations 
of the second well are carbonate rocks although the 
distinguishes between the patterns of geomechanical and 
drilling factors of the training well with the same parameters 

Fig. 1   The flow-chart of all the process of analysis in the present study
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in the second well can reveal the capability of models. The 
interval depth of the second well is 257 m, which provides 
2313 points for the evaluation of the proposed method.

The strength parameters of rocks (UCS and CCS) usually 
have opposite trends toward ROP while pressure and depth 

of drilling could impact their correlation. On the other hand, 
IFA is associated with both porosity and shale volume, which 
could impact TOB and WOB (Anemangely et al. 2018; Cal-
houn and Ewy 2005). Concerning the influential parameters 
for ROP and TOB classification and prediction, Table 2 shows 

Fig. 2   The conventional and drilling logs of studied well; tracks 1 and 2 are depth and lithology also, petrophysical logs illustrate in tracks 3 and 
4; the drilling data show in tracks 5 to 7
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some features executed in the previous studies. To describe 
the diversity and density of selected petrophysical logs, prob-
ability density function (PDF) graphs of the recorded data are 
illustrated in “Appendix A”. The diversity of RHOB, DT, PEF, 
and NPHI was rather than CGR and RT. In fact, the normal 
shape of a dataset, spread over in wide range with a peak in the 
middle, has an influence on results effectively. This checking 
process proved the credibility of the inputs in terms of statisti-
cal features for the classification methods.

In this effort, UCS, CCS, and IFA were obtained by the 
correlations that have been introduced from the carbonate 
reservoir case. The dynamic Young’s modulus ( Edyn ) was 
calculated (Eq. 1) through conventional logs and converted to 
the static Young’s modulus ( Esta ) (Eq. 2) (Afsari et al. 2010; 
Zoback 2007). The UCS test on the rock of adjacent wells 
showed the ranges of UCS at 50–70 MPa. Also, Eq. 3 was 
presented for the Marun oilfield to predict the UCS of rocks 
that had been used here (Anemangely et al. 2018). The IFA 
and CCS were obtained by laboratory-based equation (Eq. 4) 
and the bottom-hole rock strength and pressure function 
(Eq. 8) (Calhoun and Ewy 2005; Plumb 1994). The required 
functions for the calculation of IFA and CCS are (Eqs. 5–7) 
(Gholami et al. 2014; Kidambi and Kumar 2016).

(1)Edyn = �V2
s

(
3V2

p
− 4V2

s

V2
p
− V2

s

)

(2)Esta = 0.4145Edyn − 1.0593

(3)UCS = 2.27Esta + 4.74

(4)
IFA = 26.5 − 37.4

(
1 − NPHI − Vshale

)
+ 62.1

(
1 − NPHI − Vshale

)2

(5)Vshale =
GR − GRmin

GRmax − GRmin

where Edyn , � , VP , VS , Esta , NPHI , Vshale , GRmax , and GRmin 
represent dynamic elastic modulus, density, compressional 
wave velocity, shear wave velocity, static elastic modulus, 
neutron porosity, shale volume, maximum gamma ray, and 
minimum gamma ray. Also, DP , CCSDP , CCSSK , DPSK , and 
PHIE show differential pressure or confining stress, CCS 
based on DP , CCS based on Skempton pore pressure, DP 
based on Skempton pore pressure, and effective porosity or 
porosity index.

Methodology

The drilling and geomechanical factors of the well were 
acquired in the first step of the study. The methods used for 
user-defined labeling, classification, feature selection, and 
optimization will be briefly described.

User‑defined classes

Constructing the classes was the initial step of this study, 
Table 3 expresses the scheme of the labeling process using 
geomechanical and drilling factors. Firstly, the thresholds of 
zones were defined based on previous studies on carbonate 
formations in the region (Alavi 2004), and considering the 
well logs. They have evident boundaries if the conventional 
well logs were in access. Secondly, in assigning the labels 
of the studied well, the geomechanical units (GMU) were 
specified. Basically, GMU has close geomechanical features; 
thus the impact of drilling tools on them is defined in a 
special pattern.

The zones were divided into 21 GMUs, which GMUs 
10 to 21 are shown in Fig. 3 and others are available in 
“Appendix B”. Figure 3 illustrates depth, zones, and GMUs 
on tracks 1 to 3. Besides, tracks 4 to 7 show the well logs and 
geomechanical parameters which are a part of the dataset 
of the well. The GMU’s separation criterion in the zones 
was the average of parameters. For instance, in Z.3 (Fig. 3), 
the averages of DT (Sonic interval transmit time) and UCS 
are depicted as yellow dash-lines, which are the trends of 
common geomechanical features in the GMU. By assigning 
GMUs, the labeling process proceeded to step 3 of Table 3. 
In this way, the averages of ROP and TOB in the entire depth 
were assessed to set their thresholds. Finally, the classes 

(6)CCSDP = UCS + DP + 2DP
(

Sin IFA

1 − Sin IFA

)

(7)CCSSK = UCS + DPSK + 2DPSK

(
Sin IFA

1 − Sin IFA

)

(8)CCS =
CCSDP(PHIE − 0.05)

0.15
+

CCSSK(0.2 − PHIE)

0.15

Table 2   The influential parameters used in the previous studies of the 
rate of penetration and the torque on bit

Applied features References

WOB Abbas et al. (2018), Oyedere and Gray (2020a), 
Oyedere and Gray (2020b)

RPM Bezminabadi et al. (2017), Oyedere and Gray 
(2020b)

UCS Elkatatny (2019), Delavar et al. (2023)
Flow.R Oyedere and Gray (2020a), Hegde and Gray (2018)
IFA Delavar et al. (2021), Bezminabadi et al. (2017)
Pump.P Bourgoyne Jr and Young Jr (1974)
CCS Delavar et al. (2021), Shirkavand et al. (2009)
HKL Han et al. (2019), Delavar et al. (2023)
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Table 3   The process of labeling 
using geomechanical and 
drilling parameters

Numbers Labeling steps Parameters

1 Evaluation of the zones of the carbonate formation Well logs
2 Dividing the zones to GMU Geomechanical 

parameters and 
well logs

3 Comparing the averages of ROP and TOB of all GMUs in a zone 
based on thresholds

Drilling parameters

4 Assigning labels as:
ROP’s thresholds: differences values of > 0.6 m/hr

(GMUs with ROP differences ≤ 0.6 m/hr devoted as a class)
TOB’s thresholds: differences values of > 300 lbf.ft

(GMUs with TOB differences ≤ 300 lbf.ft devoted as a class)

Drilling 
parameters and 
geomechanical 
units

Fig. 3   The conventional well logs and geomechanical parameters of 
the case in the geomechanical units (GMUs) 10 to 21; tracks 1 to 3 
are included depth, zones and GMU, and petrophysical logs are in 

tracks 4 and 5, and also, tracks 6 and 7 are consisted of the trends of 
geomechanical features in the well
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were achieved by combining the GMUs, dividing the large-
scale depth into some particular parts, and evaluating the 
ROP and TOB bands.

The steps of Table 3 were employed in all of the zones. 
The changes in the parameters and the average values of 
ROP and TOB of Z.2 & SZ.2 are respectively illustrated in 
Figs. 4 and 5, to describe the labeling method of a zone. In 
the process, first, the zone is divided into specific GMUs 
(expressed in Fig. 3). Second, in the zone, all GMUs were 
determined (Fig. 4), and the bands of ROP and TOB were 
checked via step 4 of Table 3 (Fig. 5). These labels were 
named for both ROP and TOB classes separately. Therefore, 
on the ROP side, GMUs 5 and 8 were denoted in class 1 
because the differences in ROP in their GMUs were lower 
than 0.6 m/hr. Where GMU 6 was labeled as class 2 and 
GMUs 7 and 9 were labeled as class 3 due to staying in the 
constraint of 0.6 m/hr. For TOB, the classes were named 
as follows GMUs 5, 8, and 9 in class 1, GMU 6 in class 2, 
and GMU 7 in class 3 owing to the employed limitations of 
300 lbf.ft.

Other zones of the case well were categorized accord-
ing to the explained procedure and the labels are shown in 

Table 4. It should be noted that the mentioned labels were 
used for the supervised classification methods. However, in 
the semi-supervised method, Laplacian SVM (LapSVM) 
uses a different scale from the applied manner of the super-
vised methods (Table 4) for ROP and TOB. Actually, the 
LapSVM’s thresholds were defined as a certain number 
dividing ROP and TOB to the high and low zones due to 

Fig. 4   The drilling and geome-
chanical logging data in zone 
2 and subzone 2 as an example 
zone of the well and used for 
user-defined classes; the formu-
las of the internal friction angle 
(IFA) and rock strength features 
can be found in the "Geology 
and data acquisition" section
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Fig. 5   The average values of the rate of penetration and torque on bit 
in the five GMUs of the studied well which were used for the user-
defined thresholds
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achieving optimal parameters. The different limits of ROP 
and TOB in LapSVM were assigned because the semi-super-
vised methods can be trained by a few features and also it 
was aimed at seeking optimal factors.

The significant influences of geomechanical properties in 
the supervised and semi-supervised labeling procedures were 
in the process of categorizing zones to GMUs and acquiring 
the ROP and TOB contributed to geomechanical features, 
respectively. The second utilization of geomechanics (semi-
supervised) leads the method to indicate the optimal ROP 
and TOB when the important drilling factors (gained via a 
method) apply as a pattern of drilling factors from GMU 
with close geomechanical features. This desirable pattern 
of drilling parameters was obtained in the labeling process 
of LapSVM. The details of LapSVM’s classes are described 
in the following in its specific section. It should be deemed 
that presenting a certain amount of drilling factors that offer 
optimum ROP and TOB is almost impossible due to tools 
limitations; thus the values were introduced as ranges.

Feature selection

Feature selection can be used in the process of prediction, 
classification, and pattern recognition. Feature selection 
methods are often based on the ANN combined with 
optimization approaches. Here, the multi-objective methods 

were applied for the optimization aimed at minimizing both 
the number of features and the errors of the classification 
(Hamdani et al. 2007). The influence of two features for 
simultaneous optimization was the main reason to utilize 
the multi-objective methods.

In this study, the NPR approach was the major learning 
method for the feature selection. The scaled conjugate 
gradient (SCG) algorithm was applied to the training process 
including 70% of the dataset. The SCG algorithm is a fast 
learning method with good convergence (Castillo et al. 
2006; Møller 1993). The remaining 30% of the dataset was 
assigned to the testing and validation process and 20 neurons 
in the two hidden layers were used for the ANN’s structure 
in the Matlab software. In the hybrid feature selection 
methods and classification methods of the present study, 
training, validation, and testing sections were randomly split 
because it ensures that the sections are representative of the 
original dataset. The data normalization step was achieved 
in Eq. 9, and the cost function of NPR ( Z ) is shown in Eq. 9. 
The weights ( Wtrain and Wtest ) were assigned for two types of 
error consisting of 0.8 and 0.2 for the train and test sections, 
respectively. The main function is shown in Eq. 10. Knowing 
that NPR hybridized by the optimization method at each 
run, different error values ( EE ), and hence the average value 
( ETotal ) were considered (Eq. 11).

where Xnor , Xmax , Xmin , Wtrain , Etrain , Wtest , Etest , E , and  nf  
represent normal value, maximum value, minimum value, 
weight of train, error of train, weight of test, error of test, 
difference of observed and predicted values by NPR, and 
number of features.

Multi‑objective genetic optimization

The non-dominated sorting genetic algorithm II (NSGA-II) 
is a multi-objective optimization method. The NSGA-II 
finds the optimal parameters with minimum errors and 
presents the results as a Pareto-optimal diagram. In the 
case of complex datasets, this natural-inspired algorithm is 
useful due to its lower computational costs (Liu et al. 2015). 
Moreover, the NSGA-II presents the distribution parameters 
by a novel crowding distance method (Deb et al. 2002; 
Delavar and Ramezanzadeh 2023).

The flowchart of the NSGA-II algorithm is shown in 
Fig. 6. First, the problem definition, cost function, and vari-
ables limitation were set. Next, the NSGA-II parameters, 

(9)

X
nor

=
X − X

min

X
max

− X
min

;

{
minZ

1
= E

minZ
2
= nf

}
⇒ Z =

[
E nf

]

(10)EE = Wtrain × Etrain +Wtest × Etest

(11)ETotal = mean (EE);

Table 4   Details of the zones, GMUs, the user-defined labels of the 
rate of penetration, and torque on bit of the studied well

Zone GMU TOB labels ROP labels

Z.1 1 1 1
2 2 2

SZ.1 3 1 1
4 2 2

Z.2 and S.Z.2 5 1 1
6 2 2
7 3 3
8 1 1
9 1 3

Z.3 10 1 1
11 2 2
12 3 3

SZ.3 13 1 1
14 2 1
15 3 2
16 3 3
17 4 4

Z.4 18 1 1
19 2 1
20 3 2
21 1 2
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including mutation percentage, crossover percentage, and 
mutation rate were set as 0.4, 0.7, and 0.1, respectively. 
There were some steps for the optimization process of the 
swarm such as non-dominated sorting. Finally, the main loop 
of NSGA-II was started by determining the calculations in 
every mutation to reach the best solution.

Multi‑objective particle swarm optimization

The multi-objective particle swarm optimization (MOPSO) 
algorithm is based on heuristic particle swarm optimiza-
tion (PSO). In MOPSO, there is a population of particles, a 
repository as external memory, and the definition of the new 
generation with space of objective. In fact, in MOPSO, the 
solution of storing each particle is employed instead of the 
elitism procedure that had been used in NSGA-II (Coello 
and Lechuga 2002). Figure 7 shows the process of MOPSO 
where the number of grids per dimension and the inflation 

rate were set at 7 and 0.1, respectively. Besides, both the 
leader selection pressure and deletion selection pressure 
were equal to 2. The mutation rate was also adjusted to 0.1. 
In the steps of the MOPSO, computations reach the main 
loop, and the solutions are presented (Coello 2011).

Multi‑objective Gray wolf optimization

The multi-objective Gray wolf optimizer (MOGWO) pre-
sents the hunting behavior of Gray wolves. The main proce-
dure of MOGWO was adapted from the proposed Gray wolf 
optimizer (GWO) by adding some features. In the algorithm, 
the alpha ( � ), beta ( � ), and delta ( � ) are search agents and 
are updated by the leader (Mirjalili et al. 2016). Figure 8 
shows the performance of MOGWO in different steps. First, 
the cost function was defined; then, three specific parameters 
of the algorithm, including grid inflation parameters, archive 
size, and the number of grids were set as 0.1, 100, and 10, 

Fig. 6   The flowchart of the non-dominated sorting genetic algorithm II method, adapted from (Deb et al. 2002)



Journal of Petroleum Exploration and Production Technology	

respectively. Then, random values were assigned as the ini-
tial guess of a , A , and C (Mirjalili et al. 2016). In the main 
process of the MOGWO algorithm, the solutions that had 
been found by search agents were examined at every step.

Classification methods

The class labeling and feature selection steps to classify 
ROP and TOB were explained. Here, the applied supervised 
classification methods will be briefly described.

Fine decision tree classifier

Decision trees classifier (DTC) learns from the general 
pattern of training data and predicts the class of test via 
the acquired pattern. In DTC’s elements, the features are 
nodes that are scattered in the solution spaces (Singh and 
Singh 2017). The criteria and features of the classifier 

are expressed in Table 5. Here, the fine DTC was used as 
follows:

where DTCBest shows the best DTC. EDTC represents the 
error of classification of the tree Tw and w denotes the tree 
index number, r(n) and P(n) are re-substitution prediction 
errors for the wrong classified nodes and the probability in 
comparison values with criteria, respectively (Singh and 
Singh 2017).

Support vector machine classification

The support vector machine (SVM) methods are power-
ful in nonlinear analysis. There are two types of SVM 

(12)DTCBest ≅ min
(
EDTC

(
Tw

))
; w = 1, 2,… ,W

(13)E
(
Tw

)
=

∑
n∈Tw

r(n)P(n)

Fig. 7   The flowchart of the multi-objective particle swarm optimization method, adapted from (Coello and Lechuga 2002)
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classifications, linear and nonlinear (Cortes and Vapnik 
1995; Tatar et al. 2014). The main function of SVM clas-
sification is expressed in Eq. 14. The SVM structure has 
been modified to utilize kernel function in studies due to 
its powerful capability (Ding et al. 2017). In this effort, the 

cubic polynomial and fine Gaussian kernel functions were 
applied to the SVM, their kernel functions are implied via 
Eqs. 15 and 16, respectively. The details of the setting for 
both SVM classification methods are depicted in Table 5.

Fig. 8   The flowchart of the multi-objective Gray wolf optimizer method, adapted from (Mirjalili et al. 2016)

Table 5   The details of user-
defined features which applied 
on the three classification 
approaches

Classification approach User-defined parameter Value/type

Decision trees classifier (DTC) Split criterion Gini’s diversity index
Maximum number of distinctions 100
DTC version Fine tree

Cubic SVM Kernel function Cubic polynomial
Box constraint level 1
Kernel function power ( q) 3

Fine SVM Kernel function Gaussian kernel
Box constraint level 1
Variance of Gaussian kernel ( �2) 0.61
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where �(x) represents the mapping of x from estimator 
samples space (Rn) to feature space, p is the number of 
predictors, �2 represents the variance of the Gaussian kernel 
(Kernel scale), w is weight vector and b denotes the bias 
value. Also, xj and xk are input variables as features and 
labels, respectively.

Ensemble classification

In machine learning classification collection, ensemble 
learning is an improvement in the capability and flexibility 
of the classifications (Mousavi and Eftekhari 2015). Here, 
two types of ensemble methods, the RUSBoosted trees 
(RUSB.T) and bagged trees (Bagged.T) classifications were 
used. The special parameters of the ensemble models are 
the number of splits and learners. In fact, by increasing the 
number of splits, the capability and overfitting of results 
are improved (Saeed et al. 2019). Table 6 shows the details 
of ensemble classifications used in the present study. The 
maximum number of splits in the bagged trees method varies 
due to using the classification method in different zones of 
the well.

Semi‑supervised learning method

Laplacian SVM (LapSVM) is a semi-supervised learning 
method that predicts unlabeled data through a few labeled 
samples (Melacci and Belkin 2011). The LapSVM relies on 
SVM methods, and the main problem is described in Eq. 17 
with three parts. The first part of Eq. 17 is related to the 
labeled samples, and the two other parts involve unlabeled 
and labeled samples (Dong et al. 2020). Where V

(
xi, yi, f

)
 

is determined by the SVM function. Also, f  is the decision 
function of f 2

A
 which formed the kernel of the problem; for 

other functions and details refer to (Ding et al. 2017; Dong 
et al. 2020; Melacci and Belkin 2011).

(14)f (x) = sgn
(
w.�(x) + b

)

(15)K
(
xj, xk

)
=
(
1 + xT

j
xk

)q

(16)K
�
xj, xk

�
= exp

�
−
xj − xk

�2

�
; �

2 =

√
P
�
4

Based on Eq. 17 that is the main function of LapSVM, it 
can be applied to ROP and TOB analysis. Generally, three 
labels are typically used for LapSVM: labels ‘1’ and ‘− 1’ 
for learning the algorithm and label ‘0’ for prediction. First, 
the zones with proper ROP and TOB ranges, whose averages 
are higher than 4.6 (m/hr) for ROP and below 3593.5 ( lbf.ft ) 
for TOB, were labeled ‘− 1’. Improper regions of ROP and 
TOB were assigned to label ‘1’. The areas whose LapSVM 
should be predicted were labeled as ‘0’. Condition 1 has its 
prediction by LapSVM. In condition 2, the coefficients of 
drilling features with the same geomechanical characteristics 
from the proper ROP and TOB (labeled ‘− 1’) were multi-
plied by the features in the improper area (labeled ‘1’). The 
results can indicate the optimal ranges of the drilling factors 
in the labeled zones. Figure 9 illustrates the process of pre-
diction by LapSVM in two mentioned conditions.

Classification analysis methods

The confusion matrix, a classification assessment, indicates 
the performance matrix, including the true and predicted 
classes, and it can be explained by Eq. 18 (Chamkalani et al. 
2017). Where, RRi,j is the total number of class i values, and 
the principal diagonal elements are 

(
RR1,1,… ,RRN,N

)
 . The 

performance of classification could be evaluated considering 
the principal diagonal on the total values as accuracy 
(Eq. 19). The area under the curve (AUC) is an assessment 
and is defined as Eq. 20 (Fawcett 2006).

(17)min
1

l

l∑
i=1

V
(
xi, yi, f

)
+ �Af

2
A
+ �I f

2
I

(18)Confusion matrix =

⎡⎢⎢⎢⎣

RR1,1 RR1,2 … RR1,N

RR2,1 RR2,2 … RR2,N

⋮ ⋮ ⋱ ⋮

RRN,1 RRN,2 … RRN,N

⎤⎥⎥⎥⎦

(19)

Accuracy =
Principal diagonal elements

(
RR1,1,RR2,2,… ,RRN,N

)

Total values
(
RRi,j

)

Table 6   The feature of applied ensemble classifiers

Methods Learner type Maximum number of splits Number of learners Learning rate

Bagged trees Decision trees 60 to 120
(changeable for zones)

30 –

RUSBoosted trees Decision trees 20 30 0.1
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where Sa , nn and np are the sum of all positive, the number 
of negative, and the number of positive values, respectively. 
Table 7 shows the binary outputs of a classification model 
(Oyedere and Gray 2020a).

(20)AUC =
Sa − np

(
nn + 1

)
∕2

npnn

Results and discussion

The user-define classes of the ROP and TOB and also 
the methodologies of classification approaches were 
described in "Methodology" section. In the forthcoming 
sections, the results will be explained.

Feature selection results

The three feature selection methods, including the 
NPR-NSGA-II, NPR-MOPSO, and NPR-MOGWO, were 
implemented on the dataset. In the NPR method, the struc-
ture was selected by trial and error. The features were WOB, 
RPM, HKL, Pump.P, Flow.R, UCS, IFA, and CCS where 
the targets were the ROP and TOB. The number of classes 
was 7, equal to the number of the well zones. The results 
are presented in Fig. 10 using a confusion matrix. Figure 10 
(sum up of train and test) shows 94.6% and 5.4% for the true 
classification and misclassification, respectively. Besides, 
the results of the training and testing parts are shown in 
“Appendix C”.

Here, the NPR model was implemented with the multi-
objective optimization methods, and their results illustrated 

Fig. 9   Description of how 
the Laplacian support vector 
machine method used in two 
conditions in zone 2 and sub-
zone 2 of the well

Table 7   The output of a confusion matrix as binary problem

Confusion matrix Target

True False

Model of classification
True True positive False positive
False False negative True negative
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the options for the features in every scenario. Figure 11 
shows the results of NPR-MOGWO with a number of 30 
for the population and in 100 iterations using the Pareto-
optimal points. The vertical and horizontal labels repre-
sent the errors (E) or cost function and number of features 
( nf  ), respectively. The best feature selection with a minimal 
error occurred by 8 features for NPR-MOGWO (Fig. 11). 
Concerning the effect of population on optimization, five 

different populations were tested and the least errors (like-
wise the point in the right corner of Fig. 11) were gathered. 
So, the best nf  and minimum errors are listed in Table 8.

Table 8 expresses the results of the three methods. All of 
the iterations’ numbers of optimization were 100. For every 
hybrid method, the bolded values are the best option with 
the minimum error. In the final step, common aspects of 
the results were considered. Therefore, the features that had 
been selected two or more times, among the three bolded 
options, were chosen for ROP and TOB classification. The 
features were WOB, HKL, Pump.P, Flow.R, UCS, and IFA, 
which are expressed in Table 9 for the case well by statistical 
indexes. The statistical aspects of the second well are shown 
in “Appendix D”.

Classification results

Five classification procedures were applied to the dataset 
(Table 9). Table 10 shows the results in AUC and the accu-
racy of supervised methods for ROP. Moreover, the AUC of 
ROP is depicted in Fig. 12. In Table 10, there are a few zones 
that their superior classification procedure was not evident. 
Therefore, in addition to AUC, the accuracy and confusion 
matrix can indicate the superior method. In Z.1 and Z.3, 
the AUC values were close thus, Fig. 13 presents the cor-
responding confusion matrices. As a result, the Bagged.T 
classified labels better than other methods; its accuracy was 
also high (Table 10).

Table 11 shows the results of TOB classification in the 
zones with AUC and accuracy. Moreover, the AUC com-
parison in Fig. 14 clarifies the assessment. In the zones 
of Fig. 14, the outperformed classification was not obvi-
ous. Figure 15 presents the confusion matrices of the two 
zones (Z.2 & SZ.2 and Z4), which reveal the superiority of 
C.SVM. Other accurate and reliable methods for TOB and 
ROP are presented in Table 12. According to the results, 
the Bagged.T and C.SVM had the least errors among 
approaches. Besides, Table 13 shows the outcomes of the 
ROP and TOB classification methods in the testing section 
of zones of the well using AUC and accuracy.

In addition, the classification methods were assessed 
in new zones when they were trained by the case well and 
tested using the dataset of the second well. Figure 16 shows 
the outcomes of the given process as the average of ROP 
and TOB classification where Bagged.T and C.SVM showed 
the best performance in terms of both AUC and accuracy. 
Based on the results, the F.SVM method cannot fulfill a 
reliable classification manner for ROP and TOB classifica-
tion. Despite the fact that the classification accuracies were 
dropped around an average of 2–8% for the second well as 
opposed to the models of the case well, they depicted pre-
cise results. Therefore, the superior approaches of the find-
ings, Bagged.T and C.SVM, can be implemented in other 

Fig. 10   Target classes with all zones based on confusion matrix of 
the neural pattern recognition method in all (sum up of train and test) 
version

Fig. 11   The results of the neural pattern recognition combined with 
the multi-objective Gray wolf optimizer in 30 populations, where the 
model with 8 features depicts the lowest error
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Table 8   The results of feature 
selection methods with the 
lowest error and the best 
features for each population

The bolded rows show the least error for each hybrid method in the five population sets

Population(s) Methods Features Error (E)

5 NPR-MOGWO WOB-RPM-HKL-Flow.R-UCS-CCS 0.0413
NPR-NSGA-II WOB-RPM-HKL-Flow.R-UCS-IFA-CCS 0.0204
NPR-MOPSO WOB-HKL-Pump.P-Flow.R-UCS-IFA 0.0203

10 NPR-MOGWO WOB-Pump.P-Flow.R-UCS-IFA 0.0469
NPR-NSGA-II WOB-HKL-Pump.P-Flow.R-IFA-CCS 0.0211
NPR-MOPSO WOB-RPM-HKL-Flow.R-UCS-IFA 0.0247

15 NPR-MOGWO WOB-HKL-Pump.P-Flow.R-IFA-CCS 0.0324
NPR-NSGA-II WOB-HKL-Pump.P-Flow.R-UCS 0.0166
NPR-MOPSO WOB-RPM-HKL-Pump.P-Flow.R-IFA-CCS 0.0240

20 NPR-MOGWO WOB-RPM-HKL-Pump.P-Flow.R-UCS-IFA-CCS 0.0269
NPR-NSGA-II WOB-HKL-Pump.P-UCS-IFA 0.0215
NPR-MOPSO WOB-RPM-HKL-Pump.P-Flow.R-UCS 0.0259

30 NPR-MOGWO WOB-RPM-HKL-Pump.P-Flow.R-UCS-IFA-CCS 0.0206
NPR-NSGA-II WOB-RPM-HKL-Pump.P-Flow.R-UCS-IFA 0.0170
NPR-MOPSO WOB-HKL-Pump.P-Flow.R-UCS-IFA-CCS 0.0232

Table 9   Three statistical 
features of the last selected 
parameters for classification 
methods

Statistical Index Features

WOB HKL Pump.P Flow.R UCS IFA

Minimum 2.22 293.7 12.5 448.06 19.73 20.9
Average 14.2 315.4 1098.6 467.9 50 27.8
Maximum 25.6 331.4 1358.6 502.4 85.27 37.2

Table 10   The results of 
classification procedures as 
training section in all of the 
zones for the rate of penetration

Zone Methods

Bagged.T RUSB.T C.SVM F.SVM F.Tree

AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy

Z.1 0.98 92.2 0.99 80.4 0.98 88.2 0.94 76.5 0.95 92.2
SZ.1 0.92 84.2 1 73.7 0.99 89.5 0.81 73.7 0.75 68.4
Z.2 & SZ.2 0.96 80.7 0.87 77.3 0.97 87.5 0.87 63.6 0.8 70.5
Z.3 0.99 97.3 0.99 96 0.99 96 0.97 74.7 0.99 96
SZ.3 0.94 81.6 0.88 71.4 0.9 79.6 0.75 55.1 0.83 73.5
Z.4 0.98 91.9 0.91 83.7 0.99 94.2 0.93 82.6 0.86 81.4

Fig. 12   The bar-chart of clas-
sification methods as the area 
under the curve (AUC) in zones 
for the rate of penetration
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carbonate zones to classify ROP and TOB based on control-
lable drilling factors and geomechanical properties.

The importance of features

The importance of features was examined utilizing the clas-
sification-based sensitivity analysis for the best methods 
(C.SVM and Bagged.T). Based on the results (Table 12), 
either C.SVM or Bagged.T was the most precise method 
in every three zones of the well. In fact, the SVM struc-
ture maps the dataset into multi-dimensional space, thus it 

Fig. 13   The confusion matrices of the rate of penetration classification in two zones with close results as the area under the curve

Table 11   The results of 
classification methods as 
training section for the torque 
on bit in all of the zones

Zone Methods

Bagged.T RUSB.T C.SVM F.SVM F.Tree

AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy

Z.1 0.98 92.2 0.99 80.4 0.98 88.2 0.94 76.5 0.95 92.2
SZ.1 0.92 84.2 1 73.7 0.99 89.5 0.81 73.7 0.75 68.4
Z.2 & SZ.2 0.98 87.5 0.97 87.5 0.99 90.9 0.94 76.1 0.91 84.1
Z.3 0.99 97.3 0.99 96 0.99 96 0.97 74.7 0.99 96
SZ.3 0.99 89.8 0.97 81.6 0.98 77.6 0.89 59.2 0.97 79.6
Z.4 0.99 86 0.94 83.7 0.97 91.9 0.97 66.3 0.92 84.9
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Fig. 14   The area under the curve (AUC) of classifications for the 
torque on bit in three zones
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makes the process of feature ranking via C.SVM impossible 
(Oyedere and Gray 2020a). Consequently, the significance 
of parameters was determined based on the feature ranking 
in Matlab software as the permuted predictor importance 
using classification Bagged.T in 50 cycles.

Figure 17 shows the relative importance of features 
in Z. 4 for TOB and ROP with bar charts. Flow.R and 
WOB were the most significant features for ROP and 
TOB, respectively. The total importance of parameters was 
gathered in box plots. Figure 18 shows the significance 
of parameters using classification for ROP and TOB in 
the zones. As a result of TOB (Fig. 18), the Pump.P had 

the highest importance although the maximum of Flow.R 
and WOB were higher than it. Besides, both UCS and 
IFA are illustrated as minus numbers because of declin-
ing the true classification. Concerning ROP (Fig. 18), 
the order of importance among drilling parameters was 
Flow.R, Pump.P, HKL, and WOB, the highest to least, 
respectively. Moreover, the most crucial geomechanical 
feature was UCS. Comparing the ROP and TOB boxplots 
(Fig. 18), Flow.R and Pump.P were more important than 
others in the zones. The higher importance of UCS on 
ROP classification can be justified by the influence of rock 
strength on the drilling rate.

Optimization results

In this section, the results of semi-supervised classification, 
LapSVM, and the optimum ranges of drilling parameters 
are presented. The details of labels, two conditions ("Semi-
supervised learning method" section), and significant fac-
tors ("The importance of features" section) were constructed 
in the algorithm settings. Table 14 expresses the labels of 
GMU for ROP and TOB. The LapSVM algorithm predicted 
the GMUs’ classes (for label ‘0’) utilizing the training sec-
tion (labels ‘1’ and ‘− 1’) in the condition 1. The labels 
of the condition 1 were selected from a limited number 

Fig. 15   The confusion matrices of the torque on bit classification in two zones with close results as the area under the curve

Table 12   The best procedure of classification the rate of penetration 
and torque on bit in all the zones of well

Zones The best method

ROP method TOB method

Z.1 Bagged.T Bagged.T
SZ.1 C.SVM C.SVM
Z.2 & SZ.2 C.SVM C.SVM
Z.3 Bagged.T Bagged.T
SZ.3 Bagged.T Bagged.T
Z.4 C.SVM C.SVM
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Table 13   The results of the rate of penetration and torque on bit classification in testing section in all of the zones as the area under the curve 
and Accuracy

Target Zone Methods

Bagged.T RUSB.T C.SVM F.SVM F.Tree

AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy

ROP Z.1 0.96 83.3 0.8 58.3 0.99 91.7 0.94 75 0.83 83.3
SZ.1 1 99 1 99 1 99 1 80 0.83 80
Z.2 & SZ.2 0.97 81.8 0.93 72.7 1 86.4 0.9 59.1 0.95 77
Z.3 1 99 1 90.9 1 95.5 0.96 59.1 1 95.5
SZ.3 1 71.4 1 71.4 0.98 85.7 0.75 50 0.92 64.3
Z.4 1 99 1 95.2 1 95.2 1 85.7 0.93 95.2

TOB Z.1 0.96 83.3 0.8 58.3 1 91.7 1 75 0.83 83.3
SZ.1 1 99 1 99 1 99 1 80 0.83 80
Z.2 & SZ.2 1 90.9 0.99 90.9 0.98 95.5 0.94 72.7 0.95 86.4
Z.3 1 99 1 90.9 1 95.5 0.96 59.1 1 95.5
SZ.3 0.97 83.3 0.97 75 1 75 0.69 50 0.69 66.7
Z.4 1 85.7 1 85.7 1 85.7 0.95 61.9 0.95 81

Fig. 16   The results of the clas-
sification methods in the second 
well
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Fig. 17   The importance of features using classifications in the left and right bar-charts for the torque on bit and rate of penetration in zone 4, 
respectively
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intentionally to depict the capability of the semi-supervised 
classification as opposed to the supervised methods.

Concerning the condition 2, it expresses a broader range 
of labels compared the condition 1. Furthermore, in the con-
dition 2, the significant factors that were revealed in previous 
section, including HKL, Pump.P, and Flow.R, had an impor-
tant role. Regarding this condition, the LapSVM was trained 
with the given classes while the coefficients of significant 
parameters from a similar GMU (shown in Table 14) were 
multiplied in the improper GMUs (GMUs with low ROP and 
high TOB). The averages of IFA and UCS established the 
similar GMU of the zones. Then, a new class prediction of 
the unseen testing part by LapSVM indicated the intervals 
where the ROP and TOB were turned to the optimal sections 

(high ROP and low TOB). The outcomes of both LapSVM’s 
conditions were interpreted and illustrated.

Figure 19 illustrates the results of LapSVM in 7 tracks. 
The first and second tracks are depth and GMU, respec-
tively. The third track represents the logs of ROP and TOB 
in the well. Besides, the 4th and 5th tracks are related to 
ROP, whereas the 6th and 7th tracks describe two condi-
tions of TOB. In the first condition of ROP (track 4), there 
are three lines. The left and right dash lines (black color) 
are labels ‘− 1’ and ‘1’, respectively. The middle lines 
represent labels ‘0’ which should be predicted by the algo-
rithm. Additionally, the red middle lines show true labels 
of low ROP, whereas the green ones represent high ROP. 
Colors can help in the determination of LapSVM-predicted 

Fig. 18   The results of bagged trees for the importance of features in all the zones as boxplots; the left and right boxplots are related to the torque 
on bit and rate of penetration, respectively

Table 14   Details of two 
conditions applied in the 
Laplacian support vector 
machine algorithm included 
labels and geomechanical units’ 
names

Parameters Conditions Labels GMU name

ROP 1 − 1 2, 5, 6, 8, 12, 15
1 7, 9, 11, 16, 18, 19
0 1, 3, 4, 10, 13, 14, 17, 20, 21

2 − 1 1, 2, 3, 4, 5, 6, 8, 12, 15
1 7, 9, 11, 16, 18, 19
0 10, 13, 14, 17, 20, 21
Similar GMUs as average of UCS and IFA (used in 

condition 2):
10►15; 13►3; 14►12; 17►3; 20►3; 21►3

TOB 1 − 1 1, 2, 7, 17, 18, 19
1 4, 6, 8, 12,16, 20
0 3, 5, 9, 10, 11, 13, 14, 15, 21

2 − 1 1, 2, 3, 7, 17, 18, 19, 21
1 4, 6, 8, 12, 16, 20
0 5, 9, 10, 11, 13, 14, 15
Similar GMUs as average of UCS and IFA (used in 

condition 2):
9►3; 5►1; 10►1; 13►3; 14►19; 11►3; 15►1
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labels. Predicted classes are denoted by blue lines. So, if 
the green lines (high ROP) are predicted as label ‘1’, they 
are false (misclassification, blue lines), and the true labels 
are ‘− 1’. On the other hand, when the red lines (low ROP) 
are predicted as label ‘1’, they are true (blue lines) while 
the false labels are ‘− 1’. As a result, most parts (88% of 
the entire depth) of the studied zones were classified as 
true labels for ROP and TOB despite the limited training 
labels in condition 1.

The results of the second condition of ROP are shown on 
track 5. In this section, same as the condition 1, the testing 
part was labeled ‘0’ (low ROP, black lines in the middle). 
As regulation of the condition 2, the important drilling 
parameters of the intervals (shown in black color in the 
middle) were multiplied by the same proper GMU (high 
ROP and low TOB). The training dataset was labeled ‘1’ 
and ‘− 1’ (black lines on the right and left parts of track 5), 
including the low and high classes of ROP, respectively. In 

Fig. 19   The Laplacian support vector machine predictions for the rate 
of penetration (ROP) and torque on bit (TOB) in two conditions, left 
to right, tracks 1 to 3 include depth, geomechanical units, and ROP 
and TOB, tracks 4 and 5 are predictions of the algorithm in condi-

tions 1 and 2 for ROP, tracks 6 and 7 are the same predictions for 
TOB, the description of track 4 is the same as track 6 and also, tracks 
5 is like track 7
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the results of condition 2, if they are classified as label ‘1’, 
they did not turn to the optimal class (label ‘− 1’, higher 
ROP). In this way, the outcomes of the second condition 
are shown via purple lines on track 5. According to the 
classification, roughly 95% of the testing section as the label 
‘0’ (black middle lines, low ROP) transformed to the label 
of high ROP (pink lines on the left of the track).

The LapSVM classification of TOB is illustrated to 
resemble ROP in Fig. 19 in tracks 6 and 7, whereas the low 
TOB (proper) was labeled as ‘− 1’ (opposite of ROP). The 
LapSVM for TOB in the target GMUs was as reliable as 
ROP. In track 6 of Fig. 19, green lines should be predicted as 
label ‘− 1’, and red lines were expected to be label ‘1’ which 
occurred in most depths. Moreover, in track 7, approximately 
entire intervals were optimized (label ‘− 1’, low TOB).

Consequently, three GMUs were employed for acquiring 
the optimal drilling parameters, which led to the optimization 
of ROP and TOB, whose ranges are shown in Table 15. Other 
GMUs were implemented for optimization either ROP or TOB, 
and also some GMUs were used for training the algorithm. 
Importantly, target parameters of the optimization method 
(ROP and TOB) interact in the process of drilling. Therefore, 
ROP and TOB should be presented in a reasonable range due 
to the mentioned constraints. The optimal values of the three 
GMUs were obtained through the optimization process of ROP 
and TOB (condition 2). These outcomes, Table 15, are practical 
to reach a desired drilling operation with such geomechanical 
characteristics. Furthermore, evaluating zones for their clas-
sification by using the optimal drilling parameters in the future 
project not only offers a higher ROP and lower TOB but also 
protects reservoirs and tools from unforeseen hazards.

Conclusions

Analysis of the rate of penetration (ROP) and torque on bit 
(TOB) is the primary subject of drilling assessments. In this 
paper, the given parameters were determined by the non-
linear classification in a carbonate reservoir. The novelty 
of the study lies in implementing the supervised and semi-
supervised machine learning classification approaches and 
utilizing both geomechanical and drilling factors to establish 
classes. First, the user-defined labels were assigned to zones. 

Next, as the feature selection (FS) procedure, a neural pat-
tern recognition (NPR) hybridized with three multi-objective 
optimization algorithms, the best features were revealed for 
classification. The supervised classifications were the deci-
sion trees classifier (DTC), support vector machine (SVM), 
and ensemble classifiers. Then, the bagged trees method 
indicated the importance of features in classification. The 
findings of this section of the study were as follows:

(1)	 The combined FS methods depicted the most effective sub-
set of factors for classification with errors of less than 0.02;

(2)	 The results of classifications showed that bagged trees 
and cubic SVM had the least errors compared to others;

(3)	 The results confirmed the credibility of the two superior 
approaches, their average area under the curve (AUC) 
of ROP classification were respectively 0.96 and 0.97;

(4)	 In the importance rate of bagged trees, the flow rate 
and pump pressure were introduced as the most vital 
features of drilling factors.

Finally, the semi-supervised method, Laplacian SVM, 
was trained via a limited number of labels (high/low ROP 
and TOB) and accuracy was assessed. Next, in similar 
GMUs, the crucial drilling factors, introduced by bagged 
trees, were multiplied in non-optimal GMUs. The final step 
indicated the following results:

(1)	 The LapSVM showed the classes with an accuracy of 
88% despite utilizing half of the inputs in the super-
vised classification;

(2)	 The LapSVM exposed the optimal classes in 95% of 
the studied areas, which recommend optimized values 
for the zones;

(3)	 The outcomes proved the classifications can expedite 
the process of seeking effective drilling parameters 
concerning geomechanical properties, which is lack-
ing in the previous efforts;

(4)	 The optimal drilling parameters can be applied to opti-
mize the ROP and TOB although they can be extended 
with more reservoir characteristics in future efforts.

Table 15   The optimal values 
of drilling parameters and the 
geomechanical features of three 
geomechanical units, all the 
values are in ranges

GMU Optimal ranges of drilling parameters Ranges of geomechanical 
features

HKL Pump.P Flow.R UCS IFA

Max Min Max Min Max Min Max Min Max Min

10 355.2 302.7 1655.5 823.1 554.2 403.2 64 37 35 22
13 338.7 305.2 1701.4 1563.9 543.6 540 60 22 29 21
14 329.7 306.3 1701.3 1376.6 559.5 496.4 30 28 28 25
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Appendix A
See Fig. 20.

Appendix B
See Fig. 21.

Fig. 20   The probability density function (PDF) graphs of the features that show the range of the input factors

Fig. 21   The conventional 
well logs and geomechanical 
parameters of the case in the 
geomechanical units (GMUs) 1 
to 9; tracks 1 to 3 are included 
depth, zones and GMUs, and 
petrophysical logs are in tracks 
4 and 5, and also, tracks 6 and 
7 are consisted of the trends of 
geomechanical features in the 
well
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Appendix C

See Fig. 22.

Appendix D

See Table 16.

Fig. 22   The confusion matrices of the well zones included outputs and target classes for training and testing section

Table 16   The statistical indexes 
of the features of the second 
studied well

Statistical Index Features

ROP TOB WOB HKL Pump.P Flow.R UCS IFA

Minimum 0.41 859.9 4.28 213.9 1842.09 291.1 37.1 22.3
Average 2.44 1009.4 8.93 225.5 2018.03 307.1 67.05 37.6
Maximum 6.35 1357.2 14.74 256.5 2279.83 418.4 96.5 50.7
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