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Abstract
As deep gas-condensate reservoirs are explored, the problem of paraffin deposition is becoming more prominent. Therefore, 
this paper collects condensate samples from representative paraffin deposition gas-condensate wells and analyzes basic physi-
cal properties. The cold plate deposition device is employed to study paraffin deposition behavior under well conditions and 
to divide the critical regions for paraffin deposition in gas-condensate wells. The experimental apparatus, such as the crude 
oil dynamic paraffin deposition rate tester, is utilized to investigate the preventive effect of paraffin dispersants and paraffin 
crystal modifier. The results show that there is significant phase change behavior in gas-condensate wells and gas phase is 
dominant form, but there is also phase evolution. It can be identified from the experiments that paraffin deposition is mainly 
located in the 1000 ~ 1500 m region, and a paraffin deposition identification chart has been established. The maximum depo-
sition rate could reach 15.50 mm/year, which matched the temperature and pressure conditions of 45 ℃ and 70 MPa. The 
preventive effect of paraffin crystal modifiers greatly exceeds that of paraffin dispersants, with paraffin prevention rates of 
85–95% at the optimal concentrations of 0.25–0.50 wt.%. The dissolving paraffin rate can reach 0.0169 g/min. It decreases 
the paraffin appearance temperature approximately 40% and significantly changes the paraffin crystal morphology. Increased 
deposition surface area of the cold plate structural design describes the paraffin deposition. This diagram facilitates the 
reliable identification of paraffin deposition areas and the deposition rates in the wellbore during production. The optimum 
amounts of BZ and PI paraffin inhibitors are quantified. This study provides a comprehensive understanding of the paraffin 
deposition behavior, and scientific basis and guidance for the selection of paraffin inhibitors in gas-condensate wells.
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List of symbols
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Tc  The critical temperature, (K)
V   The molar volume of the gas or liquid 

phase
WAT   The wax appearance temperature
xS
i
  The molar fraction of component i in 
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  The molar fraction of component i in 
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zi  The molar composition of component i
�(T)  The temperature correlation for pure 

materials
�
S
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  The activity coefficient of component i 

in solid phase
�
L
i

  The activity coefficient of component i 
in liquid phase

�  The acentric factor

Introduction

Gas-condensate reservoir is a special kind of reservoirs with 
large depth, high pressure, and high temperature, which is 
mainly distributed in Russia, the Middle East, Central Asia, 
and the United States (Behesht et al. 2021; Han et al. 2021; 
Zhong et al. 2022). When the pressure in the wellbore is 
lower than saturation pressure, a retrograde condensation 
phenomenon will be occurred in the region, resulting in 
unnecessary energy and productivity losses (Ghiasi et al. 
2014; Faraji et al. 2020; Wang et al. 2022a, b, c, d). How-
ever, gas-condensate reservoirs are still facing from moder-
ate to severe paraffin deposition problems during the extrac-
tion process, and even experiencing wellbore blockages due 
to their phase change and precipitation properties (Shi et al. 
2022; Sousa et al. 2019; Ragunathan et al. 2022a).

The mechanism of paraffin deposition

As pressure and temperature conditions in gas-condensate 
wells change, heavy components such as paraffin, resin, 
and asphaltene will easily precipitate as solids and lead 
to paraffin deposition on the wellbore (Lekomtsev et al. 
2022). Paraffin deposition makes the effective flow area 
of the wellbore reduced, increases the flow resistance, 
reduces the transportation capacity and even blocks the 
wellbore under severe conditions (Danilović et al. 2010; 
Ragunathan et al. 2022b). There are four main mecha-
nisms of paraffin deposition, such as molecular diffusion, 
shear dispersion, Brownian diffusion, and shear stripping 
(Wang et al. 2020). Scholars generally think the molecular 
diffusion as the dominant mechanism of paraffin deposi-
tion (Singh et al. 2000; Huang et al. 2011). The molecular 

diffusion mechanism shows that when the wellbore tem-
perature is lower than temperature of condensate and par-
affin appearance, paraffin molecules will crystallize and 
precipitate at the inner wall of the wellbore and mechani-
cal impurities (Van der Geest et al. 2021; Gan et al. 2019). 
Therefore, it will form radial concentration gradient of 
paraffin molecules between oil flow and the rough wall 
(Sousa et al. 2020; Wang et al. 2022a; Xu et al. 2021). 
When a velocity gradient exists in the wellbore, the oil 
flow is faster in the center than the walls, there will be a 
potential risk of paraffin deposition. Under the shearing 
action, the paraffin crystals, resins and asphaltenes sus-
pended in the oil flow will move in a rotational motion at 
a certain angular velocity, resulting in the paraffin crys-
tals, resins and asphaltenes to migrate from the center of 
the oil flow toward the wall, and occur paraffin deposition 
behavior (Wang et al. 2019; Ochieng et al. 2022). Brown-
ian motion is the irregular movement of paraffin crystals 
suspended in the oil flow under high-temperature condi-
tions. This continuously random process increases the 
chances of the paraffin crystals colliding, agglomerating 
and cross-linking into large particles to further agglomer-
ate into the nucleus (Hong et al. 2023). Under the radial 
concentration gradient, paraffin crystals move from high 
concentration areas to low concentration areas, migrate 
toward the wall, and form paraffin depositions on the wall 
(Azevedo and Teixeira 2003; Wang et al. 2022b). Paraffin 
deposition rates increase with increasing flow velocity at 
low flow rates and decrease with increasing flow veloc-
ity under higher flow conditions. In the turbulent phase, 
the shear stripping effect becomes dominant (Wang et al. 
2022c). The higher the flow rate is, the higher dispersion 
rate of the paraffin molecules is, and the stronger molecu-
lar diffusion is, even and the shear stripping effect is also 
increased (Hernandez et al. 2004; Zhao et al. 2022).

Van Der Geest et al. (2018) employed the DSC and 
CEPETRO experiment apparatus to determine molecular 
diffusion as a mechanism for paraffin deposition by inves-
tigating Brazilian crude oil. Mahir et al. (2019) proved that 
concentration gradient and temperature gradient are the 
key factors contributing to paraffin deposition and depo-
sition layer aging by the cold finger apparatus. Chi et al. 
(2017) identified the temperature gradient as a key ele-
ment in the promotion of paraffin deposition by the cold 
finger and flow loop experiments considering both with 
and without paraffin inhibitor dosing conditions. Szuflita 
et al. (2020) studied the effect of three paraffin inhibitors 
on paraffin deposition by the PVT experiment apparatus 
to clarify the prediction curve of paraffin deposition with 
temperature decrease. Hoffmann and Amundsen (2009) 
utilized deposition flow loop experiments to study waxy 
condensate in the North Sea, analyzed the deposition 
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thickness by laser techniques, and confirmed molecular 
diffusion as the key mechanism for the paraffin deposition.

The mechanism of paraffin inhibitors

Chemical paraffin inhibitors are agents that could slow 
down or prevent the precipitation, growth, aggregation or 
deposition of paraffin crystals on solid surfaces (Elganidi 
et al. 2022; Wang et al. 2023). Chemical paraffin preven-
tion has three methods which are paraffin dispersants, par-
affin inhibitor (paraffin crystal modifier) and pour-point 
depressant (PPD) (Anisuzzaman et al. 2017; Ragunathan 
et al. 2020). Scholars have summarized four points on the 
mechanisms of chemical paraffin inhibitors by long-term 
research on chemical paraffin prevention (Makwashi et al. 
2021). Co-crystallization theory indicates that the paraffin 
inhibitor crystallizes together with the paraffin component 
at the paraffin appearance temperature. The inhibitor mol-
ecule has the same structure as the paraffin molecule and 
can be combined with the paraffin component to form co-
crystallization phenomenon. The inhibitor molecule also has 
a part of different structures to the paraffin molecule, which 
prevents the further growth of paraffin crystals (Zhang et al. 
2003). The nucleation theory is also called paraffin crystal-
lization center theory. Due to the melting point of inhibitors 
is higher than paraffin appearance temperature, therefore, as 
the oil temperature decreases, the inhibitors will crystallize 
before the paraffin components. They become the nuclea-
tion center of paraffin crystals, which makes an increase in 
the number of tiny paraffin crystals compared to that with-
out the addition, and it is not easy to form larger paraffin 
crystals (Ibrahim et al. 2023). The solubilization theory 
indicates that adding inhibitors could increase the solubil-
ity of paraffin, decrease the amount of paraffin precipitated, 
and improve the dispersion of paraffin. The crystallization 
theory also indicates that injecting inhibitors improves the 
solubility of the solute, which decreases the supersaturation 
of the solution, therefore, reducing the paraffin growth rate 
and impeding the growth of paraffin crystals (Elarbe et al. 
2022; Elkatory et al. 2023). The adsorption theory shows 
that inhibitors appear under the paraffin appearance tempera-
ture and adsorb on the surface of the paraffin crystals. This 
changes the original surface properties of paraffin crystals 
and the growth habit of the crystals. Eventually, they prevent 
the growth of the crystals, weaken the adhesion between the 
crystals, and make not form larger crystals (Ma et al. 2017; 
Kurniawan et al. 2021).

Objectives of the study

The present research on the paraffin deposition mechanism 
in this field is still mainly from experimental methods, and 

the description of deep high-temperature and high-pressure 
gas-condensate reservoirs is still relatively poor, and the 
research on the paraffin deposition critical boundary of 
gas-condensate wells and the growth rate of paraffin depo-
sition is even more rare. The research on chemical paraffin 
inhibitors, likewise, has been focused on a specific agent in 
conventional wells, such as ethylene vinyl acetate or maleic 
anhydride, mainly evaluating their mechanisms and effects, 
but not giving precise advice on which type is more suitable 
for gas-condensate wells and what is the optimal amount of 
their effects.

In this study, we focused on understanding the treatment 
on paraffin deposition behavior in gas-condensate wells 
with chemical inhibitors. Therefore, we collected conden-
sate samples from typical paraffin deposition gas-condensate 
wells in the Tarim Oilfield (China) and studied the paraffin 
deposition behavior of gas-condensate wells by a cold plate 
device. The phase behavior and phase change characteris-
tics of condensate samples are determined by the calculated 
model. The temperature and pressure distributions of the 
gas-condensate wells gained by the actual tests were taken 
to modify the calculated results of the temperature and pres-
sure profiles, and to determine the temperature and pressure 
profiles for different wellhead conditions. Two representative 
types of chemical inhibitors, such as paraffin dispersants and 
paraffin inhibitors (paraffin crystal modifier), were selected 
to further study and analyze the effect on different types of 
chemical inhibitors on the paraffin deposition behavior of 
gas-condensate wells. A comparative analysis was used to 
determine the more appropriate chemical inhibitor for gas-
condensate wells and the mechanism. Therefore, this work 
fills in the critical boundary prediction of paraffin deposition 
in gas-condensate wells, the characterization of deposition 
thickness growth rate, and the optimal effective concentra-
tion of chemical paraffin inhibitors, which facilitates the pre-
diction and treatment of paraffin deposition in the domain 
of gas-condensate reservoirs in future research. Hence, a 
guide and basis for paraffin prevention operations in gas-
condensate wells was provided.

Experiments

Materials

The typical condensate samples for experiments were col-
lected from paraffin deposition gas-condensate wells in 
one block of the Tarim Oilfield (China). The oil samples 
collected from typical wells were taken from condensate 
samples processed in the secondary separator, and taken 
in dry, clean plastic buckets to be brought back to the lab-
oratory. The collected condensate samples were divided 
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into three groups based on typical wellhead conditions 
in the block, which were 20 ~ 30, 30 ~ 40, and 40 ~ 50 ℃. 
They are named 1#, 2# and 3#, as shown in Table 1. The 
condensate samples were classified under different well-
head static conditions to determine the paraffin deposition 
behavior of different well types and to provide a basis for 
subsequent research proposals. The condensate samples 
for experiments should be preheated, sheared and stirred 
in advance to eliminate operational history and ensure 
greater accuracy (Hassan et al. 2019).

We designed and constructed a high-temperature and 
high-pressure cold plate experiment device to investigate 
the paraffin deposition behavior of gas-condensate wells, 
and to identify deposition critical boundary (Yaghy et al. 
2021; Subramanie et al. 2021). As shown in Fig. 1, the 
device is mainly consisted of an ultra-high pressure elec-
tric pump, an ultra-high pressure kettle body, a high-pres-
sure reflector, a paraffin deposition plate, temperature and 
pressure control valves, and other components. The bear-
ing pressure of the system is 150 MPa, the stirring speed 
is 0 ~ 2500 r/min, and the heat endurance of the system is 
−20 ~ 200 ℃.

1-High-temperature and high-pressure paraffin kettle 
body; 2-Paraffin deposition plate; 3-High temperature oil 
bath; 4-Stirring motor; 5-Stirring magnet; 6-Stirring pad-
dle; 7-Temperature sensor; 8-Pressure sensor; 9-Visual 
window; 10-Constant pressure and constant speed pump; 
11-Gas-condensate container; 12-Condensate container; 
13-Waste liquid receiving tank; 14-Data acquisition and 
control system; 15-Insulation sleeve; 16-Kettle body 
cover; 17-Stirring seal head; 18-Kettle body medium 
flow control valve; 19-Discharge valve; 20-Intake control 
valve; 21-Intake control valve; 22-Gas volume flowmeter; 
23-Liquid mass flowmeter; 24-Oil bath inlet; 25-Oil bath 
outlet; 26. Exhaust valve; 27-Safety valve; 28-Metal seal 
ring; 29-High-temperature resistant fluorrubber gasket; 
30-Motor bracket; 31-Motor shaft; 32-Embedded platform; 
33-Fixed plate; 34-Fixed bolt; 35-Spring buckle.

Two representative types of chemical inhibitors are 
selected, such as paraffin dispersants and paraffin inhibi-
tors. These experiment apparatuses include crude oil 
dynamic paraffin deposition rate tester, reciprocating 

oscillator, differential scanning calorimeter, polarizing 
microscope, and microscopic imaging real-time online 
analysis system. Auxiliary materials are anhydrous etha-
nol, xylene, petroleum ether, sectioned paraffin, slides, 
coverslips, lens paper, etc. Some of the experiment devices 
are shown in Fig. 2.

Procedures

According to the general area of the field operation 
blocked, the temperature, pressure and temperature differ-
ence of the paraffin deposition experiment are determined 
and regulated by the combination of the temperature and 
pressure distribution of gas-condensate wells. For the 
condensate samples from three gas-condensate wells, the 
temperature and pressure ranges for the experiments were 
determined based on the wellhead conditions. A single 
modulation of temperature or pressure was employed to 
find the critical boundary of paraffin deposition. Then 
combine the temperature and pressure distributions to 
determine the deposition behavior and the amount of 
deposition under different well depth conditions. After 
the experiments, the deposited cold plates were weighed 
to determine the deposition rate and predict the critical 
deposition boundaries by making weight changes before 
and after the cold plates. The drawing process of the par-
affin deposition identification chart is shown in Fig. 3.

To determine the appropriate chemical inhibitors for gas-
condensate wells with paraffin deposition, we initially started 
with an investigation process to compare and select several 
proper agents. This was followed by the use of a variety of 
experiment devices to select the optimal type of paraffin 
inhibitor according to prevention effect, dosage, safety, and 
paraffin crystal distribution, and to analyze its actual mecha-
nism. The detailed experimental procedure is shown in Fig. 4.

To collect paraffin inhibitors commonly used in the oil-
field by many types and multiple sources, it is also necessary 
to initially select applicable paraffin inhibitors, considering 
the production conditions and the physical properties. Then, 
selecting superior paraffin inhibitor considering the paraffin 
prevention performance, paraffin dissolving performance, 
depressive effect, and accessibility. Finally, two optimal 
types of paraffin inhibitors were selected incorporating the 
type, mechanism, performance and dosage of paraffin inhibi-
tors as the experimental objects.

The two types of paraffin inhibitors screened in the paper 
were paraffin dispersants and paraffin crystal modifiers. The 
BZ paraffin inhibitor is a paraffin crystal modifier, and its 
main component is octadecyl methacrylate, compounded with 
polyethylene and alkyl petroleum sulfonate, as in Fig. 5a. It is 
light yellow in color and oil soluble. The PI paraffin inhibitor 
is a paraffin dispersant, and its main component is sodium 

Table 1  The sampling conditions for condensate samples

Sample 
numbers

Sampling location Wellhead tem-
perature, ℃

Wellhead 
pressure, 
MPa

1# Secondary separator 21.50 86.00
2# Secondary separator 30.20 81.89
3# Secondary separator 52.80 55.12
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dodecylbenzene sulfonate, and compounded with polyam-
ide and ketone, as in Fig. 5b. And it is an oil-soluble milky 
white liquid. Alkyl petroleum sulfonates and polyethylene 
can be combined to form a composite material which has the 
surface activity of the petroleum sulfonate and the physical 

properties of the polyethylene. The structural formula of the 
composite can be expressed as [R-SO3

−M+-CH2-CH2
−]n, 

where R denotes an alkyl chain, M denotes an alkali metal 
or ammonium cation, and n denotes the number of repeats of 
the polyethylene.

       

(a) Paraffin deposition simulation experiment platform       (b) Paraffin deposition cold plates

(c) The schematic diagram of the cold plate deposition device

1-High temperature and high pressure paraffin kettle body; 2-Paraffin deposition plate; 3-High temperature oil bath; 4-Stirring 

motor; 5-Stirring magnet; 6-Stirring paddle; 7-Temperature sensor; 8-Pressure sensor; 9-Visual window; 10-Constant pressure 

and constant speed pump; 11- Gas condensate container; 12-Condensate container; 13-Waste liquid receiving tank; 14-Data 

acquisition and control system; 15-Insulation sleeve; 16-Kettle body cover; 17-Stirring seal head; 18-Kettle body medium flow 

control valve; 19-Discharge valve; 20-Intake control valve; 21-Intake control valve; 22-Gas volume flowmeter; 23-Liquid mass 

flowmeter; 24-Oil bath inlet; 25-Oil bath outlet; 26. Exhaust valve; 27-Safety valve; 28-Metal seal ring; 29-High temperature 

resistant fluorrubber gasket; 30-Motor bracket; 31-Motor shaft; 32-Embedded platform; 33-Fixed plate; 34-Fixed bolt; 35-

Spring buckle.

Fig. 1  Paraffin deposition experiment device



540 Journal of Petroleum Exploration and Production Technology (2024) 14:535–553

1 3

Mathematical method

Temperature–pressure profile

The temperature and pressure gradient interpretation data 
from different wells are further analyzed and used as the 
basis to determine the temperature–pressure profiles of gas-
condensate wells and to fit to the actual conditions. The 

temperature and pressure distributions along the vertical 
depth of the wellbore are all ordered data points. There-
fore, the linear fitting algorithm is employed to construct 
a straight-line or curve. If all parameter points are on the 
line, the temperature and pressure distribution is not in a 
mismatch status. If not, the distribution is in a mismatch 
status. So, the linear fitting algorithm is employed to fit the 
parameters to determine the temperature–pressure profile.

(a) Crude oil dynamic paraffin deposition rate tester          (b) Reciprocating oscillator

Fig. 2  Paraffin inhibitor performance test device

Fig. 3  The drawing process of the paraffin deposition identification chart
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Phase change behavior

A thermodynamic model was selected to study the phase 
change process of gas-condensate wells, and the phase change 
behavior of three group condensate samples was calculated 
and determined. A gas–liquid–solid phase equilibrium equa-
tion and a modified PR equation are introduced (Daridon et al. 
1993).

When the condensate is in gas–liquid–solid equilibrium, the 
temperature, pressure, and component fugacity of each phase 
are equal.

(1)fV
i

(

T ,P, xV
)

= f L
i

(

T ,P, xL
)

= f S
i

(
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i
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i
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)

 is the effect of pressure on liquid phase, T  is 
the system temperature K, P is the system pressure MPa, and 
P0 is at atmospheric pressure 0.101325 MPa.

For gas and liquid phase fugacity, the calculation is based 
on the phase equilibrium equation for gas–liquid two-phase 
equilibrium state, while for solid phase fugacity under high-
pressure condition, the calculation is as follows:

(2)f S
i
= xS

i
�
S
i
f OS
i

exp

(

∫ P

P0

VS
i

RT
dP

)

(3)f L
i
= xL

i
�
L
i
f OL
i

exp

(

∫ P

P0

VL
i

RT
dP

)

(4)
xS
i

xL
i

= KSL
i

=
�
L
i
f OL
i

�
S
i
f OS
i

(5)fV
i
= �

V
i
xV
i
P

Fig. 4  The selection procedure 
of paraffin inhibitors

(a) Octadecyl methacrylate in BZ inhibitor

(b) Sodium dodecylbenzene sulfonate in PI inhibitor

Fig. 5  The main components of BZ and PI paraffin inhibitors
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The gas–liquid–solid three-phase equilibrium is defined 
by the following equation.

where V is the molar fraction of the gas phase, L is the liquid 
phase molar fraction, S is the molar fraction of solid phase, 
KSL
i

 is the solid–liquid phase equilibrium constant of the 
component i , KVL

i
 is the gas–liquid equilibrium constant of 

the component i , and zi is the molar composition of com-
ponent i.

The gravitational term coefficient aλ and the bulk phase 
coefficient bλ were modified to improve the prediction 
accuracy of the model for condensates, and to accurately 
describe the phase change characteristics of condensates, 
on the basis of Daridon modified equation and experimen-
tal results.
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The relationship between the gravitational correction 
factor and the volume correction factor is given by.

where T  is the system temperature K, P is the system pres-
sure Pa, R is the ideal gas constant 8.3143 kJ/(kmol·K), 
�(T) is the temperature correlation for pure materials, V is 
the molar volume of the gas or liquid phase L/mol, a is the 
parameter, b is the parameter, Tc is the critical temperature 
K, Pc is the critical pressure Pa, Tr is the ratio of absolute to 
critical temperature, and � is the acentric factor.

Results and discussion

Basic physical properties of condensate samples

The test results for appearance character, paraffin con-
tent, coarse crystalline paraffin content and it referred to 
C16 ~ C30, and paraffin appearance temperature are shown 
in Table 2, which shows that the average paraffin content of 
the collected condensate is 8.93%, and the average content 

(15)a = �a

R2T2
c

Pc

(16)b = �b

RTc

Pc

(17)Tr < 1,

{

𝜆a = 0.0513T2
r
− 0.1325Tr + 0.5132

𝜆b = 0.0762T2
r
− 0.0832Tr + 0.2342

(18)Tr ≥ 1,

{

�a = −0.0621T2
r
+ 0.0756Tr + 0.4756

�b = −0.0313T2
r
+ 0.0865Tr + 0.2652

(19)� =
3

7

[
(

Tb − 1
)

logPc

Tc

]

− 1

(20)�(T) = exp
[

m
(

1 − Tr
)]

(21)
𝜔 < 0.4, m = 0.418 + 1.58𝜔 − 0.580𝜔2

𝜔 ≥ 0.4, m = 0.212 + 2.20𝜔 − 0.831𝜔2

Table 2  Basic physical 
properties of condensate 
samples

Sample num-
bers

Appearance character Paraffin con-
tent, %

C16 ~ C30 con-
tent, %

Paraffin appear-
ance temperature, 
℃

1# Reddish brown translucent 8.10 13.62 9.30
2# Reddish brown translucent 11.70 19.25 13.90
3# Colorless transparence 7.00 8.15 12.60
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of coarse crystalline paraffin is 13.67%. The paraffin content 
of condensate samples in this block is generally high, and 
there is a serious risk of paraffin deposition.

Temperature–pressure profile

As shown in Fig. 6, the temperature gradually decreases 
during the production of gas-condensate wells, and the 
overall trend of the temperature profile slope becomes 
larger, which indicates that an increasing temperature 
drop, and the single well in the block shows similar 

characteristics of the temperature profile. The pressure 
decreases gradually, and the slope of the pressure pro-
file does not show a significant trend, which indicates that 
a constant pressure drop along well depth, and the sin-
gle well in the block shows similar pressure distribution 
characteristics.

For pressure drop losses along the well depth for three 
groups, which are similar for three groups are around 
25 MPa. For temperature, their average temperature drop 
is approximately 80 ℃. However, 2# sample shows a 
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relatively flat and slightly turning change compared to the 
other two samples.

Phase change behavior

As shown in Fig. 7, the dew point pressures of three samples 
were 39.70, 37.40 and 45.40 MPa, respectively, while the 
wellhead temperatures of 2# sample were higher than the 
calculated paraffin appearance temperature. This indicates 
that the oil temperature-driven paraffin deposition process 
does not occur in the gas-condensate wellbore. The tempera-
ture and pressure distributions in the wellhead area are only 
for the gas–liquid phase equilibrium transition, whereas the 

temperature and pressure distributions in the wellbore are 
essentially for the gas phase (Guo et al. 2020; Kutcherov and 
Lopatin 2019; Ferreira et al. 2018).

The temperature–pressure profile (Fig. 6) shows that the 
dew point pressure decreases with temperature increase, 
mainly occurring in the wellbore, where the solubility of the 
heavy components in the gas phase decreases under lower 
temperatures and higher dew point pressures conditions. So 
that they deposit more easily to form droplets. The paraffin 
appearance line reflects that the paraffin appearance tem-
perature is less influenced by pressure and fluctuates more 
significantly below its intersection with the dew point line, 
which is increasing and then decreasing as the pressure 
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decreases. This indicates that due to the oil pressure below 
the pressure of intersections, the heavier components deposit 
preferentially to form droplets, where the paraffin deposition 
at a high temperature, followed by a low carbon number 
distribution of paraffin component.

The identification chart of paraffin deposition

As shown in Fig. 8, the paraffin deposition behavior at differ-
ent stages during the cold plate deposition experiment. The 
deposition critical boundary of gas-condensate wells was 
identified and the deposition critical boundary diagram was 
constructed, by the paraffin deposition experiments.

The temperature and pressure profiles are combined to 
identify the paraffin deposition location in the identification 
graphic, and the deposition rate can also be determined, as 
shown in Fig. 9.

The left plot represents the paraffin deposition rate 
identification graphic under the corresponding position, 
while the right plot represents the regions of paraffin dep-
osition in the wellbore, as shown in Fig. 9a, b, and c. The 
red dashed area in the right subplot of Fig. 9 represents 
the deposition thickness of the horizontal cross section of 
paraffin deposition as determined experimentally within 
the upper 2500 m region of gas-condensate wells. It indi-
cates the deposition thickness growth rate corresponding 
to that depth. The blue line in the left subplot represents 
the boundary of the set of temperature–pressure points 
corresponding to a certain depositional rate. It can sub-
sequently be used to find the corresponding deposition 
growth rate on the left subplot based on the relationship 
between temperature, pressure, and depth of each well. 

According to the temperature–pressure profile of the 
wellbore, the corresponding well depth location was iden-
tified by the correspondence paraffin deposition rate and 
temperature–pressure distribution. As shown in Fig. 9a, 
the maximum deposition rate of 1# sample is 15.50 mm/
year, and the corresponding temperature and pressure are 
45 ℃ and 70 MPa, which identifies its centralized deposi-
tion boundary within 1000 ~ 1500 m. As shown in Fig. 9b, 
the maximum deposition rate of 2# sample is 10.79 mm/
year, with the corresponding temperature and pressure of 
50 ℃ and 84 MPa, which identifies its centralized deposi-
tion location in 1500 ~ 2000 m. As shown in Fig. 9c, the 
maximum deposition rate of 3# sample is at 14.98 mm/
year, corresponding to a temperature and pressure of 45 
℃ and 88 MPa, identifying its concentrated deposition 
location in the 1000 ~ 1500 m.

Preventive effect of two types of paraffin inhibitors

Paraffin’s deposition prevention properties

The paraffin preventive rates of two types of paraffin inhibi-
tors collected by the crude oil dynamic paraffin deposition 
rate tester. The prevention effect of paraffin inhibitors was 
compared at 1.00 wt.% concentration, and the paraffin pre-
vention rate was taken as the judgment index. Two types of 
inhibitors with better performance were selected, namely 
BZ and PI, as shown in Fig. 10. BZ inhibitor is a paraf-
fin inhibitor (paraffin crystal modifier), and PI inhibitor is a 
paraffin dispersant. The paraffin preventive rates of both BZ 
and PI were similarly above 90%, with an average of 95.04 
and 94.67%.

(a) Initial stage            (b) Middle stage              (c) End stage

Fig. 8  Different stages of paraffin deposition in the experiment
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The performance of reducing paraffin appearance 
temperature

The performance of reducing the paraffin appearance tem-
perature of two types of paraffin inhibitors collected by the 

DSC experiment apparatus. The effect on the characteristic 
temperature distribution of paraffin appearance for conden-
sate samples at 1.00 wt.% concentration is shown in Fig. 11. 
The common paraffin inhibitors available could reduce the 
paraffin appearance temperature of condensate samples 

Fig. 9  The identification 
graphic of paraffin deposition
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more than half. However, the two types of paraffin inhibi-
tors selected for the experiments can reduce the paraffin 

appearance temperature approximately 10 ℃, and the reduc-
tion can reach more than 80%.

Dissolving paraffin properties

The evaluation results of dissolving paraffin performance 
for sliced paraffin and actual collected paraffin from gas-
condensate wells are shown in Table 3. It can be seen that 
PI paraffin inhibitor has the best dissolving paraffin per-
formance, and their dissolving rate can reach 0.0191 and 
0.0169 g/min, respectively. They both fulfill the technical 

(a) Injecting BZ inhibitor (b) Injecting PI inhibitor
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Fig. 10  Paraffin preventive rate of two types of inhibitors

(a) After injecting BZ inhibitor                    (b) After injecting PI inhibitor
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Table 3  Experimental results on dissolving paraffin properties of par-
affin inhibitors

Inhibitor Dissolving paraffin 
rate of sliced paraffin, 
g/min

Dissolving paraf-
fin rate of collected 
paraffin, g/min

Technical 
standard, g/
min

BZ 0.0170 0.0163  ≥ 0.0160
PI 0.0191 0.0169
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standard that dissolving paraffin rate is more than 0.0160 g/
min.

Effect of dosage on preventive properties

The paraffin preventive rates and the viscosity reduction rate 
of two types of paraffin inhibitors collected by the crude oil 
dynamic paraffin deposition rate tester. The experimental 
results of the paraffin prevention rate and viscosity reduction 
rate of condensate samples at 1.00, 0.50, 0.25 and 0.18 wt.% 

concentrations for BZ and PI paraffin inhibitors are shown 
in Figs. 12 and 13.

The dashed lines in Figs. 12 and 13 indicate the aver-
age paraffin preventive and viscosity reduction rates of the 
two types of paraffin inhibitors, BZ and PI, in the experi-
ments, which were around 85 and 30%, respectively. The 
dashed line is embedded into the graph to reflect the dif-
ference between the paraffin preventive rate and viscosity 
reduction rate and the average value at different concen-
trations to achieve the comparative effect. It can be seen 
that for BZ paraffin inhibitor, the viscosity reduction rate of 

(a) Paraffin preventive rate                      (b) Viscosity reduction rate
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condensate samples at different concentrations is concen-
trated in 30 ~ 35%. When the concentration is above 0.50 
wt.%, the paraffin preventive rate is above 90%. When the 
concentration is decreased to 0.25 wt.%, the paraffin preven-
tive rate is approximately 85%, and when the concentration 
is further decreased to 0.18 wt.%, the paraffin prevention rate 
will even be below 80%.

For the PI paraffin inhibitor, when the concentration 
was decreased from 1.00 to 0.50 wt.%, the paraffin pre-
ventive rate remained above 90% for the 1# sample, but 
decreased to below 85% for the 2# sample. When the con-
centration was decreased to 0.25 wt.%, the paraffin pre-
ventive rate was 82.61 and 72.97% for 1# and 2# samples, 
respectively. When the concentration was dropped to 0.18 
wt.%, the paraffin preventive rate decreased to less than 
70%. The viscosity reduction rate of 1# sample could get 
more than 30% under different concentrations, but the 
viscosity reduction rate of 2# sample was less than 30% 
when the concentration was below 0.50 wt.%.

Effect of dosage on paraffin appearance temperature

The performance of reducing the paraffin appearance 
temperature of two types of paraffin inhibitors collected 
by the DSC experiment apparatus. The characteristic tem-
perature changes of paraffin appearance of after injecting 
1.00, 0.50 and 0.25 wt.% concentrations of BZ and PI 
paraffin inhibitors are shown in Fig. 14.

It can be seen that the paraffin appearance temperature 
decreases to different degrees with increasing dosages of 
paraffin inhibitors. For the collected condensate samples, 

the difference in paraffin appearance temperature between 
the three dosages of PI paraffin inhibitor was 1–2 ℃. In 
contrast, the paraffin appearance temperature of BZ par-
affin inhibitor at 0.25 wt.% was 2–3 ℃, which is higher 
than that of 1.00 and 0.50 wt.%. This shows a 54.6% 
reduction in paraffin appearance temperature.

Further comparative analysis suggests that the optimal 
concentration of BZ paraffin inhibitor is 0.25–0.50 wt.%, 
and the optimal concentration of PI paraffin inhibitor is 
0.50–1.00 wt.%.

Effect of paraffin inhibitors on the microstructure 
of paraffin crystals

The results of effect of paraffin inhibitors on the microstruc-
ture of paraffin crystals are gained by the polarizing micro-
scope. The effect of BZ and PI paraffin inhibitors on the 
microstructure of paraffin crystals at 0.50 wt.% concentra-
tion is shown in Fig. 15. The two paraffin inhibitors at a dos-
age of 0.50 wt.% showed a change in the morphology of the 
paraffin crystals, when appeared at temperatures lower than 
5 ℃. Compared to before injecting the agent, with vague, 
blurred morphology in the visual field, no distinctive angles, 
and their crystalline bonding visible.

The paraffin crystal modifier includes non-polar parts of 
the main and branched chains that can be eutectic with paraf-
fin molecules, and polar parts that distort the shape of paraf-
fin crystals, as shown in Fig. 16. The paraffin crystals are in a 
dispersed state when the temperature of the paraffin crystals 
is above the paraffin appearance temperature. The growth 
and agglomeration of the paraffin crystals occur when the 
temperature is below the paraffin appearance temperature, 

(a) Injecting BZ paraffin inhibitors           (b) Injecting PI paraffin inhibitors
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and the paraffin crystals will finally deposit on the cold sur-
face. Once the paraffin crystal modifier is incorporated into 
the system, the crystal modifier (CM) will aggregate and 
cross-link with the paraffin crystals and could further strip 
the paraffin crystals adhering to the cold surface and hinder 

the paraffin deposition. They change the morphology of the 
paraffin crystals and the spatial network structure and inhibit 
paraffin deposition. A network structure could be formed 
throughout the oil phase, so that the formed crystals are 

(a) Before and after injecting BZ paraffin inhibitor

(b) Before and after injecting PI paraffin inhibitor

Before dosing

After dosing

Before dosing

After dosing

Fig. 15  Effect of paraffin inhibitors on the microstructure of paraffin crystals
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dispersed and unable to aggregate (Lashkarbolooki et al. 
2011; Elganidi et al. 2020).

Conclusions

The current study is concentrated on the treatment on 
paraffin deposition behavior in gas-condensate wells with 
chemical inhibitors. The cold plate structure was designed 
to increase the deposition area to easily observe the depo-
sition on the surface of the cold finger. The experimentally 
obtained diagrams can facilitate the determination of the 
paraffin deposition boundary in the wellbore and quantita-
tively characterize the rate of paraffin deposition. And the 
optimal concentration of two types of paraffin inhibitors, 
BZ and PI, was determined by experiment. The obtained 
results can be classified as below.

1. The temperature and pressure decreased gradually dur-
ing the lifting process, and the slope of the tempera-
ture distribution profile was larger, and the pressure 
distribution varied significantly under the conditions of 
similar well depth and wellhead temperature, which was 
influenced by the production rate and oil–gas ratio. The 
phase change behavior, combined with the temperature–
pressure profile, reflects the predominance of gas phase 
within gas-condensate wells.

2. The paraffin deposition critical boundary for gas-con-
densate wells under universal wellhead temperature con-
ditions was within the range of 1000 ~ 1500 m, which 
the cold plate deposition experiments. The maximum 

deposition rate was 15.50 mm/year, which matched 
the temperature and pressure conditions of 45 ℃ and 
70 MPa. And the establishment of a graphic that can 
identify the deposition rate at different depth conditions 
of the gas-condensate well, quantitative prediction in the 
field can be achieved.

3. Paraffin crystal modifier is more suitable for gas-conden-
sate wells, the optimal concentration is 0.25 ~ 0.50 wt.%, 
and the paraffin prevention rate can reach 85 ~ 95%. 
It can decrease the paraffin appearance temperature 
approximately 40% and significantly modify paraffin 
crystal morphology, which could achieve long-term 
prevention.
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