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Abstract
There are limited comparative studies on modeling fluid transport in fractured porous media. Hence, this paper systemati-
cally compares the steady-state creeping flow Stokes–Brinkman and Darcy–Darcy models for computational efficiency and 
accuracy. Sensitivity analyses were also conducted on the effect of fracture orientations, fracture sizes, mesh resolution, 
and fractures with Local Grid Refinement (LGR) under the FEniCS computational framework. Both models were validated 
numerically, and the accuracy of their solution is compared using the R-squared metric and L2 norm estimates. Key results 
showed that both models have similar pressure and velocity field solutions for a given fracture orientation. The computa-
tional time required for solving the Stokes–Brinkman models for a single fracture case was unusually lower than that of the 
Darcy–Darcy model when the pressure and velocity terms in the Darcy–Darcy model were solved simultaneously using two 
equations, contrary to where only one equation solves for the pressure and the velocity is obtained by projecting the gradi-
ent of pressure onto a vector space. The Stokes–Brinkman model is more sensitive to mesh resolution, and as a result, the 
Darcy–Darcy model tends to be more accurate than the Stokes–Brinkman model at low resolutions. Local Grid Refinement 
(LGR) can improve the Stokes–Brinkman model's accuracy at low mesh resolution. Furthermore, both models showed similar 
results when compared for complex fracture systems such as multiple fracture cases: interconnecting and isolated fractured 
porous media systems under low-velocity and steady-state creeping flow conditions. The FEniCS code in this paper is shared 
for future researchers to reproduce results or extend the research work.
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List of symbols

Roman
u	� Velocity-vector trial function (m/sec)
p	� Pressure-scalar trial function (Pa)
PCL	� Pressure field solution from the Darcy–Darcy 

model/Cubic Law (Pa)
PSB	� Pressure field solution from the Stokes–Brinkman 

model (Pa)
UCL	� Velocity field solution from the Darcy–Darcy 

model/Cubic Law (m/sec)
USB	� Velocity field solution from the Stokes–Brinkman 

model (m/sec)
Ep	� Error from calculated pressure field (Pa)
Eu	� Error from calculated velocity field (Pa)
�F	� Fluid density (kg/m3)

v	� Vector test function
q	� Scalar test function
K	� Permeability (m2)
K0	� Reference permeability (m2)
Kf	� Fracture permeability (m2)
Km	� Matrix permeability (m2)
b	� Fracture aperture width (m)

Greek
�	� Viscosity (Pa-sec)
∅	� Porosity (fraction)
∅0	� Reference porosity (fraction)
ΩT	� Entire fractured porous media domain
Ωf	� Fracture subdomain
Ωp	� Porous media subdomain

Subscript
F	� Fluid
f	� Fracture
∅	� Porous media
p	� Pressure field
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u	� Velocity field
T	� Entire fractured porous media
CL	� Cubic Law model
SB	� Stokes–Brinkman model

Introduction

Modeling fluid flow in porous media is essential for Reservoir 
engineering applications such as acidization and waterflooding 
projects during secondary recovery processes. It is also vital 
for modeling hydrological systems where groundwater flows 
through rocks, contamination from chemical spills, etc., and 
various industrial processes involving air or oil filtration (Iliev 
and Laptev 2004; Zhao et al. 2021). Modeling fluid flow in 
porous media in transportation applies to Proton-Exchange 
Membrane Fuel Cells (PEMFC) generation. Modeling of fluid 
flow can also describe physiological processes such as blood 
flow to the arteries in the human body (Vassilev and Yotov 
2009; Taylor et al. 2023).

Fluid flow is primarily through fractures in many geological 
formations with low matrix permeability. Naturally fractured 
geological formations, such as carbonate reservoirs, are esti-
mated to hold more than 60% of the world's proven oil reserves 
and 40% of the world's gas reserves and contain fractures that 
range from microscopic fissures to macroscopic scale, i.e., more 
or less than 1 mm or up to 1 km. Hence, there is a need to model 
the fluid flow for an accurate representation of flow in the frac-
tures, the interaction between fractures and the surrounding 
porous media, and the ability to handle complex fracture net-
work structures (Berre et al. 2019).

Fracture models for fluid flow can be represented in 
two broad classes, namely the Continuum Fracture Mod-
els (CFM) and the Discrete Fracture Models (DFM) (Bear 
and Berkowitz 1987; He et al. 2020; Kottwitz et al. 2021). 
Recently, hybrid models have been developed, combining 
the above two traditional models (Dang 2018, 2019).

The CFM determines a representative elementary volume 
for the fractures and porous media and the resulting equivalent 
parameters of the fracture system. They include the single or 
equivalent continuum, double continuum, and multiple inter-
acting continua (Barrenblatt et al. 1960; Doughty 1999; Braes-
ter 2009; He et al. 2020; Kottwitz et al. 2021). Limited mass 
exchange occurs between the fracture and rock matrix, resulting 
in homogenization and equivalent behavior (continuum). Mul-
tiple interacting continua models, especially the dual-porosity 
model, are computationally efficient. Still, one challenge with 
the continuum model is the potential difficulty of generating 
a mathematical formulation of fluid exchange function and 
determining geometry-dependent parameters, thus reducing 
its accuracy and practical applicability (Hardebol et al. 2015).

The DFM implies that the topology of the fracture net-
work and the properties of each fracture are completely 
understood (explicitly accounted for), thus giving a more 
accurate representation of the fracture and porous media 
domain. However, although the DFM tends to model fluid 
flow in a very realistic manner, its application is of little 
practical value because of the limitations in field measure-
ments of fractures (Braester 2009). In addition, DFM simu-
lations typically necessitate many elements to represent 
the fracture network accurately. Discretization methods 
for DFM may be roughly subdivided into three categories 
depending on the relation between porous medium and frac-
ture grids. They include conforming, non-conforming, and 
non-matching mesh methods (Formaggia et al. 2020; Borio 
et al. 2021). In conforming mesh discretization, the mesh 
elements (polyhedral grids) align perfectly with the physical 
domain's boundaries and interfaces.

Conversely, the non-conforming mesh does not align 
and may contain gaps or overlaps between elements. Non-
matching mesh discretization refers to meshes in which the 
elements on one side of an interface or boundary do not 
connect directly to the other. When complex fracture geom-
etries are highly developed, mesh generation methods can 
become problematic. Due to the complex gridding and high 
computing cost, the application of conforming grids in real 
geological models is still limited; more robust discretiza-
tion methods, such as the non-confirming and non-matching 
mesh, are now utilized (Xu et al. 2021).

Different numerical schemes depend on the discretiza-
tion method for simulating fluid transport in fractured media 
under the DFM (Formaggia et al. 2020). They include the 
finite volume method (Mehrdoost 2022; Ahmed et al. 2015; 
Gläser et al. 2017), mimetic finite difference method (Huang 
et al. 2014), the finite element method (Zhang et al. 2013; 
Alotaibi et al. 2022), mixed finite element method (Younes 
et al. 2023; Fu and Yang 2022; He et al. 2021a, b) and 
extended finite element method (Wang et al. 2020; Mor-
tazavi et al. 2022) etc. Researchers are also looking into 
reduced-order models and machine-learning methods to 
speed up DFM simulations while maintaining accuracy (de 
Hoop et al. 2022; He et al. 2020; Liu et al. 2017; Garipov 
et al. 2016).

Two mathematical models for modeling fluid flow in 
fractures and porous media under the DFM concept are the 
Darcy–Darcy Model (Cubic Law) and the Stokes–Brinkman 
Model.

The Darcy model assumes that Darcy's law governs the 
flow, a simplified variant of the Navier–Stokes equations. 
This model assumes that the flow is laminar and that the 
inertial forces are insignificant compared to the viscous 
forces. Darcy–Darcy models fluid flow in the whole porous 
media. In contrast, Cubic Law (CL) modifies the perme-
ability terms in the Darcy equation. It offers a simplified 
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approach to modeling free flow inside fractures. The Cubic 
Law states that the volume rate of fluid flow across a section, 
such as a fracture, is proportional to the applied pressure gra-
dient and the cube of the separation distance (Ghassemi et al. 
2020). Based on Cubic law, fractures are modeled as two 
parallel planes with no rough surfaces (walls) at a constant 
distance from each other (Lomize 1951; Snow 1965; 1969; 
Singhal and Gupta 1999). However, the Cubic law results 
in a lower observed flow rate, underestimating the fracture's 
hydraulic properties; whereas, real fractures mostly have 
rough surfaces and varying aperture (Ghassemi et al. 2020; 
He et al. 2021a, b). Many researchers have studied numerous 
methods for improving the accuracy of the cubic law. These 
methods can be broadly classified into three groups, i.e., 
the Modified Cubic Law (MCL), Local Cubic Law (LCL), 
and Modified Local Cubic Law (MLCL) (Wang et al. 2015, 
2018; He et al. 2021a, b).

The Stokes–Brinkman model includes the Brinkman 
equation, which adds a term to the Darcy equation to 
account for fluid inertia effects. The additional term in the 
Stokes–Brinkman equation allows turbulence modeling, 
which can occur in high Reynolds number fractures. How-
ever, the additional complexity makes the Stokes–Brink-
man model more computationally expensive than the Darcy 
model. The Stokes–Brinkman equations use one system of 
equations in the whole domain, i.e., a single equation with 
variable coefficients that describes the Stokes flow in the 
free-flow region and Darcy flow in the porous region (Morito 
Mansur 2018). The appropriate selection of permeability 
and viscosity parameters distinguishes the different medium 
types. The Stokes–Brinkman equations were formulated to 
overcome the uncertainties associated with interface loca-
tions and find appropriate interface conditions between the 
porous and free-flow regions, especially in highly fractured 
reservoirs (Brinkman 1949; Laptev 2003; Popov et al. 2009). 
According to Krotkiewski et al. (2011), the Stokes–Brink-
man equations only apply to a certain parameter range in 
which the effective permeability in the free-flow region 
is less than four orders of magnitude different from the 
matrix permeability in the porous region. Morito Mansur 
(2018) investigated the cubic law validity range using the 
Stokes–Brinkman model. A permeability contrast threshold 
of 10−7 was found, below which the difference between the 
two modeling approaches is insignificant and above which 
the cubic law model no longer provides plausible results.

In terms of the applicability of Darcy–Darcy and 
Stokes–Brinkman models in real-world geological forma-
tions with fractures, researchers like Zhang et al. (2021) 
conducted a simulation case study on a fractured reservoir, 
employing an embedded discrete fracture model (EDFM) to 
investigate flow and transport characteristics and the effect 
of fractures on production. The results demonstrate that the 
maximum production rate is reached when the fracture is 

perpendicular to the wellbore (horizontal fractures). This is 
because the direction of fluid movement is along the maxi-
mum fracture permeability. Their research also revealed that 
as the number of fractures increases, so does production, 
and when the fracture permeability increases, production 
also increases.

Teng et al. (2020) and Teng et al. (2022) studied the effect 
of Brinkman flow on the performance of hydraulically frac-
tured wells. They showed that the Stokes–Brinkman equa-
tion is more accurate in characterizing the fracture flow than 
the Darcy–Darcy model because it adaptively accounts for 
fractures or cavities where porosity approaches one and pro-
duces a smooth solution field. As a result, the Stokes–Brink-
man model can offer more precise estimates of pressure dis-
tribution, flow rates, and oil recovery in complex fractured 
reservoirs. The Stoke-Brinkman model is generally more 
favorable when a more detailed representation of fractures 
and flow interactions is required.

Even though some researchers have independently exam-
ined the Stokes–Brinkman and Darcy–Darcy models, there 
are still some knowledge gaps between the two models, par-
ticularly in areas like the validation process, identifying each 
model's limitations, such as when the assumption of creep-
ing flow fails and improved numerical simulation technique. 
Also, very limited systematic comparisons have been made 
between the two models when modeling fluid flow in frac-
tured porous media.

Hence, this paper presents a comparative study between 
the Darcy–Darcy and Stokes–Brinkman models to address 
the knowledge gaps between both models, firstly by for-
mulating the foundational mathematical equations for both 
models. Then both models were implemented into the same 
computational framework in FEniCS. FEniCS is this study's 
chosen tool because it is a powerful open-source platform 
for solving PDEs using Finite Element Method (FEM). It is 
easy to implement FEM in FEniCS, especially when con-
verting the mathematical models in strong forms (PDEs) 
to their variational forms (weak forms). The computational 
domain or mesh for the porous media, fracture subdomains, 
and appropriate boundary conditions are easily set over the 
entire domain in FEniCS. FEniCS computational engine is 
written in C++; while, the front end allows Python program-
ming (Langtangen and Logg 2017). The solutions obtained 
from both mathematical models were obtained from a 16 GB 
RAM, intel® core ™ i7-6700HQ CPU @ 2.60 HZ processor.

Secondly, the limitations of both models are addressed 
by validating their solutions and comparing them apple-
to-apple for computational efficiency and accuracy using 
R-squared metric and L2 norm estimates. Sensitivity analy-
ses are conducted on the porous media porosity, mesh reso-
lution, fracture orientations, fracture sizes, distributions, and 
fractures with Local Grid Refinement (LGR) in homogenous 
porous media. The computation accuracy of FEniCS was 
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further tested by solving multiple fracture cases: isolated 
and interconnecting fractured porous media systems, and 
the results were investigated.

Finally, the computational results are visualized in Para-
view, a scientific visualization tool, and the FEniCS codes 
in this paper are shared so future researchers can easily rep-
licate or extend the work.

Mathematical models

The following section states and describes the mathemati-
cal formulations for both the Darcy–Darcy model (Cubic 
Law) and the Stokes–Brinkman model in their Strong form 
(PDEs), weak form (Variational form), and snippets of FEn-
iCS code.

Strong formulation of Darcy–Darcy model (Cubic 
Law)

Darcy's law models fluid flow in the entire domain (porous 
and fractured region) ΩT and it is given by the equation 
below:

where u(vector component) and p(scalar component) are 
unknowns and can also be called trial functions in the finite 
element method. u stands for the velocity vector, ∇p is the 
pressure gradient, �, and K denotes the viscosity and perme-
ability field, respectively.

(1)�K−1u + ∇p = 0, in ΩT

(2)∇ ⋅ u = 0 in ΩT

The Cubic Law offers a simplified approach for modify-
ing the permeability terms in the Darcy equation for mod-
eling free flow inside fractures. The permeability of the frac-
ture Kf is estimated to be Kf =

b2

12
 , where b is the fracture 

aperture width.

Variational formulation of Darcy–Darcy model 
(Cubic Law)

The variational or weak formulation in FEM transforms the 
PDEs (Strong form) into their integral form to lessen the burden 
on the numerical algorithm when evaluating derivatives. To 
transform the Darcy–Darcy model, Eqs. (1) and (2) into their 
variational forms, they are multiplied by test functions v(vec-
tor) and q (scalar), respectively, and then integrated over the 
domain ΩT . Integration by parts transforms any second-order 
derivatives in the PDE into first-order derivatives (Langtangen 
and Logg 2017).

From Eq. (1): multiplying both sides of the equation with 
test function v and then integrating both sides.

From Eq. (2): multiplying both sides of the equation with 
test function q and then integrating both sides.

The variational formulation in FEniCS is shown in a snip-
pet below.

(3)∫
ΩT

(u ⋅ v) dV +
K

� ∫
ΩT

(∇p ⋅ v) dV = 0

(4)∫
ΩT

(∇ ⋅ u)q dV = 0
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Strong formulation of the Stokes–Brinkman model

The complete form of the Stokes–Brinkman model is,

For low-velocity flow, neglecting the advective inertial 
forces and external forces term reduces Eq. (5) into a simpli-
fied Stokes–Brinkman model comparable to the Darcy–Darcy 
model for steady-state creeping flow conditions. The simpli-
fied Stokes–Brinkman equations are shown in Eqs. (6) and (7).

Appropriate selection of permeability and viscosity param-
eters distinguishes the different medium types. It should also 
be noted that the permeability tends to be infinite in the frac-
ture subdomain, where the porosity value is 1.0. Therefore, 
Eq. (6) reduces to Stokes equation, and when viscosity is 0 in 
the vugular region, Eq. (6) reduces to Darcy's law. Therefore, 
Eq. (6) can be seen as a combination between Darcy's Law 
and Stokes Equation; while, Eq. (5) is between Darcy's Law 
and Navier–Stokes equations. According to Mehdaoui et al. 
(2008), the simplified Stokes–Brinkman model saves com-
putational time compared to the complete Stokes–Brinkman 
model for modeling natural convection in a porous cavity. The 
simplified Stokes–Brinkman model has been used to study 
the macroscopic representation of one-phase incompressible 

(5)

1

�

[
�

(
�f u

)
�t

+ ∇ ⋅

(
�F

�
uu

)]
−

�

�
∇2u = −∇P + �f g − �K−1u

(6)−
�

�
∇2u + �K−1u + ∇p = 0, in ΩT

(7)∇ ⋅ u = 0, in ΩT

flow in fractured and cavity (or vuggy) porous media (Golfier 
et al. 2015). Hence, the term of the Stokes–Brinkman model 
in this study is the simplified Stokes–Brinkman equation. 
This steady-state model for creeping flow allows the apple-to-
apple comparison against Darcy's Law, and its accuracy will 
be investigated in this study.

Variational formulation of Stokes–Brinkman model

From Eq. (6): multiplying both sides of the equation with test 
function v and then integrating both sides.

Integration by part technique transforms the second-order 
derivatives into first-order derivatives. Also, applying Gauss' 
theorem and Divergence law further simplifies the equation 
below.

But v = 0 on �ΩT (whole boundary)

From Eq. (7): multiplying both sides of the equation with 
test function q and then integrating both sides.

−
�

� ∫
ΩT

(
∇2u

)
v dV +

�

K ∫
ΩT

(u ⋅ v) dV + ∫
ΩT

(∇p ⋅ v) dV = 0

−
�
∅

⎛

⎜

⎜

⎝

−∫
ΩT

(∇u ⋅ ∇v) dV + ∫
�ΩT

(∇u ⋅ n)v ds
⎞

⎟

⎟

⎠

+
�
K ∫

ΩT

(u ⋅ v) dV + ∫
ΩT

(∇p ⋅ v) dV = 0

(8)

�

� ∫
ΩT

(∇u ⋅ ∇v) dV +
�

K ∫
ΩT

(u ⋅ v) dV + ∫
ΩT

(∇p ⋅ v) dV = 0

(9)∫
ΩT

(∇ ⋅ u)q dV = 0

Fig. 1   Domain and boundary conditions of Test case

Table 1   Default parameters for Test case used in validation

Parameter description Value Unit

Viscosity 0.001 Pa-sec
Fracture width 0.004 m
Inlet pressure 1 Pa
Outlet pressure 0 Pa
Matrix porosity 30 %
Kf/Km (case 1) 103

Kf/Km (case 2) 105
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The variational formulation is coded in FEniCS, as shown 
in the snippet below.

During the computational procedures in FEniCS, the 
porosity is initialized for the porous media, and the unit 
porosity field of 1.0 is set for fracture mesh. The permeabil-
ity field K is updated based on the porosity field using the 
Carman–Kozeny equation.

where k0 stands for the reference permeability field, ∅0 stands 
for the reference porosity and ∅ stands for porosity.

Model validation

To validate the FEM mathematical formulations of the 
Darcy–Darcy and Stokes–Brinkman models as presented 
in this study, we simulated the test case studies on a cross-
shaped fracture network that was based on EDFM and 
finite volume method as shown in Fig. 1 (Hajibeygi et al. 
2011; Pluimers 2015; Zhang et al. 2021). Figure 1 is the 

(10)K = k0

[(
�

�0

)3(
1 − �0

1 − �

)2
]6

2D geometry of two vertical crossing fractures, each with 
an aperture size of 0.004, considered over a square domain 
of 9 × 9. Dirichlet conditions are set on the left and right 
boundary, i.e., the pressure at the inlet (left-hand-side) is 1, 

and the outlet pressure (right-hand-side) is 0; while, no-flow 
conditions are imposed on the top and bottom boundaries.

Other test case l parameters used for the model valida-
tion are shown in Table 1. Two different fracture-matrix 
permeability ratios, i.e. Kf∕Km = 103 and Kf∕Km = 105 , 
were considered for the sensitivity to the fracture conduc-
tivity contrast (Pluimers 2015).

Figure 2 compares the 2D pressure solutions between 
the reference work, the Darcy–Darcy and Stokes–Brink-
man models for the two fracture-matrix permeability ratios 
cases using 32,482 cells (90 mesh resolution). Although 
the matrix-fracture interaction becomes increasingly sig-
nificant at the tips of the fracture network as the matrix-
fracture conductivity contrast increases, the reference 
work, the Darcy–Darcy model, and the Stokes–Brinkman 
model appear to agree well qualitatively on the calculated 
2D pressure solutions.

Figure 3 shows the quantitative comparison of pressure 
solution in two cross-shaped fracture networks between 
the referenced work and models along a horizontal cross 
section of the fracture porous media domain.
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The R-square values between the reference work and the 
Darcy–Darcy model and between the reference model and 
the Stokes–Brinkman models are very high (0.9984), i.e., 
thus showing high correlations between the reference work 
and the models. Therefore, FEM mathematical formula-
tions of this study's Darcy–Darcy and Stokes–Brinkman 
models are validated.

Models setup and performance metrics

Darcy–Darcy and Stokes–Brinkman models under low 
flow velocity and steady-state creeping flow conditions are 
run from a 16 GB RAM, intel® core™ i7-6700HQ CPU 
@ 2.60 HZ processor, and their solutions are compared 
apple-to-apple for computational efficiency and accu-
racy when conducting sensitivity studies on the effect of 

Fig. 2   Pressure solutions of cross-shaped fracture network from model validation

Fig. 3   Pressure solutions along horizontal cross section from model validation
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porosity, mesh resolution, fracture orientations, fracture 
sizes, and fracture distributions in homogenous porous 
media.

The simulation domain is comprised of homogeneous 
porous media and fractured subdomains. Table 2 shows 
the default parameters used in the simulation. The under-
lying assumption is that the medium porosity value of the 
homogenous porous media used in the simulation is 0.2, 
corresponding to a characteristic limestone core. Based 
on Cubic law, fractures are assumed to be modeled as 
two parallel planes with no rough surfaces (walls) at a 
constant fracture width of 0.02 m. Also, the initial condi-
tions of the simulations consider that the domain is filled 

with a single-phase fluid in the pores with a viscosity of 
0.001 pa-sec.

The R-squared metric was considered to quantify the 
comparison because of its intuitiveness. It determines the 
precision of one model relative to the other by measuring 
the variance in response variable "y" that can be predicted 
using predictor variable "x." R-squared is the square of the 
correlation coefficient r, mathematically.

x and y are variables (i.e., pressure and velocity outputs from 
both mathematical models). n is the number of data points. 
R-squared ranges from 0 (no correlation between variables) 
to 1 (perfect correlation between variables).

The accuracy between both models is estimated by 
comparing the difference in the L2 norm of the pressure 
and velocity field solutions. The L2 norm, defined by

(11)

R - squared = r2 =

⎛⎜⎜⎜⎜⎝

n
�∑

xy
�
−
�∑

x
��∑

y
�

��
n
∑

x2 −
�∑

x
�2��

n
∑

y2 −
�∑

y
�2�

⎞⎟⎟⎟⎟⎠

2

(12)Ep =

√√√√∫
Ω

(
PCL − PSB

)2
dx

Table 2   Default parameters for single fracture case

Parameter description Symbol Unit Value

Mesh dimension m 1 × 1
Number of grid cells 7722
velocity u m/sec 0.0167
viscosity � Pa-sec 0.001
Reference porosity ∅0 fraction 0.2
Reference permeability k0 m2 150 × 10−15

Fracture width b m 0.02

No Fracture Case Vertical Fracture case Diagonal Fracture case Horizontal Fracture case

Darcy -
Darcy

(a) (b) (c) (d)

Stokes -
Brinkman

(e) (f) (g) (h)

Fig. 4   Pressure field solutions for different fracture orientation
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where Ep and Eu are computed L2 norms for the pressure and 
velocity fields between the Darcy–Darcy and Stokes–Brink-
man models. PCL and UCL , are the pressure and velocity 
fields solution from the Darcy–Darcy model (cubic law) and 
PSB and USB , are the Pressure and velocity fields solution 
from the Stoke-Brinkman models, respectively.

Results

Based on the following boundary conditions: fluid velocity 
of 0.0167 m/s specified at the inlet, pressure set to zero at 
the outlet, no-slip boundary conditions (i.e., velocity is set 
to zero) specified at the walls, the effects of fracture orienta-
tions, fracture size, and porous media porosity on the mod-
els were investigated. Results are presented and discussed 
below.

(13)Eu =

√√√√∫
Ω

(
UCL − USB

)2
dx

Effect of fracture orientation

The following pressure field solutions were generated 
based on the default parameters for a single fracture case 
in Table 2.

Figures 4, 5, 6 and 7 show the pressure and velocity 
field solutions of the Darcy–Darcy and Stokes–Brink-
man models for no-fracture case, vertical, horizontal, and 
diagonal fracture orientations in a homogenous porous 
media, respectively. Both models produce similar pres-
sure and velocity results based on their high R-squared 
values (above 0.99999 for pressure and 0.9 for velocity) 
see Table 3. However, the velocity field calculated along 
the fractures is slightly higher for the Stokes–Brinkman 
model compared to the Darcy–Darcy model in Fig. 7a, 
c, and d due to a slightly higher pressure gradient of the 
Stokes–Brinkman model along the fracture see Figs. 6a, 
c, and d, respectively. Table 3 shows that the computa-
tional time needed to solve the Stokes–Brinkman model 
was unusually lower than that of the Darcy–Darcy model; 
this is attributed to the manner of implementation of the 

No Fracture Case Vertical Fracture case Diagonal Fracture case Horizontal Fracture case

Darcy -
Darcy

(a) (b) (c) (d)

Stokes -
Brinkman

(e) (f) (g) (h)

Fig. 5   Velocity field solutions for different fracture orientations
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Stokes–Brinkman and Darcy–Darcy models algorithm 
in FEniCS. When the pressure and velocity terms in the 
Darcy–Darcy model are solved simultaneously using two 
PDEs, i.e., Eqs. (3) and (4), similar to the Stokes–Brink-
man model, Eqs.  (6) and (7), the Darcy–Darcy model 
becomes more computationally expensive. However, 

when the pressure term of the Darcy–Darcy model is first 
solved, and the velocity by projecting the pressure gradi-
ent onto a vector space, the Darcy–Darcy model becomes 
less computationally expensive than the Stokes–Brink-
man model. The reduced computational time to solve the 
Stokes–Brinkman model may also result from the omitted 

No Fracture Case Vertical Fracture Case

(a) (b)

Diagonal Fracture case Horizontal Fracture case

(c) (d)

Fig. 6   Pressure profile along cross sections for different fracture orientations
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inertial and external force terms for creeping steady-state 
flow.

The vertical fracture causes little inlet pressure vari-
ation compared to the no-fracture case because the ver-
tical fracture is perpendicular to the flow's direction 
(pressure gradient). However, the diagonal and horizon-
tal fractures cause a decrease in the inlet pressure calcu-
lated along the cross section by about 15 and 32% from 
the no-fracture case, respectively. Since the horizontal 

fracture orientations reveal more information on the pres-
sure changes along the vicinity of the fracture and porous 
media, it is investigated further to know the effect of frac-
ture width, the porosity of the porous media, and mesh 
resolution on the pressure solutions from both models.

No Fracture Case Vertical Fracture case

Diagonal Fracture case Horizontal Fracture case

(a) (b)

(c)                    (d)

Fig. 7   Velocity profile along cross sections for different fracture orientations
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Effect of varying fracture width and media porosity

The fluid flow simulation in the horizontal fractured porous 
media was performed using key input data from Table 2 and 
varied porous media porosity and fracture width ranging 
from 0.175 to 0.3 and 0.00005 to 0.01 m, respectively, to 
capture very tight to wide fracture apertures. The simulation 
results are presented in Fig. 8a–f below.

Both the Darcy–Darcy and Stokes–Brinkman models also 
generated very similar results. The results show that incre-
ments in the porosity of a porous media cause the pressure 
change around the vicinity of a single horizontal fracture 
to act as though there was no fracture, i.e., rapid pressure 
decline, which leads to ease of fluid movement between the 
porous media and the fractures.

Effect of varying mesh resolution

The precision and accuracy of the Darcy–Darcy and 
Stokes–Brinkman Models were analyzed using three mesh 
resolutions, as shown in Fig. 9. Mesh resolutions of 5, 50, 
and 90, as defined in FEniCS, correspond to the number of 
cell elements: 608, 7908, and 25,008, respectively, for frac-
tured porous media with a fracture width of 0.005 m. Also, 
5, 50, and 90 mesh resolutions correspond to the number of 
cell elements: 2254, 9466, and 26,636, respectively, for the 
system with a fracture width of 0.001 m.

The results in Fig. 9a–d show that at very low mesh reso-
lution, the Darcy–Darcy model deviates significantly from 
the Stokes–Brinkman model and is prone to inconsistencies. 
One such inconsistency is shown when comparing Fig. 9a, 
9c and b, d. Notice that the inlet pressure calculated from 
the Stokes–Brinkman model at a fracture width of 0.001 is 
less than that at a fracture width of 0.005 m with constant 
porous media porosities.

At low mesh resolution, the Stokes–Brinkman model 
deviates significantly from the Darcy–Darcy model, but the 

Stokes–Brinkman model converges with the Darcy–Darcy 
model at high mesh resolution. The above observation is 
because the Stokes–Brinkman model includes a second-
order term called the Brinkman term that accounts for the 
viscous dissipation in the fluid flow. The second-order term 
causes numerical errors when the resolution of the numeri-
cal simulation is low because the Brinkman term involves 
the second derivative of the fluid velocity, which requires 
higher spatial resolution for accurate numerical calculation.

On the other hand, the Darcy model involves only the 
first derivative of the fluid velocity, which requires lower 
spatial resolution for accurate numerical calculation. As a 
result, the Darcy model may produce more accurate results 
than the Stokes–Brinkman model at low spatial resolutions.

Therefore, appropriate mesh resolution should be selected 
when implementing the Stokes–Brinkman model.

Effect of local grid refinement (LGR)

Local Grid Refinement was implemented to the unstructured 
grid mesh around the fractures to improve the simulation 
accuracy of both models. The fluid flow simulation in the 
horizontal fractured porous media was performed using 
input parameters such as fracture width of 0.001 m, poros-
ity of porous media of 0.175, and other relevant inputs from 
Table 2. The pressure field solutions for single fracture with 
LGR are presented in Fig. 10 below. Notice the slight differ-
ences between the pressure field solutions.

To check the accuracy, we use the inlet pressure field 
solutions of 1263.3 × 106 Pa calculated at higher mesh reso-
lutions of 150 (70,583 cell elements) with no LGR as the 
benchmark solution; see Table 4. Tables 4 and 5 show that 
LGR improved the estimated inlet pressure of both mod-
els as they converge faster to the benchmark solution even 

Table 3   Summary of results from velocity and pressure profile along cross sections for different fracture orientations

Parameters No-fracture case Vertical fracture case Diagonal fracture case Horizontal fracture case

Model Darcy–Darcy Stokes–Brink-
man

Darcy–Darcy Stokes–Brink-
man

Darcy–Darcy Stokes–Brink-
man

Darcy–Darcy Stokes–
Brinkman

Number of 
elements

7722 7734 7836 7788

Pressure 
R-squared

0.99999879 0.99999968 0.99999683 0.99999566

Velocity 
R-squared

0.99925662 0.91295132 0.99997421 0.98789009

Inlet pressure 
(Pa)

15,217.0 15,374.8 15,012.1 14,935.2 12,883.4 13,053.4 10,350.8 10,488.8

Avg. sim. time 
(secs)

3.9409 1.5859 3.9582 1.7074 4.1474 1.6521 3.6129 1.4809
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when fewer cell elements are used and require less com-
putational time. For example, in Table 4, the inlet pressure 
of 1264.3 × 106 Pa, estimated in the LGR case with a mesh 
resolution of 50 (22,619 cell elements), deviates from the 

benchmark solution by 0.08%. In addition, the solution was 
obtained in 7.32 sec, while that of the benchmark solution 
was estimated in 52.66 sec.

The Stokes–Brinkman model tends to be more sensitive 
to LGR than the Darcy–Darcy model due to the improved 
estimated inlet pressure field at lower mesh resolutions.

Darcy-Darcy Model Stokes-Brinkman Model

         (a)           (d)

      (b)             (e)

       (c)         (f)

Fig. 8   Effect of fracture width and porosity
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90

(a) (b)

(c) (d)

Fig. 9   Effect of mesh resolution on models

Darcy-Darcy DifferenceStokes-Brinkman

Mesh resolution = 20, number of mesh cells = 9,375 

Fig. 10   Pressure field solution for single fracture with Local Grid Refinement (LGR)



923Journal of Petroleum Exploration and Production Technology (2024) 14:909–926	

Other cases

The computational power of FEniCS for solving more com-
plex fractured porous systems is presented in this section. 
The results from multiple fracture cases, i.e., interconnecting 
and isolated fractured porous media systems, are discussed 
below.

Multiple fracture case: isolated fractures

A simulation study was conducted based on a porous media 
domain comprising multiple isolated fractures, each with a 
fracture width of 0.001 m, average porous media porosity of 
0.175, and other input parameters based on Table 2.

Figure 11 presents the simulation results, and it shows 
that both models can successfully model multiple isolated 
fracture cases with slight differences in outcome. Fur-
thermore, the effect of increasing the mesh resolution of 
5 (7869 cell elements) to a mesh resolution of 50 (14,286 
cell elements) of the computational domain causes a drastic 
decrease in the computed L2 norm in magnitudes of 101 Pa 
(i.e., the differences in the computed L2 norm of the pres-
sure field between the Darcy–Darcy and Stokes–Brinkman 
models when the computational domain has mesh resolution 
of 5 and 50, respectively).

The smaller computed L2 norm of 4.02 × 106 Pa from 
the computational domain with a higher mesh resolution of 

50 suggests higher accuracy and agreement between both 
models; while, the computational domain with a low mesh 
resolution of 5, having a larger L2 norm of 53.0 × 106 Pa, 
indicates potential discrepancies in accuracy between the 
two models.

Multiple fracture case: interconnecting fractures

Based on a porous media domain comprising multiple inter-
connecting fractures, each with a fracture width of 0.001 m, 
average porous media porosity of 0.175, and other input 
parameters based on Table 2, a simulation study was carried 
out. Figure 12 presents the simulation results, and it shows 
that both models can successfully model multiple isolated 
fracture cases with slight differences in outcome. The com-
putational domain, with a mesh resolution of 50, has an L2 
norm of 9.52 × 106 Pa.

Conclusions

In this study, the Darcy–Darcy and Stokes–Brinkman mod-
els for fluid flow in fractured porous media under steady-
state creeping flow conditions were validated and compared 
apple-to-apple for computational efficiency and accuracy 
when carrying out sensitivities on effects of mesh resolu-
tion, fracture orientations, fracture sizes, and porous media 
porosity. The following concluding remarks are summarized 
as follows:

1.	 Both models show similar results for estimated pressure 
and velocity fields with high R-squared values (above 
0.99999 for pressure and 0.9 for velocity) for single 
fracture orientations under steady-state creeping flow 
conditions.

2.	 When the pressure and velocity terms in the Darcy–
Darcy model were solved simultaneously using two 
PDEs (similar to the implementation of the Stokes–
Brinkman model), the computational time needed to 
solve the Stokes–Brinkman model would be half of the 
computational time of the Darcy–Darcy model. How-
ever, when the pressure term of the Darcy–Darcy model 
is first solved, and the velocity by projecting the pressure 
gradient onto a vector space, the Darcy–Darcy model 
becomes less computationally expensive (about twice 
as fast) than the Stokes–Brinkman model.

3.	 For a given fracture aperture in a fractured porous media, 
as the porosity of the porous media increases, the pres-
sure drop along the fracture decreases, contrary to the 
behavior observed in narrower fracture apertures. The 
Stokes–Brinkman model produces better results when a 
porous medium has more considerable porosity variation 

Table 4   Effect of LGR in the Stokes–Brinkman model

Stokes–Brinkman model

Frac_width = 0.001 m, Poro = 0.175

Resolution No. of elements Inlet pres-
sure × 106 (Pa)

Time (secs)

50 9466 1283.8 2.007
20 (LGR) 9375 1269.2 1.91
90 26,636 1274.8 10.47
50 (LGR) 22,619 1264.3 7.32
150 70,583 1263.3 52.66
90 (LGR) 59,023 1264.0 31.61

Table 5   Effect of LGR in the Darcy–Darcy model

Darcy–Darcy model

Frac_width = 0.001 m, Poro = 0.175

Resolution No. of elements Inlet pres-
sure × 106 (Pa)

Time (secs)

50 9466 1267.0 4.94
20 (LGR) 9375 1268.5 4.58
90 26,636 1266.3 28.20
50 (LGR) 22,619 1267.3 19.92
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Darcy-Darcy DifferenceStokes-Brinkman

Mesh resolution = 5, number of mesh cells =7869 

 L2 norm =  53.0 106 Pa

Darcy-Darcy Stokes-Brinkman Difference

Mesh resolution = 50, number of mesh cells =14286 

 L2 norm = 4.02 106 Pa

Fig. 11   Pressure field solution for isolated fracture case

Darcy-Darcy Stokes-Brinkman Difference

Mesh resolution = 50, number of mesh cells = 19,874 

L2 norm =  9.52 106 Pa

Fig. 12   Pressure field solution for interconnecting fracture case
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and fractures. This investigation is significant for studies 
predicting oil production from hydraulic fractured wells.

4.	 The Stokes–Brinkman model is more sensitive to the 
mesh resolution, and as a result, the Darcy–Darcy model 
is more accurate than the Stokes–Brinkman model at 
low resolutions. The LGR improves both model results 
but significantly improves the Stokes–Brinkman model 
solutions at low mesh resolution.

5.	 Furthermore, both models showed similar results (based 
on L2 norm estimates) when compared for complex frac-
ture systems such as multiple fracture cases: isolated and 
interconnecting fractured porous media for low-velocity 
and steady-state creeping flow conditions.

6.	 FEniCS, as a powerful open-source solution platform, 
was adopted to solve fluid flow in fractured porous 
media based on FEM. All FEniCS code in this paper is 
shared to make it easy for future researchers to repro-
duce results or extend the research work. The FEniCS 
code used in this work can be downloaded from https://​
github.​com/​Dudun​007/​FEniCS-​Code.​git.

Results show that the simplified Stoke-Brinkman model 
runs as efficiently and is comparable to the Darcy–Darcy 
model for steady-state creeping conditions. The simpli-
fied Stoke-Brinkman can adaptively account for fractures 
or cavities where porosity approaches one and produces a 
smooth solution field. It can estimate pressure distribution, 
flow rates, and fracture behavior, which is important for 
predicting oil production from hydraulic fractured wells. 
Other real-world applications include modeling hot water 
in underground geothermal reservoirs and simulation of CO2 
injection and migration during Carbon Capture and Storage 
(CCS).
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