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Abstract
The key problem in oil exploration and engineering is the lack of accurate and reliable data about the reservoir parameters 
of a field. Having a precise assessment of petrophysical properties can provide the ability to make decisions with a high 
degree of confidence about planning for production, exploitation, and further field development scenario. In this research, 
an artificial intelligence (AI)-based approach was developed to improve the estimation of reservoir parameters including 
porosity and volume of shale, which has a significant role in different stages of hydrocarbon exploration, in the Kashafrud Gas 
Reservoir in the northeast of Iran. For this purpose, we measured the petrophysical properties of 27 samples of the Kashafrud 
Formation. To increase the amount of data for employing a multilayer perceptron (MLP) artificial neural network (ANN), 
a geostatistical algorithm was used to increase the amount of laboratory measured data of porosity and volume of shale to 
686 and 702, respectively. In addition, 2263 well-logging data from the same well were provided. The optimal MLP network 
with the topology of 6-7-1, and 6-8-1 was selected to estimate the porosity and shale volume with mean squared error (MSE) 
of 2.78731E−4, and 1.28701E−9, respectively. The training process was performed using two different sets of input data. In 
the first approach, all available well-logging data were used as input, ending up in high MSE. In the second approach, some 
selected well logs were used based on the results of sensitivity analysis which clearly improved the estimations. The ability 
of MLP networks made great improvements in the estimation of the both parameters up to 99.9%. The presence of valuable 
core data in this study significantly improved the process of comparison and conclusion. The final results prove that AI is a 
trusted method, also the potential of the ANN method for the reservoir characterization and evaluation associated problems 
should be taken into consideration. Due to the unavailability of core data along the whole wells, the application of intel-
ligent methods, such as machine learning (ML) can be used to estimate the parameters in other oil or gas fields and wells.
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List of symbols
CALI	� Caliper, IN
CGR​	� Corrected gamma ray, API
DT	� Sonic, US/F
GR	� Natural gamma ray, API
GRlog	� Total ray reading in the zone of interest, API 

or wt%

GRmax	� Average ray response in dirty (clay rich) zone, 
API or wt%

GRmin	� Average ray response in clean (clay free) zone, 
API or wt%

IGR	� Natural gamma ray index
ISGR	� Standardized natural gamma ray index
K	� Permeability, mD
LLS	� Shallow resistance radius, Ohmm
MSFL	� Micro spherically, Ohmm
NPHI	� Neutron, V/V
PEF	� Photoelectric, B/E
RHOB	� Density, g/cm3

SCR	� SUM gamma ray, API
SP	� Spontaneous, mV
Swe

	� Effective water saturation
Vsh	� Shale volume, %
�bsh

	� Bulk density in dirty (clay rich) zone, g/cm3
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�
b
	� Density log data (RHOB), g/cm3

∅ND	� Neutron–density log porosity, V/V
∅N	� Neutron log porosity, V/V
∅	� Porosity, V/V
AI	� Artificial intelligence
ANN	� Artificial neural network
FTIR	� Fourier transform infrared spectroscopy
KNN	� K-nearest neighbor
ML	� Machine learning
MLP	� Multilayer perceptron
MSE	� Mean squared error
R	� Correlation coefficient
RF	� Random forest
SVM	� Support vector machine
XGBoost	� Extreme gradient boost
XRD	� X-ray diffraction

Introduction

The reservoir properties including porosity and volume 
of shale play important roles in the reservoir production 
(Cheng and Pan 2020). Engineers design the best plans for 
the further reservoir development stages, also optimize the 
hydrocarbon recovery with the help of precise knowledge 
of these petrophysical parameters (Solanki et al. 2021). The 
porosity ( ∅ ) is greatly affected by the amount of clay min-
erals inside the reservoir known as volume of shale ( Vsh ) 
(Iqbal and Rezaee 2020). One of the most crucial stages in 
the characterization of reservoirs is the estimation of the 
shale volume (Balaky et al. 2023). It can be very challenging 
to determine the amount of shale in many areas accurately 
(Hussain et al. 2023). Its overestimation causes the effec-
tive water saturation ( Swe

 ) to be estimated very low, and this 
eventually leads to the wrong assumption of productivity. 
On the other hand, in the case of underestimation of shale 
volume, the water saturation will be estimated more than its 
actual value and this makes a productive zone to be over-
looked. Moreover, the underestimation or overestimation of 
this parameter can cause some miscalculation in the estima-
tion of effective porosity which is used for the determination 
of net pay (Iltaf et al. 2023).

ANNs can efficiently solve nonlinear problems. The ANN 
combines connected units including the artificial nodes (neu-
rons), input, output, and processing layers. Each node is able 
to receive or transmit a pulse from or to the other nodes. 
A weight is assigned to each neuron and updated during 
the learning process. Typically, there are one or several hid-
den (processing) layers of nodes in an ANN model. Each of 
these layers has input and output values, gives and receives 
data to or from the next and pervious layers, respectively. 
Eventually, data are weighted and mixed together to make 

a new input for the upcoming layer (Gong et al. 2019). The 
ANN is considered as algorithms with two crucial functions, 
i.e., classification and regression. The outputs or responses 
generated by regression are normally continuous values, and 
the regression application in the oil industry is to estimate 
the porosity (∅), permeability (k), volume of shale ( Vsh ), 
and water saturation ( Sw ) (Gong et al. 2019). The ANNs 
have played a significant role in the accurate estimation of 
reservoir parameters including porosity, permeability, water 
saturation (Okon et al. 2021), and volume of shale (Taheri 
et al. 2021; Hong and Tien 2022). The implementation of 
the intelligence models enables the reservoir engineers to 
tackle the challenging and time-consuming tasks more suc-
cessfully. The ANNs help to fuse different data and acquire 
complete and accurate information (Saikia et al. 2020).

The development of shale formations has had a trans-
formative effect, especially in the USA, leading to notable 
improvements in the industry (Alessa et al. 2022). Over the 
last decade, shale reservoirs have been the major focus of 
extensive discussion and research on hydrocarbon explo-
ration and exploitation globally. The development of shale 
formations has been a turning point, particularly in the USA, 
resulting in significant improvements. Simultaneously, ML 
and artificial intelligence (AI) have been instrumental in 
driving rapid development across all industries by automat-
ing routine operations (Syed et al. 2022). Shale gas reser-
voirs have been explored at various depths, ranging from 
as shallow as 1000 ft to as deep as 12,000 ft, with a vari-
able range of total organic content (TOC) from 1 to 12%. 
The quality of the shale formation is characterized based 
on a variety of factors, including petrophysical properties 
like TOC, thermal maturity, saturation, and geo-mechanical 
properties such as the percentage of quartz or carbonate in 
mineralogy, differential stress, and friability, (Sondergeld 
et al. 2010). Since the early 1980s, petroleum engineers 
have been using computer-aided petrophysical and geo-
mechanical studies such as log analysis, interpretation, and 
integration (Doveton 1986). However, ML-based and AI 
geo-mechanical and petrophysical analyses have become 
more prominent over the past decade, resulting in faster and 
more successful development than ever before in the history 
of the oil industry. As an unconventional reservoir, shale 
formations’ geo-mechanical properties are affected by dia-
genetic changes resulting from the depositional environment, 
temperature, and pressure. These changes cause mineralogi-
cal alterations, leading to changes in rock composition that 
directly impact sediment compaction and lithification. This 
makes it challenging to predict the geo-mechanical proper-
ties of shale (Syed et al. 2022).

In a study focused on the gas permeability of shale, 
Sakhaee-Pour & Bryant (2012) demonstrated that the nar-
rowness of pore throats in shale is predominantly below 
10nm and is situated within organic material where CH4 is 
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absorbed. Consequently, the gas permeability of these rock 
formations is notably influenced by the gas that is absorbed, 
along with the movement of gas sliding along the pore walls. 
This effect is particularly pronounced at higher pressures 
(such as the initial pressures) found in typical shale gas 
reservoirs. In such conditions, the impact of the absorbed 
gas layer takes precedence over the influence of gas slip-
ping through the pore spaces. Besides, it was projected that 
the permeability of the reservoir matrix can experience a 
substantial increase over the well operation, potentially 
growing by a factor of 4.5 as production continues and 
pressure decreases. According to Sakhaee-Pour and Steven 
(2015), non-random spatial distributions of throat sizes in 
acyclic void models offer more accurate portrayals of the 
void space within samples. These models are particularly 
suited for cases where drainage experiments demonstrate a 
capillary pressure versus saturation trend that deviates from 
the plateau-like pattern. Furthermore, they made successful 
permeability predictions that aligned well with laboratory 
measurements. The models they developed may find utility 
in other porous media where drainage data do not display a 
plateau-like variation.

The examination carried out by Sakhaee-Pour and Li 
(2016), with potential far-reaching effects on comprehend-
ing hydrocarbon movement in shale formations, scrutinized 
drainage experiments conducted on core samples to eluci-
date the interconnected pathway topology within the pore 
space on a core-scale level. Their investigation across vari-
ous shale varieties revealed that the path traversed within the 
pore space by the nonwetting phase, measured as the length 
of the pore space, adheres to a fractal pattern. This is in con-
trast to the pore volume, which does not inherently exhibit 
fractal characteristics. While the assessment of matrix 
permeability through mercury injection capillary pressure 
measurements is a customary procedure in the petrophysi-
cal analysis of rock formations, it remains unachievable for 
shale formations due to the absence of a practical and reli-
able model. In 2018, Tran et al. (2018) introduce a straight-
forward correlation, rooted in the acyclic pore model, to 
approximate shale permeability. This uncomplicated relation 
was subjected to testing using seven samples drawn from 
three distinct formations.

Tran and Sakhaee-Pour (2018a, b) asserted that their 
research holds significant implications for the characteriza-
tion of reservoirs using conventional petrophysical meas-
urements. The results of numerical simulations revealed 
that the gas flow’s effective pore-throat size is influenced by 
pore pressure. Furthermore, the measured permeability in 
the presence of liquid surpassed the nominal permeability, 
commonly known as the Hagen–Poiseuille model, without 
accounting for slippage effects. Tran and Sakhaee-Pour 
(2018a, b) utilized the acyclic pore model to incorporate the 
effective interconnections among shale samples on the core 

scale. Their research, focused on exploring the core-scale 
critical properties ( Tc,Pc ) of shale gas, holds significant 
potential for advancing a practical reservoir model tailored 
to shale formations. The findings indicated substantial alter-
ations in displacement-critical properties, while modifica-
tions were unnecessary for storage-critical properties.

Yu et al. (2018) established a study about pore size of 
shale based on acyclic pore model. Their investigation 
into diverse shale types revealed that the average size of 
pore bodies typically exceeds 20nm. As a result, there is 
no necessity to consider pore proximity or confinement. In 
contrast, the pore-throat size distributions across different 
shales generally lie below 20nm, necessitating adjustments 
to a transport property that pertains to the formation’s resist-
ance against fluid flow. Another study conducted by Alessa 
et al. (2021), they investigated the comprehensive charac-
terization of pore sizes within Midra shale. The research 
established that pore-throat and pore-body sizes exhibit both 
narrow and wide distributions, with average measurements 
approximately 22nm and 18nm, respectively. As a result, 
modifications are needed for transport properties influenced 
by pore-throat sizes in order to accurately represent subsur-
face conditions. Notably, properties like density, which are 
tied to the volume of pores in the matrix, can be reasonably 
estimated based on gas composition within broader chan-
nels. These findings hold relevance for advancing uncon-
ventional gas development, which is regarded as one of the 
cleaner fossil fuel alternatives.

In 2022, Alipour et al. (2022) introduced an empirical 
correlation designed to account for the nonplateau-like pat-
tern and the estimated capillary pressure observed in shale 
formations. By a dataset of mercury capillary pressure meas-
urements from 30 samples extracted from various US shale 
formations, their proposed model holds potential for analyz-
ing two-phase displacement phenomena within shale envi-
ronments. Alessa et al. (2022) introduced a simple formula 
to precisely ascertain the entry pressure. This relationship, 
offering a novel method of determination, was employed on 
real measurements from seven shale samples. Enhancements 
to its effectiveness were achieved through the integration of 
k-nearest neighbors (KNN), locally selective combination 
in parallel outlier ensembles (LSCP), and Savitzky–Golay 
(SG) filters. The optimal outcome emerged from the sequen-
tial amalgamation of the basic formula with unsupervised 
machine learning and noise-filtering techniques.

The conventional well-logging data which are used to 
estimate the volume of shale, namely, are gamma ray (GR) 
and its spectral components, SP log, density (RHOB) log, 
resistivity logs (LLD, LLS, ILD, MSFL), neutron (NPHI), 
and sonic (DT) log. Moreover, a combination of gamma 
ray-density, neutron-density, and sonic-density logs can be 
used in formulas to estimate the Vsh (Ehsan et al. 2019; Tali 
and Farman, 2021; Mohavvel and Jozanikohan 2022). The 
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decrease in porosity due to the presence of clay minerals will 
lead in a poor reservoir quality (Zhou et al. 2022). The pres-
ence of shale has an effect on the petrophysical properties 
and logging tool responses, thereby it causes a significant 
reduction in the effectiveness of the reservoir porosity (Rad-
wan et al. 2020; El-Gendy, 2022; Ismail et al., 2023; Saleh 
et al. 2023). Using the factor index, a linear relationship 
between a special factor and shale content can be obtained 
with the natural gamma ray index (Szabó 2011). To have the 
best prediction of the hydrocarbon accumulations, one needs 
to know the reservoir quality distribution factors such as ( ∅ ) 
and Vsh (Mohammed 2020). Gamal and Elkatatny (2021) 
implemented a new approach developed by the machine 
learning techniques (ANN) to predict the porosity of the 
reservoir rock. Their approach overcomes all of the conven-
tional problems in the domain of porosity estimation using 
empirical correlations, measurements of the core samples, 
and logging tools.

Taheri et al. (2021) conducted a study by seismic data from 
the Hendijan oil field to establish a correlation between seismic 
properties and shale volume values. The researchers employed 
three distinct methods, namely, the sparse spike inversion, 
model-based inversion, and band-limited inversion methods 
to select the seismic line between the wells. The results indi-
cated that the model-based method yielded the most favorable 
outcomes. Besides, they utilized ANNs in conjunction with 
seismic properties to estimate the shale volume. In another 
research, Ali (2021) employed traditional petrophysical tech-
niques, such as linear gamma ray, nonlinear gamma ray, and 
spontaneous potential with the aim of creating a dataset for 
training ML algorithms, including random forest (RF), extreme 
gradient boost (XGBoost), and k-nearest neighbor (KNN). 
Ultimately, the nonlinear gamma ray method was identified 
as the most effective among the classical approaches, while 
the XGBoost algorithm demonstrated superior performance, 
achieving a mean squared error (MSE) of 0.078 (Ali 2021).

The findings obtained from the study of Jozanikohan and 
Abarghooei (2022) offer valuable advantages for geosci-
entists in the upstream petroleum sector. They proved that 
by the conducted method, samples can be assessed before 
resorting to intricate and time-consuming chemical and 
mineralogical analyses, as the Fourier transform infrared 
spectroscopy (FTIR) method efficiently accomplishes both 
tasks with greater ease and reduced expenses. This technique 
proves especially beneficial for evaluating clastic reservoirs, 
shale oil, and shale gas targets, enabling a rapid evaluation 
of their potential. The study demonstrates the practicality 
of the approach using a set of Shurijeh core samples as an 
illustrative example. In recent years, there has been a notice-
able trend in utilizing machine learning (ML) algorithms for 
shale volume estimation, marking a novel area of interest 
in the petrophysical evaluation stage. This development is 
evident from studies conducted in the past decade, such as 

the research by Syed et al. in the year 2022, wherein they 
observed an increasing application of ML in various shale-
related investigations. In a separate study conducted by 
Mohammadinia et al. (2023), the aim was to propose sim-
plified techniques for shale volume estimation in a reservoir 
located in southern Iran. Furthermore, they sought to com-
pare the performance of various ML methods in estimating 
shale volume. The conventional methods employed for com-
parison included gamma ray (GR), density-neutron (DN), 
and density-sonic (DS), while the ML methods consisted of 
ANN, support vector machine (SVM), and RF. The authors 
deduced that ANN, SVM, and RF methods estimated the 
shale volume with much better performance.

Since there are no detailed published data of the 
Kashafrud reservoir studies, the current research has been 
performed to investigate and evaluate its reservoir parame-
ters including the shale content ( Vsh ), and porosity ( ∅ ) by the 
laboratory, and petrophysical methods, as well as the intel-
ligent methods (such as ANN). The aim of this paper was to 
shed light on the possible role of machine learning to esti-
mate two critical parameters of reservoir quality assessment, 
porosity and volume of shale, in the Kashafrud Formation. 
During this process, the high accuracy of estimated param-
eters by artificial intelligence was carefully evaluated. The 
performance of the artificial neural network was measured 
using a criterion of comparing the results of calculations 
obtained for both results obtained from conventional petro-
physical methods and artificial neural network methods. The 
presence of valuable core data in this study significantly 
improved the process of comparison and conclusion.

Geological setting

The Kashafrud Formation is in the northeastern of Iran in a 
sedimentary basin of Kopet-Dagh (Fig. 1). The Kashafrud 
Formation was characterized as a reservoir by sedimento-
logical and geochemical studies (Ershadinia et al. 2023). 
This sandstone formation, aging Aalenian-Bathonian (Mid-
dle Jurassic) mostly consists of the sedimentary rocks such 
as shale, sandstone, and conglomerate. A large area in the 
Kopet-Dagh basin, across the northeastern of Iran has been 
widespread by the Kashafrud Formation (Poursoltani & 
Gibling 2011).

The Khangiran anticline is approximately located at 180 km 
northeast of Mashhad and 25 km west of Sarakhs city. Based 
on the geophysical information, the general trend of the struc-
ture is northwest-southeast and it is asymmetric. Also, the 
northern edge has a steeper slope than the southern edge. In 
the mentioned anticline, the existence of three separate gas 
reservoirs including two sweet ones in the Shurijeh Forma-
tion, and one sour gas reservoir in the Mozdoran Formation 
has been confirmed (Mashayekhi et al. 2022). The Khangiran 
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Formation, aging Lower–Middle Eocene with a thickness of 
500 m is mainly consisted of succession of olive green, silty, 
calcareous and clay shales of gray, green-gray, silty, sticky, and 
calcareous rocks (Ghorbanpour et al. 2023). The stratigraphic 
column of the studied well (Well A) in the Khangiran gas field 
has been drawn by Strater software ver. 5 (Fig. 2).

The sandstones of Kashafrud Formation are mostly from 
the arkosic and lithic arenite types, rich of the fragments 
from the volcanic and sedimentary sources (Poursoltani 
and Gibling 2011). The thickness of drilled Kashafrud For-
mation is 433 m. The drilled thickness in the upper parts 
includes succession of light gray, light brown, gray, medium 
to coarse sandstones, hard to slightly porous bituminous, 
calcareous and gray, green-gray, silty and slightly pyrite. 
The lower drilled parts mainly consist of light gray, brown-
ish gray, light brown, silty, sandy, calcareous, soft and thin 
layers of light gray sandstone, medium grain, semi-hard to 
hard (Ghorbanpour 2023).

Materials and methods

Core data

In the present research, the dataset was collected from one 
well, i.e., well A (Fig. 1) in the Khangiran gas field, NE Iran. 
This well was drilled to investigate the hydrocarbon status of 
the bottom formations under Mozdoran (especially Kashafrud 

Formation) as well as the hydrocarbon production from the 
Mozdoran, and Kashafrud Formation. This well is drilled up 
to Kashafrud Formation (with a drilled thickness of 433 m).

Additionally, nine intervals were cored between depths of 
3080.5 and 4397.5 m. During the drilling operation, nine core 
boxes of 0.9 m length were obtained. 10 core samples were 
then carefully selected and cut from the core #9 of well A. The 
laboratory measurements of the porosity (mercury prosimetry) 
and volume of shale (XRD test and densitometry) were per-
formed on these 10 core samples.

Wireline logging data

In this study, 2263 petrophysical data were provided with a 
depth interval of 0.061 m. One set of well-logging data from 
an eastern Kopet-Dagh field’s gas producing well, including 
natural gamma ray (GR), sonic (DT), photoelectric (PEF), den-
sity (RHOB), neutron (NPHI), caliper (CALI), spontaneous 
potential (SP), and shallow & deep laterolog (LLS & LLD) 
were available from wireline logging process. Since there was 
a discrepancy between the depths of core samples and well 
logs, the depth matching was conducted by averaging between 
the upper and lower depths for each depth whose well-logging 
data was absent.

Fig. 1   The geographic location map of the studied area and well (Revised from Miri et al. 2018)
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Methods

Core analyses

To analyze 10 core samples, the X-ray diffraction (XRD) 
was used to determine how much clay content existed in 
the Kashafrud Formation. The analysis was performed to 
fully identify the type of clay minerals and to calculate the 
laboratory shale weight percent. The results indicated that 
the constituent minerals in order of abundance in the studied 
samples were quartz, clay minerals, alkali feldspars, pla-
gioclase, ankerite, and pyrite, respectively. In Fig. 3, the 
average weight percentage of each mineral in all samples is 
plotted separately.

The result of the XRD experiments is generally based 
on the weight percent and since it is necessary to make 
a comparison with the petrophysical data based on the 
volume percentage, one needs to have the density of each 
sample to convert the weight percent to the volume percent 
of clay minerals. The densitometry of the samples was 
performed by a 25-cc standard pycnometer by means of an 

organic fluid such as acetone. Therefore, the densitometry 
tests the samples were performed and each total weight 

Fig. 2   The stratigraphic column 
of the studied well in the 
Khangiran gas field, plotted by 
Strater software ver. 5

Fig. 3   The average weight percentage of samples’ minerals, obtained 
from the XRD analysis
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percent of clay minerals were converted to the volume 
percent. The relevant information is listed in Table 1.

The mercury porosimetry can detect the nanopores and 
macropores up to the size of 400 μm . The mercury poro-
simetry remained the preferred method for analyzing the 
microporous materials (Schlumberger & Thommes 2021). 
Using the mercury porosimetry method, the porosity of 10 
samples was precisely measured in the laboratory.

The conventional petrophysical methods 
for porosity and volume of shale estimation

The most well-logging data can detect the clay minerals. 
Therefore, the estimation of the shale volume is possible 
from any logs. The definition of volume of shale in the 
literature is the ratio of the volume of fine grain particles 
such as silt and clay to the total volume of the rock (Shah 
et al. 2021). It has been proven that the gamma ray log and 
its spectral components (potassium, thorium, and uranium) 
are the best logs for the volume of shale estimation (Al Al-
Azazi and Albaroot 2022; Khamees et al. 2022).

To determine the quantity of the clay minerals, the 
estimated volume of shale needs to be corrected. Below, 
Eqs. (1)–(6) illustrate the conventional petrophysical rela-
tionships to estimate the shale volume from the natural 
gamma ray log including Bhuyan and Passey (1994), ​​Stie-
ber (1973), Clavier (1971), Larionov-1 (according to the 
age of the Kashafrud Formation) (1969), and combination 
of gamma density logs. The symbols, values, and param-
eters used in the formulas are listed in List of symbols 
section.

After calculating the volume of shale using petrophysi-
cal and laboratory relationships, to measure the accuracy 
of the data, the values obtained from these two methods 
were compared. The results obtained from the petrophysical 
methods with error were calculated. Through this method, it 
is possible to match the volume percentages achieved in the 
laboratory with the values obtained through the experimen-
tal relationships and validation. According to the curve of 
the average percentage of errors (Fig. 4), the natural gamma 
ray (GR) was the criterion for further petrophysical studies 
and analytical methods such as the neural network.

After the calculations, it was observed that the average 
error rate was considerably high due to the laboratory valida-
tions (89.46%). Thus, the intelligent methods (ANN) became 
the basis of the next step.

In the porosity calculation segment, to compare the per-
formance and results of both conventional petrophysical and 
laboratory methods, the average errors percentages obtained 
from these two methods were calculated (Table 2). It was 
observed that the average error rate was high, standing at 
58.3%. Thereby to reduce the error rate, the ANN was cho-
sen to accurately calculate the porosity at different depths.

The estimation of the ∅ and Vsh , using the multilayer 
perceptron (MLP) artificial neural network (ANN)

The neural network is a simulation of the human brain in 
the form of an artificial system that consists of a myriad of 
processor organs which are known as neurons with a special 
order that is similar to the human mind. A neural network 
consists of an input layer to the apply features of problem, 
a hidden layer to process, and an output layer to provide the 
answer(s). All of the training algorithms aim to minimize 
the mean squared error (MSE) between the outputs of the 

(1)IGR =
GRlog − GRmin

GRmax − GRmin

(2)Vcl = 0.6IGR

(3)Vcl =
0.5 × IGR

1.5 − IGR

(4)Vcl = 1.7 −

√

3.38 −
(

IGR + 0.7
)2

(5)Vcl = 0.33
[

2(2×IGR) − 1.0
]

(6)Vcl = IGR ×

(

�b

�bsh

)3

Table 1   The density, volume percentage, and total volume percentage 
of the clay minerals

#Samples
�lab

(

g

cm3

)

VKao% Vill% VChl% VTotal%

1 2.712 1.9 3.4 2.5 7.9
2 2.896 0.8 2.7 3.2 6.7
3 2.624 1.8 4.0 2.0 7.9
4 2.666 1.0 4.7 2.0 7.7
5 2.628 1.5 3.9 3.5 8.9
6 2.726 2.2 2.9 1.9 7.0
7 2.623 2.0 5.6 4.1 11.7
8 2.574 1.7 3.2 2.9 7.8
9 2.737 1.4 4.4 1.1 7.0
10 2.620 1.7 6.8 4.2 12.8
Average 2.681 1.6 4.2 2.8 8.5
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predicted model and the observed outputs with respect to the 
training dataset (Adegbite et al. 2021). The methods based 
on the artificial intelligence proved their effectiveness and 
ability to provide robustness modeling on the basis of their 
high correlation coefficient between the actual and estimated 
volume of shale.

The application of MLP network for the porosity estimation

In the well under study, the core laboratory measured poros-
ity contains 10 data. Since the artificial intelligence-based 
methods needs a large number of data to well train the net-
work, the number of data has been increased to 686 based on 
the geostatistical algorithms. The selection of input data was 
performed in two ways. In the first approach, all the avail-
able logs were inserted to the MATLAB software ver. 2021 
(Rajabi et al. 2021, 2023; Radwan et al. 2022; Abdelghany 
et al. 2023). In the other approach, some selected well-log-
ging information chosen from the sensitivity analysis were 
inserted to the mentioned software as input data. In the both 
approaches, the input data was standardized to avoid one 
variable dominates the model.

In general, 70%, 15%, and 15% of the data were 
assigned for the training, validation, and testing, respec-
tively. The Levenberg–Marquardt algorithm was used to 
train the MLP neural network. During several trainings, 

the main criteria for evaluation of the most appropriate 
network, was chosen to be the mean squared error (MSE) ​​
and the correlation coefficient (R). The structure of the 
network consists of nine and six neurons (for the both 
approaches) in the input layer, one and two hidden layers, 
and one output layer. The input, output, parameters of the 
network, and their symbols are summarized in Table 3.

An outline of the optimal MLP network model for esti-
mating porosity in the Kashafrud Formation can be seen 
in Fig. 5. All the possible mathematical functions for gen-
eration of the output were tested, and the results are listed 
in Table 4. There are several characteristics distinguish-
ing each of neurons in the network, including the input 
weights, and the activation functions. Compared to the rest 
of the functions, the Tan-Sigmoid transfer function showed 
a better performance.

Since the input data ranged between 0 and 1, having a 
function that computes the output between zero and one 
was a logical reason for choosing the Tan-Sigmoid func-
tion. Therefore, the Tan-Sigmoid (tansig) was assumed as 
one of the most commonly used activation functions in the 
MLP networks. Equation (7) describes the Tan-Sigmoid 
function in which β indicates the slope parameter:

First, all available well-logs data were entered into the 
ANN (Table 5). As the proposed MLP network had a low 
R-value and a high MSE, it did not capture the laboratory 
data successfully. To improve the results, it was decided 
to limit the input data to the most relevant parameters. 
To find the most correlated parameters with the poros-
ity, a sensitivity analysis in the form of a Pearson matrix 
(Table 6) was performed.

(7)f (x) =
1

1 + e−�

Fig. 4   The curve of average 
errors percentages for volume of 
shale. (1) Stieber/I

GR
 , (2) Stie-

ber/I
SGR

 , (3) Stieber/I
CGR

 , (4) 
Clavier/I

GR
 , (5) Clavier/I

SGR
 , 

(6) Clavier/I
CGR

 , (7) Lari-
onov/I

GR
 , (8) Larionov/I

SGR
 , 

(9) Larionov/I
CGR

 , (10) 
Gamma-Density logs/I

GR
 , (11) 

Gamma-Density logs/I
SGR

 , (12) 
Gamma-Density logs/I

CGR

Table 2   The corrective relationships and average error for porosity

Number The name of method The aver-
age error 
(%)

1 Neutron Log 63.95
2 Neutron–Density Log 52.65
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To calculate the correlation coefficient (R), and the 
MSE (Eq. (8), the resulting estimates were compared to 
the actual measurements of the porosity in the laboratory.

In which x
imeas

 is the measured values, x
iest

 is the estimated 
values, and N is the total number of observations. The input 
and output data were normalized as follows:

The porosity estimation results illustrated that when 
both all and selected well logs were put into the network, 
288, 62, and 62 data were assigned for training, valida-
tion, and testing, respectively. It was also observed that 
the estimation when all logs were inserted into model as 
the input, has high MSE and also low R-values (Table 5). 
Considering all other tested topologies, 6-7-1 was the 
chosen architecture, having the highest R-value and the 
lowest MSE (Table 7). The MSE and R values were the 
best model at epoch 103 (Fig. 6), when the optimal MLP 
model was gained for estimation of the porosity in the 

(8)
MSE =

∑

�

x
imeas−Xiest

�2

N

(9)

Normalized value =
Original Value −Minimum Value

Maximum Value −Minimum Value

Table 3   The input and output 
data of the MLP network for 
estimating porosity

Data Type Parameter Symbol Unit Range Mean Standard 
Deviation

Input Sonic DT US/F 48.00–63.55 54.92 3.57
Density RHOB g/cm3 2.52–3.05 2.75 0.07
Neutron NPHI V/V 0.81–19.27 5.20 2.96
Micro Spherically MSFL Ohmm 0.20–161.58 26.53 27.84
Deep Resistance Radius LLD Ohmm 0.25–1949.91 184.96 211.22
Shallow Resistance Radius LLS Ohmm 0.38–1212.56 171.10 180.07
Spontaneous SP mV − 11.7904–28.0451 − 32.59 3.61
Natural Gamma Ray GR API 28.92–140.35 84.12 32.01
SUM Gamma Ray SCR API 7.72–155.23 82.58 33.61
Standard Gamma Ray CGR​ API -15.86–154.90 74.68 37.11
Caliper CALI IN 5.48–6.85 5.99 0.23
Photoelectric PEF B/E − 6.36–10.03 − 2.45 3.70

Output Porosity ∅ V/V 9.35–14.56 9.21 3.06

Fig. 5   The outline of the optimal MLP network model for estimating 
porosity in the Kashafrud Formation

Table 4   The MLP network 
with a fixed topology (Tansig) 
replied to the different transfer 
functions

Transfer Functions Training Data Set Validation Data Set Testing Data Set

MSE R-value MSE R-value MSE R-value

Linear (purelin) 7.65620 e−6 0.9711 6.98140 e−6 0.9215 6.14881 e−5 0.8536
Saturating Linear (satlin) 5.28117 e−6 0.9756 7.10514 e−5 0.9278 6.84528 e−6 0.8533
Log-Sigmoid (logsig) 7.15336 e−5 0.9654 4.95746 e−4 0.9284 4.53892 e−5 0.7819
Triangular Basis (tribas) 6.33542 e−5 0.9561 6.85332 e−5 0.9347 6.91255 e−5 0.4584
Tan-Sigmoid (tansig) 3.00125 e−4 0.9990 3.72011 e−3 0.9984 3.74141 e−3 0.9995
Hard-Limit (hardlim) 4.01228 e−4 0.9437 4.98411 e−3 0.9265 5.00352 e−3 0.7765
Symmetric Hard-Limit (hardlims) 7.43754 e−4 0.9812 6.12504 e−3 0.9445 6.84312 e−3 0.8798
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Kashafrud Formation. Table 8 compares the results of 
networks’ trainings with one and two hidden layers. MSE 
and R values of 2.78731 E−4 (Fig. 6) and 0.9999 (Fig. 7), 
respectively, were found with an optimal MLP model for 
the porosity estimation in the Kashafrud Formation.

Finally, as a major step, to estimate the porosity in 
the whole interval of the Kashafrud Formation from the 
core data that were not used since this step (10 samples), 
the optimal MLP network was employed. The average 
output which indicates the estimated porosity was equal 
to 0.13%.

The application of MLP network for the volume of shale 
estimation

The core laboratory measured Vsh contains 10 data. Since 
the artificial intelligence-based methods needs a large num-
ber of data to well train the network, the number of data has 
been increased to 702 based on the geostatistical algorithms. 
It was observed that the Vsh estimation when all logs were 
inserted into model as the input has high MSE and also low 
R-values (Table 11). In the selection of proper inputs for the 
ANN model, the Pearson Correlation Coefficient (Table 8) 

Table 5   Mean squared 
error values ​​and correlation 
coefficient for all logs for 
porosity estimation

Topology Training Data Set Validation Data Set Testing Data Set

MSE R-value MSE R-value MSE R-value

9-1-1 7.91002 e−8 0.8369 7.56740 e−8 0.8351 5.62996 e−8 0.8378
9-1-1-1 5.57123 e−8 0.8859 6.01566 e−8 0.9009 5.96234 e−9 0.8596
9-2-1 5.37781 e−8 0.8448 8.03052 e−8 0.8448 6.96929 e−8 0.9019
9-1-2-1 6.83208 e−8 0.9092 5.60017 e−8 0.9246 7.89825 e−9 0.8408
9-3-1 8.70518 e−8 0.8135 9.29469 e−8 0.8246 1.23906 e−8 0.8228
9-1-3-1 6.45184 e−8 0.9136 7.23164 e−8 0.9382 8.19125 e−8 0.8848
9-4-1 6.82980 e−9 0.8471 6.99655 e−8 0.8561 5.33850 e−9 0.8471
9-1-4-1 5.32485 e−8 0.9035 8.11126 e−8 0.9193 6.88546 e−8 0.8961
9-5-1 8.01085 e−8 0.8467 7.68625 e−8 0.8886 7.36588 e−9 0.8365
9-1-5-1 7.11672 e−8 0.8864 8.00114 e−8 0.9136 6.28320 e−8 0.8781
9-6-1 6.84132 e−8 0.8232 5.16285 e−8 0.9059 6.75098 e−9 0.8471
9-7-1 7.14580 e−8 0.8164 5.04534 e−8 0.8374 8.67665 e−8 0.8225
9-8-1 7.27324 e−8 0.8258 6.74763 e−8 0.8117 8.00868 e−8 0.8511
9-9-1 5.38482 e−8 0.8364 5.32811 e−8 0.8337 5.69783 e−8 0.9054
9-10-1 6.93440 e−8 0.8337 8.93726 e−8 0.8325 5.59001 e−8 0.8166

Table 6   The Pearson correlation matrix to determine the selected well logs in the ANN to estimate porosity

GR DT CALI RHOB NPHI SGR PEF CGR​ MSFL LLD LLS SP ∅

GR 1.00
DT 0.96 1.00
CALI − 0.08 − 0.04 1.00
RHOB − 0.80 − 0.81 − 0.37 1.00
NPHI 0.75 0.75 − 0.51 − 0.32 1.00
SGR 0.39 0.50 − 0.71 − 0.02 0.80 1.00
PEF 0.02 0.04 0.92 − 0.50 − 0.45 − 0.74 1.00
CGR​ 0.40 0.48 − 0.76 0.04 0.81 0.94 − 0.73 1.00
MSFL 0.36 0.20 − 0.48 − 0.14 0.31 0.26 − 0.48 0.15 1.00
LLD − 0.96 − 0.97 0.16 0.74 − 0.79 − 0.50 0.04 − 0.55 − 0.22 1.00
LLS − 0.97 − 0.98 0.15 0.75 − 0.79 − 0.51 0.04 − 0.55 − 0.23 1.00 1.00
SP − 0.41 − 0.46 − 0.14 0.63 − 0.10 0.00 − 0.29 0.15 − 0.40 0.37 0.38 1.00
∅ − 0.42 − 0.25 − 0.29 0.63 − 0.26 0.31 − 0.37 0.14 0.04 0.35 0.35 − 0.12 1.00
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has been used extensively. An outline of the optimal MLP 
network model for estimating volume of shale is shown in 
Fig. 8. The input, output, parameters of the network, and 
their symbols are summarized in Table 9. Compared to the 
rest of the different transfer functions, the Tan-Sigmoid 
function showed a better performance (Table 10).

Similar to the previous estimation, before using the 
results of the Pearson correlation matrix, the values of R 
and MSE had significant errors (Table 11). However, after 

considering the sensitivity analysis, a significant improve-
ment was seen in the trains (Table 12). The conventional 
methods for the estimation of Vsh are used which produce 
inconsistent results. Though, comparing all the tested net-
works, 6-8-1 had the least mean squared error and the high-
est correlation coefficient (Table 12). Through this, MSE 
and R-values of 1.28701 E−9 (Fig. 9) and 0.9999 (Fig. 10), 
respectively, were found at epoch 1000 with an optimal MLP 
model for the Vsh estimation in the Kashafrud Formation.

Finally, as a major step, to estimate the Vsh in the whole 
interval of the Kashafrud Formation from the core data that 
were not used since this step (10 samples), the optimal MLP 
network was employed. The average output which indicates 
the estimated Vsh was equal to 8.34%.

Results and discussion

In this study, the laboratory analyses including the Pow-
der X-ray diffraction (PXRD), and densitometry were per-
formed. Based on the results of XRD analysis, the minerals 
in order of abundance are quartz, clay minerals, alkali feld-
spars, plagioclase, ankerite, and pyrite. Since the percent-
age of the clay minerals in the XRD test is weight percent-
age, this result should be compared with petrophysical data 
expressed in terms of volume percentage. To calculate the 
volume percent, a densitometry test was performed and its 
results showed that the highest and lowest amounts of clay 
minerals were 12.8 and 6.7 volume percent, respectively 

Table 7   Mean squared error and correlation coefficient values for the selected well logs

Topology Training Data Set Training Data Set Validation Data Set Validation Data Set Testing Data Set Testing Data Set
MSE R-value MSE R-value MSE R-value

6-1-1 1/00686 e−4 0/9982 9/32391 e−4 0/9871 1/03811 e−5 0/9844
6-1-1-1 5/63259 e−5 0/9979 1/86091 e−4 0/9810 1/80566 e−5 0/9942
6-2-1 7/51577 e−4 0/9849 9/75866 e−4 0/9937 9/21556 e−4 0/9896
6-1-2-1 1/56951 e−6 0/9912 1/33013 e−7 0/9817 5/21167 e−6 0/9946
6-3-1 2/00632 e−5 0/9965 3/03791 e−5 0/9929 2/51106 e−5 0/9940
6-1-3-1 4/08831 e−6 0/9875 2/13467 e−5 0/9825 4/48762 e−6 0/9954
6-4-1 1/01417 e−7 0/9946 2/50835 e−7 0/9934 7/27836 e−7 0/9989
6-1-4-1 1/99623 e−7 0/9881 4/94222 e−4 0/9837 2/51420 e−6 0/9761
6-5-1 6/36613 e−7 0/9852 2/14714 e−7 0/9955 4/45812 e−7 0/9968
9-1-5-1 2/76758 e−5 0/9949 3/22903 e−5 0/9914 8/34676 e−4 0/9832
6-6-1 2/39039 e−5 0/9717 4/94626 e−5 0/9875 4/14706 e−5 0/9959
6-1-6-1 4/99232 e−4 0/9965 1/93628 e−6 0/9927 2/17671 e−7 0/9957
6-7-1 2/06925 e−4 0/9999 2/78731 e−4 0/9999 3/31220 e−4 0/9998
6-1-7-1 2/12551 e−5 0/9873 1/51897 e−6 0/9939 2/66016 e−7 0/9960
6-8-1 3/11573 e−8 0/9936 3/92132 e−8 0/9842 3/78817 e−6 0/9830
6-9-1 6/24967 e−5 0/9971 1/62983 e−4 0/9821 5/25848 e−5 0/9936
6-10-1 2/82603 e−7 0/9878 3/00237 e−7 0/9978 2/77961 e−7 0/9923

Fig. 6   Training, validation, and testing curves of the samples with the 
chosen topology 6–7-1
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(Table 1). Then, having the density, the laboratory Vsh of all 
samples was obtained. The results are presented in Table 13.

Figure 11 plots the data from the density log in terms of 
the natural gamma ray. The lowest amount of the natural GR 
of the studied well was chosen as the clean sand baseline, 
and the highest amount of the natural GR was chosen as the 

clay baseline, based on the data of the natural GR of the 
studied field. The range of all samples lead to the clay base-
line, and most core samples have a density between 2.68 and 
2.72 g/cm3 and subsequently, their radioactivity is relatively 
high. Thus, this indicates a high amount of the clay minerals, 
and this was confirmed in the laboratory studies.

Table 8   The Pearson correlation matrix to determine the selected well logs in the ANN to estimate Vsh

GR DT CALI RHOB NPHI SGR PEF CGR​ MSFL LLD LLS SP Vsh

GR 1.00
DT 0.96 1.00
CALI − 0.08 − 0.04 1.00
RHOB − 0.80 − 0.81 − 0.37 1.00
NPHI 0.75 0.75 − 0.51 − 0.32 1.00
SGR 0.39 0.50 − 0.71 − 0.02 0.80 1.00
PEF 0.02 0.04 0.92 − 0.50 − 0.45 − 0.74 1.00
CGR​ 0.40 0.48 − 0.76 0.04 0.81 0.94 − 0.73 1.00
MSFL 0.36 0.20 − 0.48 − 0.14 0.31 0.26 − 0.48 0.15 1.00
LLD − 0.96 − 0.97 0.16 0.74 − 0.79 − 0.50 0.04 − 0.55 − 0.22 1.00
LLS − 0.97 − 0.98 0.15 0.75 − 0.79 − 0.51 0.04 − 0.55 − 0.23 1.00 1.00
SP − 0.41 − 0.46 − 0.14 0.63 − 0.10 0.00 − 0.29 0.15 − 0.40 0.37 0.38 1.00
Vsh 0.34 0.37 − 0.36 − 0.09 0.31 0.57 − 0.56 0.49 0.44 − 0.35 − 0.35 0.04 1.00

Fig. 7   The estimation error 
curves for the samples with the 
chosen topology 6–7-1
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Furthermore, SEM studies were performed to determine 
the distribution pattern of the clay minerals. Based on these 
studies, the distribution pattern of clay minerals was mainly 
of pore filling type and in some limited cases, pore coating 
type was identified. The size of clay minerals varied from 
1.4 μm to 40 μm. The performed EDAX analysis confirmed 
the minerals identified by XRD method. The most important 
achievements of this research include the following findings:

The results of volume of shale estimation showed that 
the natural gamma ray can be used as a criterion for fur-
ther petrophysical studies and mathematical analytical 
methods (such as neural network) due to the lower error 
rate. Stieber calibration and combination of gamma-den-
sity logs also had the lowest mean error. The MLP neural 
network recorded an acceptable and appropriate perfor-
mance for estimating the ∅ and Vsh based on the selected 
logs. Though, when all the logs were imported as input, 
the error values ​​prevented the appropriate topology from 
being selected as the best performance.

The challenge with the utilized method is the effort 
required to carefully select the appropriate training data, 
which is a common requirement for all models that use 
real well-logging data. However, the ANN helps to fuse 
different data and acquire complete and accurate informa-
tion. Furthermore, this approach minimizes computing 
time, saving both time and money that would have been 
spent on core sampling without any prior knowledge of the 
matrix material or pore fluid.

The most important results of this study including 
following:

Fig. 8   The outline of the optimal MLP network model for estimating 
V
sh

 in the Kashafrud Formation

Table 9   The input and output data used of the MLP network for estimating the volume of shale

Data Type Parameter Symbol Unit Range Mean Standard Deviation

Input DRHO g/cm3 − 0.01319–0.013065 − 0.00234 0.00677
Density RHOB g/cm3 2.52–3.05 2.75 0.07
Neutron NPHI V/V 0.81–19.27 5.20 2.96
Micro Spherically MSFL Ohmm 0.20–161.58 26.53 27.84
Deep Resistance Radius LLD Ohmm 0.25–1949.91 184.96 211.22
Shallow Resistance Radius LLS Ohmm 0.38–1212.56 171.10 180.07
Spontaneous SP mV − 11.7904 to − 28.0451 − 32.59 3.61
Natural Gamma Ray GR API 28.92–140.35 84.12 32.01
SUM Gamma Ray SCR API 7.72–155.23 82.58 33.61
Standard Gamma Ray CGR​ API − 15.86 to 154.90 74.68 37.11
Caliper CALI IN 5.48–6.85 5.99 0.23
Photoelectric PEF B/E − 6.36–10.03 -2.45 3.70

Output Volume of shale Vsh V/V 9.35–14.56 9.21 3.06

Table 10   The MLP network 
with a fixed topology (Tansig) 
replied to the different transfer 
function

Transfer Functions Training data set Validation data set Testing data set

MSE R-value MSE R-value MSE R-value

Linear (purelin) 7.65620 e−5 0.9655 6.98140 e−4 0.9322 6.14881 e−4 0.8476
Saturating Linear (satlin) 7.8546 e−6 0.9416 6.11458 e−7 0.9347 7.39827 e−6 0.9112
Log-Sigmoid (logsig) 7.35981 e−5 0.9534 6.31259 e−6 0.9127 6.13944 e−6 0.8971
Triangular Basis (tribas) 6.41226 e−7 0.9614 6.13147 e−7 0.9172 6.88342 e−7 0.7694
Tan-Sigmoid (tansig) 4.11676 e−4 0.9982 4.89541 e−4 0.9988 5.24151 e−4 0.9993
Hard-Limit (hardlim) 7.27814 e−6 0.9619 6.88545 e−5 0.9584 6.13836 e−5 0.7925
Symmetric Hard-Limit (hardlims) 5.98762 e−6 0.9436 5.17513 e−7 0.9887 6.44125 e−6 0.8311
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1.	 The average laboratory value of  Vsh for all the core sam-
ples was %8.88.

2.	 The average value of  Vsh based on the petrophysical 
relationships in the entire under-studied well was %0.88.

3.	 The average value of Vsh based on the conducted MLP-
ANN in the entire under-studied well was %8.34.

4.	 The average value of ∅ based on the conducted MLP-
ANN in the entire under-studied well was %0.13.

The aim of this study was to estimate the porosity 
and volume of shale in the Kashfrud gas reservoir in the 

Khangiran field. The validation conducted in the research 
was highly valuable as it compared the results obtained from 
two distinct approaches, enabling authors to accurately and 
reliably calculate the percentages of improvement in esti-
mating the two parameters. The superiority of the present 
investigation compared to other similar published studies in 
the field of oil exploration is the integration of conventional 
petrophysical methods (calculation of parameters methods 
using traditional relationships), and intelligent ML methods 
(MLP—ANN) to improve the accuracy of reservoir param-
eters estimation.

Table 11   Mean squared 
error values ​​and correlation 
coefficient for all well logs

Topology Training Data Set Validation Data Set Testing Data Set

MSE R-value MSE R-value MSE R-value

9-1-1 8.56741 e−13 0.8891 8.62475 e−14 0.8099 8.29856 e−13 0.8540
9-1-1-1 8.22139 e−13 0.8321 7.95785 e−13 0.8221 8.51259 e−14 0.8301
9-2-1 9/13052 e−13 0.8679 8.96939 e−13 0.8156 7.07274 e−13 0.8431
9-1-2-1 7/10773 e−13 0.8327 7.71861 e−13 0.8235 7.31949 e−14 0.8311
9-3-1 7/29479 e−13 0.8657 7.23907 e−13 0.8239 7.51679 e−13 0.8533
9-1-3-1 7/18049 e−13 0.8454 8.57123 e−13 0.8446 8.84628 e−13 0.8325
9-4-1 9/99655 e−14 0.8574 7.33954 e−13 0.8143 7.93335 e−13 0.8336
9-1-4-1 7/37131 e−14 0.8458 7.22186 e−13 0.8112 8.32872 e−13 0.8447
9-5-1 7/68625 e−14 0.8570 7.36588 e−13 0.8236 7.89259 e−14 0.7990
9-1-5-1 8/62776 e−13 0.8363 8.84827 e−13 0.8224 8.21433 e−13 0.8560
9-6-1 7/16285 e−14 0.8566 8.75098 e−13 0.8154 7.17637 e−13 0.8527
9-7-1 8/04534 e−14 0.8561 7.67665 e−13 0.8152 8.24428 e−14 0.8524
9-8-1 7/74763 e−13 0.8742 8.15868 e−15 0.8227 8.82621 e−14 0.8673
9-9-1 7/32811 e−14 0.8723 8.69783 e−13 0.8224 8.78067 e−14 0.8501
9-10-1 8/93726 e−13 0.8711 8.59327 e−13 0.8147 7.18787 e−14 0.8491

Table 12   Mean squared error ​​
and correlation coefficient 
values for the selected well logs

Topology Training Data Set Validation Data Set Testing Data Set

MSE R-value MSE R-value MSE R-value

6–1-1 1.22255 e−9 0.9994 1.64936 e−9 0.9997 5.03397 e−10 0.9877
6–1-1–1 1.41151 e−9 0.9905 3.00731 e−9 0.9715 1.79318 e−9 0.9923
6–2-1 2.11646 e−11 0.9989 2.71556 e−11 0.9816 3.56141 e−11 0.9984
6–1-2–1 1.41151 e−9 0.9911 3.00731 e−9 0.9964 7.79318 e−7 0.9934
6–3-1 5.44506 e−9 0.9821 5.31570 e−9 0.9984 4.22742 e−9 0.9979
6–1-3–1 5.98975 e−10 0.9914 5.95757 e−10 0.9967 2.37883 e−7 0.9891
6–4-1 3.96992 e−10 0.9984 9.44087 e−10 0.9980 9.04711 e−10 0.9971
6–1-4–1 3.12938 e−10 0.9924 5.80521 e−6 0.9970 5.24420 e−6 0.9942
6–5-1 8.67375 e−11 0.9980 2.36584 e−10 0.9978 3.90108 e−11 0.9875
6–1-5–1 6.53578 e−10 0.9877 4.53723 e−8 0.9814 5.53134 e−8 0.9946
6–6-1 2.00402 e−11 0.9828 2.80022 e−11 0.9857 4.19939 e−11 0.9836
6–7-1 5.95261 e−10 0.9824 1.43539 e−9 0.9979 1.75258 e−9 0.9824
6–8-1 1.10214 e−9 0.9999 1.28701 e−9 0.9999 2.78935 e−9 0.9999
6–9-1 4.30431 e−10 0.9822 8.59774 e−10 0.9974 1.02560 e−9 0.9821
6–10-1 3.10115 e−9 0.9973 5.49104 e−9 0.9846 1.48319 e−8 0.9964
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The ANN developed in the study can be employed and 
examined to estimate porosity and volume of shale values in 
other wells within the gas field with reliable accuracy, when 
real well log or core samples data are not available. Given 

the high expenses associated with exploration operations in 
the oil industry, the method in this article presents a golden 
opportunity to save time and money by intelligent and mod-
ern techniques like ANNs to quickly and accurately estimate 
reservoir parameters using initial data from the target field. 
This approach can greatly assist petroleum engineers in 

Fig. 9   Training, validation, and testing curves of the samples with the 
chosen topology 6-8-1

Fig. 10   The estimation error 
curves for the samples with the 
chosen topology 6-8-1

Table 13   The values of density and laboratory volume of shale for 
each sample

The number of 
samples

The density of samples 
(g/cm3)

The laboratory 
volume of shale 
(%)

1 2.712 7.85
2 2.896 6.66
3 2.624 7.85
4 2.666 7.73
5 2.628 12.33
6 2.726 7.08
7 2.623 11.74
8 2.574 7.81
9 2.737 6.98
10 2.620 12.79
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tackling time-consuming and challenging problems related 
to the petroleum engineering field.

Conclusions

Traditionally, the porosity and volume of shale are estimated 
with a very high error rate, which was the main reason that 
the multilayer perceptron (MLP) artificial neural network 
(ANN) was conducted to reduce the error. The application 
of MLP resulted in the significant error percentage decrease 
in the estimation of two parameters including ∅ and Vsh from 
58.3% and 89.46% in the traditional petrophysical method 
to 2.78731 E−4 and 1.28701 E−9 , respectively. According to 
the validation of obtained results from the application of the 
MLP method with the core analysis data, the porosity and 
volume of shale in the understudy field has been assessed to 
be highly accurate.

The correlation coefficient (R-value) and mean squared 
error (MSE) in the estimation process were improved con-
siderably in comparison with conventional methods. Fur-
thermore, the correlation coefficient for the both estimations 
were 0.9999, using the MLP method. Besides, the ability of 
MLP-ANN made great percentage of improvements, which 
were 99.95% for ∅ , and 99.99% for Vsh . The obtained results 
of this investigation using MLP-ANN made great percentage 
of improvements (99.95% for ∅ , and 99.99% for Vsh ), which 
has greatly impacted the estimation of in place hydrocarbon.
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