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Abstract
Over the past decades, directional drilling has continuously advanced to increase hydrocarbon recovery by effectively target-
ing high-productivity reservoirs. However, many existing approaches primarily focus on heuristic optimization algorithms. 
Moreover, existing models often neglect the incorporation of petrophysical attributes that can significantly impact the selec-
tion of production targets, such as the reservoir quality indicator. This article introduces a novel application of mixed-integer 
programming to define directional drilling paths, considering practical aspects of interest. The paths are subject to drift 
angle constraints and reference coordinates that align with the optimal reservoir targets. Such targets are identified using the 
authors’ proposed technique of maximum closeness centrality and the geologic model of hydraulic flow units. In order to 
evaluate the effectiveness of this approach, a realistic model of the Campos Basin in Brazil is studied. The results reveal that 
the highest recovery factors obtained with the proposed methodology (17%) exceed the historical average recovery factor 
of the studied reservoir (15.66%). We believe this study can contribute to the ongoing efforts to enhance directional drilling 
and maximize the production potential of offshore oil and gas reservoirs.
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(MaxC)
np  Active cells
pi  “Prize”
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Ti  Drilling targets
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�  Pore tortuosity
�ij  Decision variables
�  Oil viscosity unity, centipoise

Abbreviations
ANP  Petroleum National Agency
COP  Cumulative Oil Production

W. P. Coutinho, J. W. L. Silva and M. D. Santos have  contributed 
equally to this work.

 * C. P. B. Fernandes 
 borgesclarissa@gmail.com

 W. P. Coutinho 
 walton.coutinho@ufpe.br

 J. W. L. Silva 
 jose.wilker@academico.ufpb.br

 M. D. Santos 
 mdantas@ci.ufpb.br

 G. P. Oliveira 
 gustavo.oliveira@ci.ufpb.br

1 TRIL Lab, Federal University of Paraíba, João Pessoa, 
Paraíba, Brazil

2 Department of Technology, Federal University 
of Pernambuco, Av. Marielle Franco, s/n, km 59, Caruaru, 
Pernambuco, Brazil

http://orcid.org/0009-0000-2143-1131
http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-023-01709-z&domain=pdf


126 Journal of Petroleum Exploration and Production Technology (2024) 14:125–137

1 3

DDSP  Directional Drilling Steering Problem
DP  Drilling Paths
DRT  Discrete Rock Typing
ERW  Extended-Reach Well
FZI  Flow Zone Indicator
HFUs  Hydraulic Flow Units
MCC  Cell Maximum Closeness Centrality Cell
MCC-HFU  Maximum Closeness Centrality sites in 

Hydraulic Flow Units
ORF  Oil Recovery Factor
PDTs  Possible Drilling Targets
RQI  Reservoir Quality Index
TVD  True Vertical Depth
UNISIM-I-D  Namorado sandstone oilfield (Campos 

Basin, Brazil)

Introduction

Directional drilling became part of the oil and gas (O &G) 
industry in the 1950 s. Revived three to four decades later, 
bolder and smarter structures were designed as a response 
to the challenges of reaching reserves at increasing depths, 
circumventing geologic obstacles, and optimizing engineer-
ing costs (Short 1993). Most of the wells drilled worldwide 
roughly fall into one of the following categories: vertical, 
horizontal, directional, or multilateral (Fig. 1).

Vertical wells theoretically extend downwards at a 
0-degree azimuth angle from the trunk axis. However, this 
idealized configuration is practically infeasible in reservoirs 
due to physical factors that slant the well to some extent. 
Horizontal wells usually hold a long horizontal displacement 
at a given depth. Directional wells are determined by any 
intentional deviation of its trajectory by an azimuth angle 
generally within 20 to 80 degrees from the trunk (Ma et al. 
2016). Multilateral wells are structures split into branches 

that follow independent directions. Since the directionality 
features a deviation from the well’s trunk, directional wells 
are, in fact, a superclass that abridges all others.

In order to succeed, directional wells require careful tra-
jectory planning, accurate specification of target zones and 
stations, and geosteering devices. This is usually done by a 
multidisciplinary team of geologists, reservoir engineers and 
completion technicians. Well trajectories depart from the 
wellhead and usually deviate from the kick-off point toward 
fixed locations. Such trajectories must usually obey curva-
ture constraints in the form of “build,” “hold,” and “drop”-
like segments, cutting the reservoir 3D space into convenient 
reference frames and coordinate systems. That said, direc-
tional drilling’s golden goal is to reach targets accurately and 
safely at the lowest possible cost (Griffiths 2009).

As they cover a larger perforated surface area, they can 
reach measured depths above 10,000 m even with smaller 
true vertical depths (Fig. 2) and eventually leverage the oil-
field’s production volume (Eren and Suicmez 2020). On the 
other hand, such distinctions may not ensure high expected 
recovery rates in all reservoirs because of natural hindrances, 
operational inaccuracies, or even bad screening of sweet 
spots.

Considering all the Brazilian basins, the global average 
recovery factor closed, in 2021, around 13.5% (Fig. 3). The 
Campos Basin, for example, the country’s top producer both 
in oil and gas resources, comprised around 1360 directional 
wells in 2021, i.e., 39% of all 3524 (1281 vertical + 883 
horizontal) wells. Even so, the recovery factor for the basin 
stagnated close to 15.66%, considered low compared to its 
oil-in-place volume.

Although there is no dominant justification for this une-
ven performance, sub-economic and dry wells are certainly 
two villains that restrain this number to achieve higher pla-
teaus. Looking at this fact, we find indications of the realistic 
gap found in the O &G industry regarding well placement 
and production strategies involving directional drilling. In 

Fig. 1  Usual direction categories of well drilling from azimuth angle 
variation in relation to the trunk: vertical (permanent 0-degree); hori-
zontal (long near 90-degree displacement); directional (variable 20 to 
80-degree deviation); multilateral (variable-angle directional ramifi-
cations)

Fig. 2  Sketch of extended-reach well (ERW) drilling. ERWs have a 
horizontal departure at least twice the true vertical depth (TVD) and 
a hold-like segment that allows reaching targets with large horizon-
tal displacement from the source. Source: adapted from K. A. Deng’s 
blog (available at https://t.ly/dFMlE)



127Journal of Petroleum Exploration and Production Technology (2024) 14:125–137 

1 3

particular, we identified that integrated approaches com-
bining well placement, sweet spot screening and directional 
well trajectory optimization are not broadly available, mainly 
when offshore deep-water environments are under focus.

Of abundant literature, methods and techniques that cope 
with well trajectory optimization have been largely studied 
within the theoretical framework. However, most existing 
approaches give less consideration to petrophysical aspects 
that can play a determinant role in pre-selecting production 
targets.

A number of heuristic algorithms have been proposed 
for computing optimal drilling trajectories from one source 
point to a single target location. In Atashnezhad et al. (2014), 
a novel heuristic approach for drilling trajectory design, 
based on Particle Swarm Optimization (PSO), is proposed 
to find the optimal measured drilling depth for directional 
and horizontal wells in a 3D space. A similar approach is 
employed by Zheng et al. (2019) to solve the established 
three-objective well trajectory design problem. Huang et al. 
(2020) developed an algorithm based on the Non-dominated 
Sorting Genetic Algorithm II (NSGA) in order to solve a 
multi-objective optimization problem with parameter uncer-
tainties. In Huang et al. (2021), a drilling trajectory design 
problem is addressed. With the purpose of ensuring safety 
and increasing efficiency in industrial drilling processes, 
a new optimization algorithm based on penalty functions 
and an evolutionary paradigm is developed. An evaluation 
approach based on fuzzy entropy is further employed to 
determine a satisfactory solution from the obtained solution 
set. Finally, in Biswas et al. (2022), a nature-inspired heu-
ristic algorithm is proposed to optimize drilling trajectories 
so as to reduce the risk of accidents and improve efficiency.

Optimization methods are present in uncountable O &G 
operations from upstream to downstream (Tavallali et al. 
2016; Khor et al. 2017). Regarding the specific problem 
of determining optimal well trajectories, one observes that 
constrained curvature based on the Dubins vehicle model 

predominates. Other theory-centered approaches cover a 
sequential gradient-restoration algorithm (McCann and 
Suryanarayana 2001), dynamic systems (Gong et al. 2016), 
multi-objective optimization (Wang and Gao 2016; Wang 
et al. 2016), vector-algebra (Wang et al. 2019), improved 
tangentials (Eren and Suicmez 2020), the Hooke-Jeeves 
algorithm (Liu et al. 2022), the Dubins model (Liu et al. 
2022), and evolutionary search subject to Pareto optimal-
ity (D’Angelo et al. 2022). We highlight however that the 
aforementioned approaches only consider well trajectories 
between one source location and a single target.

Practice-centered methods seek to minimally embody ele-
ments inherent to the reservoir which may affect the correct-
ness of path planning. Rock’s resistance to drill bit penetra-
tion (Almedallah et al. 2021), obstructing fracturing in tight 
formations (Gu et al. 2022) and productivity potential maps 
(Lyu et al. 2021) are included in recent attempts. While it 
is true that optimization algorithms were not left aside in 
all these cases, we stress that the addition of subjacent field 
variables as part of their input data is crucial for determin-
ing their targets.

The selection of targets can be seen as a screening task in 
preparation for assisted drilling. Several heuristic algorithms 
have been proposed in the literature to tackle this problem. 
The combination of several PSO algorithms and quality maps 
is applied for well placement optimization in (Ding et al. 
2014). Cellular automata, gray wolf optimization and PSO are 
integrated by (Biswas et al. 2021) in order to solve a multi-
objective problem. Operational constraints such as true vertical 
depth and casing, along with the bounds of tuning variables, 
are considered during optimization. In (Yousefzadeh et al. 
2021), a method is proposed that combines the fast-marching 
method and PSO to reduce the number of function evalua-
tions in optimizing the location of vertical injection wells. Sun 
and Ertekin (2022) present a class of expert systems based on 
trained and tested artificial neural networks using field data 
collected from a North American oilfield. These systems are 

Fig. 3  Global recovery factor of 
all Brazilian petroleum basins 
for 2021. Highlight is given to 
Campos Basin’s outcome and its 
number of wells per direction: 
directional (D), vertical (V), and 
horizontal (H)



128 Journal of Petroleum Exploration and Production Technology (2024) 14:125–137

1 3

capable of generating artificial well profiles and evaluating 
hydrocarbon productivity under hypothetical conditions. In 
(Yousefzadeh et al. 2022), a workflow based on the so-called 
reservoir opportunity index maps is employed to optimize the 
location of production wells under geological uncertainty.

The main argument for this paper is the following: provid-
ing foreknown sweet spots as targets to whatsoever optimiza-
tion algorithms help to alleviate the algorithmic burden in 
searching optimal solutions subject to many dynamic con-
straints, i.e., those stemming from porous media’s reaction 
during real-time drillings, such as dogleg control, sidetracking 
extension, casing wear, and bit penetration rate.

The literature is scarce about practice-centered approaches 
combining screening and optimization to find optimal trajecto-
ries for directional wells respecting the medium’s petrophysi-
cal features. Except for an earlier study that considered a 3D 
“shoebox” model to find optimal solutions for a single hori-
zontal well (Kharghoria et al. 2003), to the best of our knowl-
edge, there is no parallel case reported for directional drilling 
in realistic models endowed with multiple targets.

In this paper, we introduce a methodology for directional 
well drilling that combines target screening from maximum 
closeness centrality sites in hydraulic flow units (MCC-HFU) 
(Oliveira et al. 2016), (Roque et al. 2017), (Oliveira et al. 
2020b), (Oliveira et al. 2020a) with mixed-integer program-
ming (MIP) to determine optimal trajectories for directional 
wells. This core idea allows for the implementation of a Direc-
tional Drilling Steering Problem (DDSP) mathematical formu-
lation subject to piecewise drift angle constraints.

We tested the DDSP over UNISIM-I (Avansi and Schi-
ozer 2015), a widely known 3D corner-grid point model of 
the Namorado sandstone oilfield (Campos Basin, Brazil). By 
running black-oil simulations, the highest production well 
obtained an index above 17%, which is considered satisfactory. 
We highlight that this recovery factor exceeds the historical 
overall factor for the studied reservoir.

We believe that this study significantly contributes to the 
existing knowledge in the field of well drilling by providing 
valuable insights for individuals involved in well path plan-
ning, well layout modeling and offshore oil and gas explora-
tion. The integration of petrophysical considerations with an 
optimization model represents a notable advance in directional 
drilling practices. By incorporating practical aspects into the 
decision-making process, this methodology offers the potential 
to optimize well placement and improve hydrocarbon recovery 
rates.

The remainder of this paper is organized as follows. Sec-
tion 2 brings the proposed methodological framework. Sec-
tions 2.1 and 2.2 provide details about the studied reservoir 
and HFU identification, respectively. Sections 2.3 and 2.4 
present the proposed approaches for reservoir discretization 
and target screening. In Sect. 2.5, a mixed-integer program-
ming model for directional well path planning is shown. 
Numerical results from our computational experiments fol-
lowed by discussion remarks are carried out in 3 Finally, 
Sect. 4 concludes this paper.

Methodology

The methodological framework encompasses: (i) reservoir 
setup; (ii) flow unit identification; (iii) target screening; (iv) 
well path planning; and (v) production analysis (Fig. 4). We 
will discuss the former four steps below and the last step in 
Sect. 3

Reservoir setup

UNISIM-I-D is a corner-point grid model for the offshore 
sandstone Namorado formation (Avansi and Schiozer 
2015). With about 36600 cells of individual resolution of 
100 × 100 × 8 m 3 , it is considered a successful benchmark 
for the Brazilian O &G industry. The porosity ranges from 0 
to 30% as can be seen in the color scale of Fig. 5. In addition, 
the computational model provides the arithmetic mean val-
ues of horizontal permeability kx and vertical permeability ky 
from which the absolute directional permeability is obtained 
kx∕ky ≈ 1.68 . For all black-oil simulations performed in this 
paper, we adopted fluid properties equivalent to light oil, 
namely � = 1.1cp for oil viscosity and � = 29876Kg∕m3 for 
density.

The UNISIM-I-D model is a well-known representation 
of the Namorado formation that has been extensively stud-
ied in the literature. We refer the interested reader to, e.g., 
(Avansi and Schiozer 2015; Oliveira et al. 2016; Roque et al. 
2017; Oliveira et al. 2020b, a; Sun and Ertekin 2022) for 
further information about this model.

Hydraulic flow unit identification

Hydraulic Flow Units (HFUs) are regions inside a reservoir 
with particular attributes. Such features are listed, for instance, 

Reservoir
Setup

Flow Unit
Identi-
fication

Target
Screening

Well Path
Planning

Production
Analysis

Fig. 4  Diagram of the major methodological steps adopted in this paper. Source: prepared by the authors
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in (Tiab and Donaldson 2015). Tiab and Donaldson (2011) 
summarize an HFU as being a specific volume of the reser-
voir, correlative, mappable and recognizable on the wire-line 
log with the possibility of intercommunication to other HFUs 
defined in the same way. Among the different definitions of an 
HFU, we cite Hearn et al. (1984), which says that an HFU is 
both a laterally and vertically continuous reservoir zone whose 
permeability, porosity and bedding characteristics are similar.

In a series of earlier papers (Oliveira et al. 2016; Roque 
et al. 2017; Oliveira et al. 2020b, a), the authors expounded the 
HFU-maximum closeness centrality (MCC-HFU) approach, 
its elementary corpus of notation and taxonomy, as well as 
and how it can be used for well placement strategies. In this 
paper, we bring a shortened version of the essay to the reader.

HFUs are identified from integrated information of core 
sampling, wellbore logging, and statistical–petrophysical cor-
relation (Riazi 2018). The current analysis considers Amaefule 
et al.’s model (AM) to determine HFUs (Amaefule et al. 1993), 
which rewrites the Kozeny-Carman equation as

where �z is called the pore-to-matrix ratio, RQI is the reser-
voir quality index, and FZI is the flow zone indicator, respec-
tively, defined as

A log-log equation is then obtained from Eq. 1 as

(1)RQI = FZI �z,

(2)

�z =
�e

1 − �e

, RQI = 0.0314

�
k

�e

, and FZI =
1√

Fs�SVgr

.

which says that each sample with similar FZI should lie on 
a straight line of slope equals to 1.0.

The FZI points resulting from this correlation are 
mapped into a set of discrete cells and used as input to 
a connected component algorithm that joins cells whose 
pore throat attributes at the physical domain are similar 
into “clusters”. All these resulting clusters define theo-
retical flow units, i.e., volumes over which the FZI mul-
timodal distribution varies slightly from a local average 
(mode).

To convert FZI values from a continuous distribution 
to a discrete one that associates integer numbers to each 
rock type detectable over the reservoir model, arbitrary 
constants a1 and a2 fit the following nearest integer func-
tion (Guo et al. 2005)

to establish discrete rock typing.
The main challenge regarding the MCC-HFU approach 

is mapping the porosity and permeability fields of a given 
reservoir into the computational model. This method is 
less efficient if not enough data is available about a given 
reservoir. This is not the case for the UNISIM-I-D model 
though. Therefore, as shown in (Oliveira et  al. 2016; 
Roque et al. 2017; Oliveira et al. 2020b, a), the MCC-HFU 
method is suitable for a satisfactory representation of the 
reservoir’s physical properties.

(3)log( RQI ) = log( FZI ) + log(�z),

(4)DRT = ⌊a1 log( FZI) + a2⌉, a1, a2 ∈ ℝ,

Fig. 5  UNISIM-I-D’s porosity field: a 3D view and b top surface areal view. Source: Roque et al. (2017)
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Reservoir discretization

Flow units are like a set of neighboring cells on a 3D 
corner-point grid. Each cell c of the model is addressed by 
a triplet of logical indices, such that the oilfield domain is 
defined by the set (Avansi and Schiozer 2015)

for a total number of np active cells. Here, Ω plays the role 
of the discrete version of an entire oilfield (major instance). 
Reservoirs are subsets of Ω (minor instances), all-connected, 
but with fewer computational cells. Depending on the quan-
tities of interest, the instances can be endowed with finite 
tuples attributes (�1, �2,… , �m) so that, for example,

holds. These attributes are scalar fields like porosity, pres-
sure, and fluid saturations. Likewise, vector or tensor quanti-
ties, such as velocity or permeability, are treatable by storing 
their components individually.

Target screening

In a seminal paper, a few years ago, the authors have pro-
posed a type of pore network model to locate prospec-
tive points for well placement in reservoirs (Oliveira 
et al. 2016). We took advantage of the main steps of such 
method to guide the screening process for directional drill-
ing. In the end, those prospective points will play the role 
of drilling targets.

First, the method searches for DRT-based clusters 
defined by

where c is an arbitrary cell of the instance Ω , N6 is a 
6-neighbor face-connected aggregator which provides the 
dynamic connectivity among the cells, N6 a structuring ele-
ment formed by a seed cell cs plus its six neighbor cells (in 
the sense of a Moore’s neighborhood) which provides the 
dynamic connectivity, q is the cluster index and Q is the 
total amount of distinct clusters generated per DRT value. 
That is to say, each cluster has a varying number nq of inter-
connected cells and form a family of disjoint rock volumes 
petrophysically similar.

Second, the cluster CD,q associates to a graph GD,q 
through the one-to-one function

(5)
Ω = {c(i,j,k); 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K}, I, J,K ∈ ℤ

∗
+
,

(6)�a(Ω) = �a(c(i,j,k)) ∈ ℝ, a = 1, 2,… ,m, ∀i, j, k

(7)
CD,q ∶= {c ∈ Ω; DRT (c) = D and c ∈ N6(cs)},

q = 1, 2,… ,Q,

that maps the cluster’s cell ci
q
 onto the graph’s node vi

q
 , for 

i = 1, 2,… , nq , thus establishing a local connectivity among 
the neighboring cells (Fig. 6). Since GD,q is an undirected 
graph, its adjacency matrix is symmetric and sparse.

Third, one computes the closeness centrality of each node 
vq ∈ GD,q as

where d(vq, vn) is the shortest path distance between vq and 
vn (Newman 2010), so that this metric gives a measure of 
the influence of HFU’s interior to transport fluid masses. As 
with closeness centrality relates to communication control in 
network theory (Freeman 1978), we interpreted it as a gauge 
of potential fluid flow “hubs”. For horizontal and directional 
wells, this concept is relevant because it exploits wells’ abil-
ity to capture near-field influx, which is superior to vertical 
configurations given the larger wells’ surface coverage area.

Finally, we compute the maximum closeness centrality cell 
(MCC cell) of the cluster CD,q from its most central isomor-
phic node vM , thereby setting �(vM) = max{�(v)}, v ∈ GD,q 
(Fig. 7).

In other words, all vM nodes correspond to multiple loca-
tions of MCC cells over the reservoir model, which, in this 
paper, are taken as the targets. By denoting a MCC cell loca-
tion by MD,q , we can define the set of possible drilling targets 
by the family {MD,q} . In Roque et al. (2017), we called it the 
maximum closeness network. However, for the algorithmic 
usage and purposes of this paper, it will be referred to as 
possible drilling targets (PDTs). With natural ordering, we 
can denote the PDT set to simply

where n is the total number of MCC cells identified. Since 
n depends both on the number of rock types and clusters per 
rock type, the ordering is a consequence of the cardinalities 

F ∶ CD,q → GD,q

ci
q
↦ vi

q
.

(8)�(vq) =
1

∑��
i=1

d(vq, vn)
, ∀vn ∈ GD,q, vn ≠ vq,

(9)T = {T1, T2,…Tn},

Fig. 6  Geometric interpretation of the cluster-to-graph mapping for a 
sample volume (flow unit model): CD,q is a cluster formed by face-
connected cells of the grid whose cells are mapped onto nodes of the 
graph GD,q . Edges establish the connectivity among the cells. The 
function G is one-to-one, so that a the final representation is an iso-
morphism between cluster and graph. Source: Oliveira et al. (2021)
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of both parameters. For instance, for a reservoir model 
endowed with 3 rock types, let us say D = {1, 2, 3} , and a 
cluster distribution per D such as nq = {2, 1, 3} , we would 
have the following correspondences: T1 → M1,1 , T2 → M1,2 , 
T3 → M2,1 , T4 → M3,1 , T5 → M3,2 , and T6 → M3,3 , since 
n = n1 + n2 + n3 = 2 + 1 + 3 = 6.

Well path planning

Let us consider: V = {1,… , n} the indices of the associ-
ated MCC cells Ti (Eq. 9), with 3D spatial coordinates 
xi = (xi, yi, zi) spread over the reservoir (Fig.  8); and 
pi = log(Lp) , a cell-weighting parameter, the “prize”, 
∀i ∈ V  , where Lp is the centroid-to-centroid Euclidean dis-
tance from a given target cell to its nearest boundary (see 
Eq. 10d) among all distances Lcb from it to each boundary 
cell (Fig. 9). The values of pi,∀i ∈ V  , represent yet another 
measure of the quality of the MCC cells as one seeks to find 

a path over a subset of V that maximizes the potential of 
petroleum extraction.

For the sake of simplicity, let us also define the set 
V � = V ∪ {0} , where 0 represents a dummy vertex. The 
Directional Drilling Steering Problem (DDSP) can be for-
mally stated as follows: find the drilling path 
r = (i1, i2,… , iq), i ∈ V , q ≤ n that maximizes total collected 
prize 

∑
i∈r pi of the visited cells, subject to �ij ≤ �,∀(i, j) ∈ s , 

and 
∑

(i, j) ∈ s
Lij ≤ L , where � is the maximum drift angle 

between two sequential MCC cells and L is the maximum 
well’s measured depth, given by the sum of all Euclidean 
distances Lij between each pair Ti , Tj (Fig. 10). We point out 
that, according to our definition, a path describes an ordered 
subset of drilling targets Ti . This definition should not be 
misinterpreted as the definition of trajectory, which in this 
context consists of a function of time describing the well’s 
movement through the oilfield under the action of given 
forces.

In this paper, the DDSP is modeled as an orienteering 
problem (Vansteenwegen et al. 2011),(Gunawan et al. 2016), 
a graph-based approach whose objective is to determine a 
limited-length route which visits a subset of vertices of a 
given superset and maximizes the total prize. In fact, the 
orienteering problem is a variant of the classic Traveling 
Salesman Problem (Applegate et al. 2006), one of the most 
famous in the literature of Combinatorial Optimization and 
Mixed Integer Linear Programming (Jünger 2009). In this 
paper, all the 101 PDTs play the same role as the salesman’s 
customers (Table 1).

The DDSP’s decision variables are: �ij (binary), which 
is valued 1 if the path reaches the MCC cells Ti and Tj , sub-
sequently, and 0 otherwise; and ui ∈ ℤ

+ , for i ∈ V � , which 
plays the auxiliary role in representing the cell-visiting order 

Fig. 7  Example of closeness centrality ( � ) distribution over a cluster 
as a scalar field varying from colder colors (lower � values) to hotter 
colors (higher � values). The central black mark indicates the maxi-
mum closeness centrality (MCC) cell denoted by MD,q in harmony 
with the paper’s notation

Fig. 8  3D colored scatter plot of all the possible drilling targets 
(PDTs) categorized by DRT. Depthwise, the PDTs vary along the 
range 2947.5 – 3192.1 m. As seen in Table 1, there are 101 PDTs

Fig. 9  Scheme that explains the “prize” ( pi ) computed over the 3D 
space. Discrete active cells form the reservoir model from inner cells 
and boundary cells (shaded stripe). The prize per target cell (shaded 
in blue) is determined by computing all centroid-to-centroid Euclid-
ean distances ( Lcb ) to the boundary and taking the logarithm of the 
shortest distance to the boundary, Lp
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and avoiding subcycles (Miller et al. 1960). For the sake 
of clarity, we expand on the meaning of the decision vari-
ables with the following example. Let r = (0, 2, 4, 1, 3) be 
an optimal drilling path from an arbitrary set of MCC cells 
(or PDTs). The values of the � variables associated with 
this path are �02 = �24 = �41 = �13 = 1 , while the remain-
ing � variables are set to 0. This means that the MCC cells 
T0, T2, T4, T1, T3 are visited in this specific order. In turn, 
variables u are auxiliary variables used for subcycle elimina-
tion. For more information, we refer the interested reader to 
any literature on vehicle routing problems (Applegate et al. 
2006; Vansteenwegen et al. 2011; Toth and Vigo 2014; 
Gunawan et al. 2016). Since 

(10a)�ij ∈{0, 1} (decision variables)

(10b)ui ∈ℤ
+ (auxiliary variables)

(10c)pi = log(Lp) (constant prize)

 the DDSP is formally posed as: 

 with u0 = 1 . The objective function (11a) maximizes the 
total collected prize of the visited cells. The constraints to 
which the objective function are subject encompass single 
interception, path continuity, the path’s maximum measured 
depth and avoiding solutions having subcycles (Miller et al. 
1960). Further detail is available in any literature on rout-
ing problems, e.g., (Toth and Vigo 2014). One can observe 
that formulation (11a)–(11h) is valid for any set of general 
parameters V, L and � , and cell-dependent parameters pi and 
Lij , i and j ∈ V  . We do not consider uncertainties regarding 
these parameters as it would require different optimization 
techniques (e.g., robust (Ben-Tal et al. 2009) or stochastic 
optimization (Schneider and Kirkpatrick 2007)) which are 
considered out of the scope of this paper. In our approach, 
the appropriate choice of such parameters is left to the tech-
nical team working in the field.

(10d)Lij =|| xi − xj ||2 (Euclidean norm)

(10e)L =10, 000 [m] (max. measured depth),

(11a)
max

∑

i∈V

∑

j ∈ V �

j ≠ i

pi�ij

(11b)
∑

j∈V

�0j =
∑

i∈V

�i0 = 1

(11c)

∑

i ∈ V �

i ≠ j

�ij ≤ 1,∀j ∈ V

(11d)

∑

j ∈ V �

j ≠ i

�ij ≤ 1,∀i ∈ V

(11e)

∑

i ∈ V �

i ≠ k

�ik −
∑

j ∈ V �

j ≠ k

�kj = 0,∀k ∈ V

(11f)uj ≤ ui + 1 − n(1 − �ij),∀i, j ∈ V

(11g)2 ≤ ui ≤ |V �|,∀i ∈ V

(11h)

∑

i∈V

∑

j ∈ V

j ≠ i

Lij�ij ≤ L

Fig. 10  Scheme of the MILP algorithm applied to reservoir’s 3 tar-
gets, namely Tr , Ts , and Tt . The plane Γrs ( Γst ) cuts the targets sub-
scripted by r and s (s and t) in parallel to the vertical axes hr and hs 
( hs and ht ). In the figure, the path starts at Tr , moves to Ts , then to Tt 
obeying the drift angle constraint �rs(�st) ≤ � , where � is the maxi-
mum drift angle allowable by the user. In this paper, we tested path 
plannings for � = {30, 40, 50, 60, 70, 80}
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Results and discussion

Directional paths

From formulation (11a–11h), we generated 6 dis-
tinct drilling paths (DP) subject to drift angles 
� = {30, 40, 50, 60, 70, 80} (Table 2). One verifies that they 
cross 12, 13, 15, 16, 17, and 18 flow unit targets, respec-
tively. The increasing number of targets is a consequence 
of the drift angle relaxation, which allows for enlarged 
coverage of the geologic units.

The DDSP formulation was coded using the Pyomo (v. 
6.4.4) modeling language through its Python interface (v. 
3.8) and solved by the software CPLEX (v. 12.7) in an Intel 
i7 CPU with 3.60GHz and 24GB of RAM running under 
Linux Mint 20.2 64bits. The 6 generated DPs were com-
puted in about 1 s on average, showing that the proposed 
approach scales well in practice. The TSP literature shows 
that larger and more complex case studies can be efficiently 
solved with minor modifications to the proposed formulation 

Applegate et al. (2006); Toth and Vigo (2014) (Figs. 11, 12 
and 13).

Production analysis

In order to analyze the technical and economic feasibility of 
the proposed methodology, we carried out tests of cumula-
tive oil production (COP) and oil recovery factor (ORF). The 
ORF measures how much of the oil-in-place can be extracted 
using the available technology over a time period. Both COP 
and ORF metrics are commonly used by the scientific lit-
erature and industry (Hersir et al. 2022). Fig. 14 is a plot 
of COP curves for all paths. In all cases, the wells reached 
high oil production, as they are strategically intercepting oil-
saturated HFUs. One observes that the highest production 
was obtained for DP70 and the lowest one for DP40.

Our experiments indicate that there is no direct rela-
tionship between the number of visited HFUs and metrics 
such as COP and ORF. Meaning that shorter paths visit-
ing a smaller number of HFUs might present better oil 

Table 1  Set of all possible 
drilling targets (PSTs) and their 
associations with maximum 
closeness centrality point 
organized by DRT

DRT 16 DRT 17 DRT 18 DRT 19 DRT 20 DRT 21

M16,8 → T1 M17,1 → T5 M18,10 → T34 M19,11 → T45 M20,1 → T68 M21,12 → T94

M16,9 → T2 M17,11 → T6 M18,17 → T35 M19,12 → T46 M20,11 → T69 M21,15 → T95

M16,12 → T3 M17,14 → T7 M18,26 → T36 M19,13 → T47 M20,14 → T70 M21,26 → T96

M16,17 → T4 M17,22 → T8 M18,29 → T37 M19,17 → T48 M20,19 → T71 M21,3 → T97

M17,23 → T9 M18,37 → T38 M19,19 → T49 M20,2 → T72 M21,38 → T98

M17,28 → T10 M18,39 → T39 M19,20 → T50 M20,20 → T73 M21,45 → T99

M17,29 → T11 M18,44 → T40 M19,29 → T51 M20,22 → T74 M21,5 → T100

M17,30 → T12 M18,49 → T41 M19,32 → T52 M20,27 → T75 M21,8 → T101

M17,31 → T13 M18,54 → T42 M19,35 → T53 M20,29 → T76

M17,35 → T14 M18,59 → T43 M19,36 → T54 M20,30 → T77

M17,36 → T15 M18,6 → T44 M19,4 → T55 M20,33 → T78

M17,38 → T16 M19,48 → T56 M20,37 → T79

M17,4 → T17 M19,49 → T57 M20,38 → T80

M17,44 → T18 M19,51 → T58 M20,4 → T81

M17,46 → T19 M19,58 → T59 M20,43 → T82

M17,51 → T20 M19,59 → T60 M20,46 → T83

M17,52 → T21 M19,63 → T61 M20,48 → T84

M17,6 → T22 M19,67 → T62 M20,50 → T85

M17,62 → T23 M19,70 → T63 M20,52 → T86

M17,63 → T24 M19,77 → T64 M20,57 → T87

M17,64 → T25 M19,8 → T65 M20,64 → T88

M17,65 → T26 M19,82 → T66 M20,65 → T89

M17,7 → T27 M19,83 → T67 M20,67 → T90

M17,75 → T28 M20,72 → T91

M17,77 → T29 M20,73 → T92

m17,78 → T30 M20,9 → T93

M17,9 → T31

m17,92 → T32

M17,95 → T33
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production than longer paths visiting a different set of HFUs 
(Figures 3.2 and 3.2). For example, solution DP30 shows 
better performance than DP40, DP50 and DP60 in all experi-
ments. However, a careful analysis of the generated drilling 
paths indicates that higher production metrics are achieved 
by paths that intercept target points with better flow capacity.

HFUs primarily indicate regions with the highest flow 
capacity, regardless of the specific fluid type. In the case of 
HFUs located in completely oil-saturated regions, produc-
tion is expected to be significantly higher. Since the tar-
get points (18 points) of path DP70 intersect regions with 
high oil saturation, higher oil production is consequently 

achieved. Compared to the DP70, DP40 intercepts a 
smaller number of high saturated target points (13 points), 
which results in lower oil production metrics (Figures 3.2 
and 3.2).

Also, we identified that the lowest ORF is given by DP40, 
with ORF greater than 10%, whereas the highest one is asso-
ciated with DP70, reaching about 17%, which is a value 
higher than the Campos Basin’s ORF, which reached approx-
imately 15.6% (Fig. 3). Therefore, from these numbers, we 
can observe that the methodology used here increases the 
ORF by about 8%.

Conclusions

• This research paper focuses on the development of direc-
tional well paths using a variant of the Traveling Sales-
man problem.

Table 2  Optimum solutions for directional paths generated from the 
MILP algorithm

ID � M
D,q T

DP30 30 M19,36,M20,22,M17,23,M17,78,M20,27,
M18,17,M21,5,M19,17,M20,9,M17,31,
M16,12,M17,44

T54,T74,T9,T30,T75,
T35,T100 , T48,T93 , T13,
T3,T18

DP40 40 M20,27,M18,17,M21,5,M19,17,M17,35,
M20,20,M20,38,M17,36,M17,77,M16,12,
M17,38,M20,37,M19,19

T75,T35,T100,T48,T14,
T73,T80,T15 , T29,T3,
T16,T79,T49

DP50 50 M20,22,M17,23,M20,27,M17,1,M20,67,
M19,17,M17,35,M20,20,M20,38,M17,31,
M16,12,M17,38,M17,29,M20,37,M19,19

T74,T9,T75,T5,T90,
T48,T14 , T73,T80 , T13,
T3,T16,T11,T79,T49

DP60 60 M20,22,M17,23,M20,27,M17,1,M17,11,
M18,17,M21,5,M17,92,M20,67,M19,17,
M21,26,M17,75,M17,46,M17,29,M20,37,
M19,19

T74,T9,T75,T5,T6,
T35,T100 , T32,T90,
T48,T96,T28,T19,T11,
T79,T49

DP70 70 M20,22,M17,23,M20,27,M17,1,M17,11,
M18,17,M21,5,M19,17,M20,9,M21,26,
M17,31,M16,12,M17,46,M17,29,M20,37,
M19,63,M20,48

T74,T9,T75,T5,T6,
T35,T100 , T48,T93 , T96,
T13,T3,T19,T11,T79,
T61,T84

DP80 80 M20,22,M17,23,M20,27,M17,1,M17,11,
M18,17,M21,5,M17,92,M19,17,M17,7,
M17,31,M16,12,M19,4,M17,46,M17,29,
M20,37,M19,63,M20,48

T74,T9,T75,T5,T6,
T35,T100 , T32,T48 , T27,
T13,T3,T55,T19,T11,
T79,T61,T84

Fig. 11  3D view of selected well trajectories generated by the MILP 
algorithm for DP30. The paths cross flow unit targets among all pos-
sible drilling targets (black points). For the sake of visualization, the 
generated paths have been smoothly interpolated through the applica-
tion of 3D splines over the generated paths

Fig. 12  3D view of selected well trajectories generated by the MILP 
algorithm for DP50. The paths cross flow unit targets among all pos-
sible drilling targets (black points). For the sake of visualization, the 
generated paths have been smoothly interpolated through the applica-
tion of 3D splines over the generated paths

Fig. 13  3D view of selected well trajectories generated by the MILP 
algorithm for DP70. The paths cross flow unit targets among all pos-
sible drilling targets (black points). For the sake of visualization, the 
generated paths have been smoothly interpolated through the applica-
tion of 3D splines over the generated paths



135Journal of Petroleum Exploration and Production Technology (2024) 14:125–137 

1 3

• The objective was to establish optimal drilling paths that 
pass through multiple potential targets, identified based 
on flow units.

• The optimization process considered drift angle con-
straints ranging from 30 to 80 degrees and a measured 
depth limit of 10,000 ms. As a case study, a synthetic 
model was created to resemble the characteristics of the 
Namorado oilfield.

• The performance of the optimized well paths was evalu-
ated using oil recovery factor and cumulative oil produc-
tion as metrics. These metrics were compared with data 
from the Brazilian Campos Basin to validate the results.

• The results of the study demonstrated that the well with 
the highest production achieved a recovery factor index 
above 17%, which is considered satisfactory. This result 
outperforms the average recovery factor of Brazilian 
basins, which stood at around 13.5% in 2021. Moreo-
ver, it exceeds the recovery factor of the Campos Basin, 
which was reported to be 16.5%. These findings highlight 
the effectiveness of the proposed methodology in enhanc-
ing oil recovery.

• Future research directions involve the integration of 
additional factors into the framework. This includes 
incorporating productivity potential maps, generating 
well trajectories considering in situ geologic constraints, 
exploring the feasibility of multilateral wells, and con-
ducting economic analysis. These enhancements aim to 
further optimize well planning and maximize hydrocar-
bon production in complex reservoirs.
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