
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2024) 14:175–201 
https://doi.org/10.1007/s13202-023-01691-6

ORIGINAL PAPER-PRODUCTION ENGINEERING

A new approach for real‑time prediction of stick–slip vibrations 
enhancement using model agnostic and supervised machine learning: 
a case study of Norwegian continental shelf

Behzad Elahifar1   · Erfan Hosseini2 

Received: 5 April 2023 / Accepted: 14 August 2023 / Published online: 30 August 2023 
© The Author(s) 2023

Abstract
Efficient and safe drilling operations require real-time identification and mitigation of downhole vibrations like stick-slip, 
which can significantly diminish performance, reliability, and efficiency. This pioneering research introduces a robust machine 
learning approach combining model-agnostic regression techniques with Bayesian Optimized Extra Trees (BO_ET) to 
accurately predict stick-slip events in real-time using downhole sensor data. The model is rigorously tested and validated on 
a substantial offshore dataset comprising over 78,000 data points from a Norwegian continental shelf (NCS) oil field. The 
key input features encompassing real-time downhole and surface drilling parameters are carefully selected, including critical 
variables such as collar rotational speed, shock risks, annular pressure, torque, mud flow rate, drill string vibration sever-
ity, and other relevant measurements. These parameters offer significant insights into the occurrence of harmful stick-slip 
vibrations. Among several sophisticated machine learning models, the Extra Trees (ET) algorithm demonstrates superior 
performance with the lowest errors of 5.5056 revolutions per minute (r/min) Mean Absolute Error (MAE) and 9.9672 r/
min Root Mean Square Error (RMSE) on out-of-sample test data. Further hyperparameter tuning of the ET algorithm via 
Bayesian Optimization dramatically reduces errors down to 0.002156 MAE and 0.024495 RMSE, underscoring the sig-
nificant innovation and advantages of the proposed approach. By seamlessly incorporating real-time downhole sensor data 
and drill string mechanics, the model enables reliable identification of stick-slip events as they occur downhole. This grants 
opportunities to optimize critical drilling parameters including revolutions per minute (RPM), weight-on-bit (WOB), mud 
flow rates, and more to effectively mitigate stick-slip severity and improve the rate of penetration (ROP). Integrating the 
approach into automatic driller systems on offshore rigs offers immense benefits for drilling operations through substantially 
increased efficiency, fewer premature failures, lower costs, and significantly improved productivity and safety. Overall, this 
research strongly emphasizes the immense transformative potential of advanced data analytics and machine learning in 
enabling more efficient, economical, and sustainable drilling practices. The proposed model demonstrates clear superior-
ity over existing methods and establishes a robust and reliable platform for real-time stick-slip prediction and mitigation, 
maximizing drilling performance.
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List of symbols

Symbols
APRS_ARC​	� Annular pressure: downhole annu-

lar pressure measurements (Bar)
ARC_GR_UNC_RT	� Gamma-ray: a record of the emis-

sion of endogenous radioactive 
elements to the rock, Degrees API 
( ̊API)

ATMP	� Annular temperature: bottom 
annular space temperature meas-
urement, Degrees Celsius (°C)

BDTI	� Job on-bottom time, Hours (HR)

BPOS	� Traveling block position: height at 
which the traveling block is located 
on the mast or derrick, Meters (M)

BVEL	� Traveling block velocity: velocity 
of movement of the block and the 
hoisting system, Meters per hour 
(M/HR)

CRPM_RT	� Drill string revolutions or collar 
rotational speed: revolutions of the 
BHA at the level of the last reamer, 
Revolutions per minute (RPM)

DEPT	� Depth: bit depth in meters or meas-
ured depth (MD), Meters (M)
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ECD_ARC​	� Equivalent circulating density: 
density of the bottom-well fluid, 
Specific gravity (SG)

HKLD	� Hook-load: measurement of the 
load on the hook by the working 
and drilling string, Kilokilogram-
force (KKGF)

MAE	� Mean absolute error, Percent (%)
PDSHKRSK	� Power drive shock risk
RMSE	� Root mean square error, Percent 

(%)
ROP5	� Rate of penetration: drilling pro-

gress in distance and time, aver-
aged every 5 feet, Meters per hour 
(M/HR)

RPM	� Revolution per minute: measure-
ment of the revolutions of the 
turbine contained in the bottom 
hole assembly (BHA), Revolutions 
per minute (RPM)

SHK_ISONIC_RT	� Isonic shock
SHK2_RT	� ARC shock level
SHKPK_RT	� Shock peak: magnitude of the 

biggest shock experienced by the 
Power Pulse as the Shock Peak, G 
(magnitude)

SHKRSK_RT	� Transverse shock risk
SPPA	� Pump pressure: friction losses in 

the hydraulic system (Bar)
Stick_RT	� Stick and slip indicator: torsional 

vibration indicating stick and slip, 
Revolutions per minute (RPM)

SWOB	� Surface weight on bit: measure-
ment of the weight exerted by the 
string on the bit and the formation, 
Kilokilogram-force (KKGF)

TFLO	� Total pump flow: flow rate of 
drilling mud to the well, Liters per 
minute (LPM)

TQA	� Torque: torque exerted by the top 
drive system derived from string 
rotation, Kilometers decanewtons 
(KMN)

TRPM_RT	� Bottom turbine revolutions: meas-
urement of the revolutions of the 
turbine contained in the BHA to 
energize downstream components, 
Revolutions per minute (RPM)

Abbreviations
AI	� Artificial intelligence
AIC	� Akaike information criterion
API	� American Petroleum Institute

APRS_ARC​	� Annular Pressure
ATMP	� Annular Temperature
BAR	� Barometric Pressure
BDTI	� Job On-Bottom Time
BHA	� Bottom Hole Assembly
BO	� Bayesian Optimization
BO_ET	� Bayesian Optimization with Extra 

Tree model
BPOS	� Traveling Block Position
BVEL	� Traveling Block Velocity
DDRs	� Daily Drilling Reports
DEGC	� Degree Celsius
ECD_ARC​	� Equivalent Circulating Density
ET	� Extra Trees
Fm.	� Formation
HKLD	� Hook-load
HR	� Hour
KKGF	� Kilo Kilogram Force
LPM	� Liters per Minute
LSSVM	� Least Squares Support Vector 

Machine
MLP-NN	� Multilayer Perceptron Neural 

Network
MNN	� Modular Neural Networks
MWD	� Measurements While Drilling
NPD	� Norwegian Petroleum Directorate
OOIP	� Original Oil in Place
PDSHKRSK	� Power Drive Shock Risk
PSO	� Particle Swarm Optimization
RF	� Random Forest
RMSE	� Root Mean Square Error
ROP	� Rate of Penetration
RPM	� Revolutions per Minute
SHK_ISONIC_RT	� Isonic Shock
SHK2_RT	� ARC Shock Level
SHKPK_RT	� Shock Peak
SHKRSK_RT	� Transverse Shock Risk
SPPA	� Pump Pressure
Stick_RT	� Stick and Slip Indicator
SVM	� Support Vector Machine
SWOB	� Surface Weight on Bit
TFLO	� Total Pump Flow
TQA	� Torque
TRPM_RT	� Bottom Turbine Revolutions
WOB	� Weight on Bit
XGBoost	� Extreme Gradient Boosting

Introduction

An operation that aims to reach porous and permeable 
rocks in the basement, which may contain liquid or gase-
ous hydrocarbons, is known as drilling. Sedimentary basins 
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are studied geologically and geophysical to determine the 
location of oil drilling. These studies allow researchers to 
study subsurface compositions and potential deposits, but 
they cannot specify the existence or absence of hydrocar-
bon deposits (Hassan et al. 2022; Ayoub Mohammed et al. 
2022; Alakbari et al. 2022). Drilling is the only method to 
demonstrate the hypotheses' validity and reveal the rocks' 
fluid content. The uncertainty as to the nature of the fluids 
trapped in the subsoil and the complexity of the sedimentary 
deposits explain the still high number of negative explora-
tion boreholes and the significant share of boreholes in the 
cost of research (Chen and Guestrin 2016; Bailey et al. 2018; 
Zhong et al. 2022; Ayoub et al. 2022). The drilling objec-
tives are always the same: To reach the depth desired by the 
geologists and to have the possibility of testing or putting 
the reservoir into production. Optimizing each operation's 
costs is necessary as the price of a drilling operation is high 
and negative explorations are unavoidable. Among the per-
formance indicators of a borehole is its rate of penetration 
(ROP), which indicates the efficiency and speed of an opera-
tion more generally. Successfully optimizing the ROP will 
drastically reduce the costs of the drilling operation. Lat-
eral, axial, or torsional vibrations directly impact this factor. 
These vibrations have a destructive effect on the drilling rig. 
In addition, they minimize the ROP and therefore increase 
the well's maintenance time and cost (Baarimah et al. 2022; 
Runia et al. 2013; Schwefe et al. 2014; Efteland et al. 2015).

To better understand the source of these vibrations, it 
must be understood that the drilling rig is, in principle, a 
motor on the surface. This motor rotates a drill string that 
can reach up to 5000 m in length, which gives these ele-
ments a behavior similar to that of a torsion spring. As the 
formations to be drilled differ, the torque applied by each of 
the formations is also different. This creates a discrepancy 
between the drill bit speed at the end of the string and the 
motor speed at the surface. This makes it Stick and Slip. 
Stick and Slip are the number one cause of drill string fail-
ure and wear. It is due to the aggressive torsional dynamics 
experienced by the drilling system, which behaves like a 
huge torsion spring (Nautiyal and Mishra 2023; Alakbari 
et al. 2016). These vibrations decrease efficiency, reliability, 
performance, and safety, which are significant aspects of 
deep well drilling. The inherent torsional dynamics of the 
drilling system primarily cause stick and slip vibrations in 
drilling engineering operations.

The drilling rig functions as a motor on the surface, 
rotating a drill string extending up to several kilometers in 
length. Due to variations in the drilled formations, each for-
mation applies a different torque to the drill string, result-
ing in a mismatch between the desired angular velocity at 
the drill bit's end and the motor speed at the surface. This 
disparity between rotational speeds leads to stick and slip 
vibrations. Stick refers to the phase when the drill bit stops 

completely, while slip refers to the stage when the bit rotates 
significantly faster than the desired angular velocity. These 
vibrations not only diminish drilling efficiency, reliability, 
and performance but also pose risks to safety. Stick and slip 
vibrations can cause premature fatigue and wear of the drill 
string, leading to failures and increased maintenance costs. 
Understanding the causes of stick and slip is crucial for 
effectively mitigating these vibrations and optimizing drill-
ing performance. Drill string vibration can cost companies 
millions due to decreased performance and efficiency. Thus, 
vibration mitigation and improved drilling performance are 
of substantial economic interest to the petroleum industry. 
At the same time, safety remains the top priority. In other 
words, achieving performance improvement (e.g., by reduc-
ing vibrations) implies reduced costs (Elkatatny et al. 2019; 
Zakuan et al. 2011; Kyllingstad and Nessjøen 2009; Craig 
et al. 2009). Stick and slip consist of phases in which a bit is 
completely stopped (sticking), followed by stages where a 
bit rotates several times faster than the desired angular veloc-
ity (slip). A simulation result of a drill pipe with a desired 
angular velocity of 50 RPM, which suffers from stick and 
slip vibrations. This phenomenon causes not only the fail-
ure of the bit due to premature fatigue of the drill string but 
also its premature wear due to its high speed. Stick and slip 
vibrations can be recognized in bottom and surface measure-
ments. Modeling and analyzing these vibrations to attenuate 
them is an important aspect of drilling.

Approaches to vibration mitigation are classified into two 
major categories: passive and active. Passive techniques are 
grouped into three sub-categories: downhole assembly opti-
mization (BHA), bit selection, and downhole equipment use. 
For example, the anti-stick and slip tools are mechanical 
tools intended to adjust the drilling torque automatically 
and reduce the oscillations to increase accuracy and effi-
ciency while drilling (Gupta et al. 2019; Srivastava et al. 
2022). Active methods are based on control techniques. The 
best-known approach is “Soft Torque”. This technique's 
idea is to rotate the surface rotary system gently. For the 
synthesis of this regulator, the dynamics of this system are 
considered in the form of a torsion pendulum characterized 
by two degrees of freedom (Wu et al. 2012; Forster 2011; 
Bailey et al. 2008). A PI regulator based on surface data 
can dampen this torsion mode. But these regulators cannot 
always eliminate stick and slip vibrations, especially in deep 
wells and inclined wells. Another reason for these failures is 
uncertainty (non-linearity) in the interaction between the bit 
and the rock and a difference between the type of measure-
ments used (downhole or surface measurements). Artificial 
intelligence (AI) techniques are increasingly being employed 
worldwide, including in the oil and gas sector, resulting in 
a substantial advancement in their use to increase accu-
racy (Otchere et al. 2021a, b; Shen et al. 2017; Vogel and 
Creegan 2016; Greenwood 2016). Several research papers 
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have utilized automated prediction models to forecast stick 
and slip vibrations, demonstrating their efficacy in creating 
patterns among complicated drilling parametric interactions 
(Zha and Pham 2018; Gupta et al. 2019; Saadeldin et al. 
2022).

Srivastava (2022) proposed a hybrid machine learning 
model to enhance stick and slip prediction in drilling opera-
tions. They utilized two machine learning models: the least 
squares support vector machine (LSSVM) and the multilayer 
perceptron neural network (MLP-NN). Feature selection was 
applied to improve prediction accuracy by identifying rel-
evant features, and a Savitzky–Golay (SG) filter was used 
to reduce noise in the data. The researchers employed the 
wrapper method in conjunction with evolutionary algorithms 
to enhance the performance of their models. The LSSVM-
Cuckoo Optimization Algorithm achieved the highest pre-
diction accuracy of 0.94 among the hybrid models devel-
oped. Additionally, Srivastava et al. (2022) employed an 
artificial neural network to predict stick and slip problems 
in offshore oil fields. They divided the datasets into training 
(60%), validation (20%), and testing (20%) sets and created 
databases with input features for bit bounce and bending 
vibrations for data normalization. The application of feature 
selection led to the passage of the Levenberg–Marquardt 
function for training the dataset, resulting in high accu-
racy. Their results showed accuracies of 0.96 and 0.93 for 
bit bounce and bending vibrations, respectively. Saadeldin 
et al. (2022) conducted a study to explore the potential of 
machine learning in predicting stick and slip occurrences 
during drilling operations. They focused on mining and ana-
lyzing drilling data to develop accurate prediction models. 
To reduce the dimensionality of the dataset, they employed 
a feature ranking method and selected 18 out of 23 studied 
parameters as input variables for stick and slip prediction. 
This approach improved computational processing time and 
enhanced the efficiency of the dataset. The results showed 
that the Gaussian kernel support vector machine (SVM) 
achieved a high level of accuracy with a maximum value of 
0.92. The findings of this research paved the way for further 
investigations, including using different machine learning 
models that incorporate geological and operational param-
eters to improve stick and slip predictions.

In their study, Zhong et  al. (2022) proposed a new 
technique for predicting stick and slip vibrations by 
combining modular neural networks (MNN) with parti-
cle swarm optimization (PSO). To improve the model's 
efficiency, they utilized data normalization to transform 
the data into a range of 0 to + 1. The dataset was divided 
into 60% for training, 20% for validation, and 20% for 
testing. The results showed that incorporating PSO led 
to more accurate predictions by optimizing parameter 
variations. It was observed that the choice of machine 

learning algorithm and input variables varied among dif-
ferent studies focusing on predicting drilling stick and 
slip vibrations. Supervised machine learning models are 
only as efficient as the information they are trained with; 
therefore, when irrelevant data is included as input, the 
model's performance suffers (Otchere et al. 2021a, b). 
As such, there is a need to develop a workflow capa-
ble of determining the most appropriate features, which 
involves engineering new features from existing input 
variables (Otchere et al. 2021a, b; Nautiyal and Kumar 
Mishra 2023). These new features should be capable of 
improving model performance compared to when they 
are inputted singularly. Again, the choice of machine 
learning models should not be a hindrance if a more 
robust model appending all robust models into one super 
machine learning model is used. This tends to mitigate the 
inherent problems of each model whiles complementing 
each other’s strengths. This study uses data recorded from 
measurements while drilling (MWD) in offshore oil fields 
on the Norwegian continental shelf. The input features 
and their importance will be assessed by model-agnostic 
metrics for predicting stick and slip. Once a suitable data-
set of relevant features is established, several machine 
learning models will be developed to predict drill string 
vibrations. The model with the most accurate results will 
be optimized using the Bayesian Optimization (BO) algo-
rithm. Our primary objective in this study is to examine 
and analyze the impact and influence relating to indi-
vidual features that will generate novel insight into their 
generalization of explaining the target. A major contri-
bution of this research is the global explanation for vari-
ables in stick and slip prediction using explainable AI and 
developing a machine learning approach to enhance the 
prediction accuracy for drill string vibrations. This study 
aims to develop a new approach for real-time prediction 
of stick–slip vibrations in drilling operations, optimiz-
ing drilling parameters, improving drilling performance, 
and enhancing productivity and safety in the oil and gas 
industry. We achieve this by accurately identifying stick 
and slip occurrences using machine learning techniques 
and incorporating downhole sensor data and a drill string 
model. The proposed method holds significant potential 
for integration into automatic driller systems on offshore 
drilling rigs, leading to more efficient and sustainable 
drilling practices. This research uses machine learning 
models to introduce an innovative method for predict-
ing stick and slip vibrations in drilling operations. The 
approach combines model-agnostic regression models 
and Bayesian Optimized Extra Trees, improving accuracy 
with the lowest error metrics. We can effectively reduce 
stick and slip severity and optimize penetration rate by 
applying this new model to automatic driller systems in 
offshore drilling rigs on the Norwegian continental shelf. 
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This innovation can revolutionize drilling practices and 
enhance the industry's efficiency and sustainability.

Strengths of the proposed method

In this article, the authors have successfully introduced a 
groundbreaking method for predicting stick and slip vibra-
tions in drilling operations using machine learning models. 
The combination of model-agnostic regression models and 
Bayesian Optimized Extra Trees sets this research apart, 
bringing a novel and powerful approach to address this criti-
cal aspect of drilling operations. The strengths of this article 
lie in several key areas:

Firstly, the robustness of the dataset used in this research—
comprising over 78,000 data points from one of the Norwe-
gian continental shelf oil fields—provides a strong foundation 
for validating the effectiveness of the proposed method. The 
sheer volume of data ensures that the model is well-trained 
and tested, increasing its reliability and applicability in real-
world scenarios. Secondly, the impressive accuracy of the 
Extra Trees (ET) model, demonstrated by its low error met-
rics (r/min MAE and r/min RMSE), highlights the potential 
of this method to outperform existing techniques in predicting 
stick and slip vibrations. This improved accuracy is crucial in 
enabling more efficient and cost-effective drilling operations, 
ultimately benefiting the oil and gas industry as a whole.

Additionally, the practical implications of the proposed 
method cannot be overstated. By integrating this model into 
automatic driller systems in offshore drilling rigs, operators 
can optimize the penetration rate, reduce stick and slip sever-
ity, and increase overall drilling efficiency. These benefits will 
contribute to reduced non-productive time, lower operational 
costs, and a decreased environmental impact, showcasing the 
immense value of this research. Lastly, the article presents a 
clear and concise explanation of the methodology, making it 
accessible to a wide range of readers, from industry profes-
sionals to academic researchers. As a result, it establishes a 
solid foundation for further exploration and development of 
this innovative approach to predicting stick and slip vibrations 
in drilling operations.

In conclusion, the proposed method's strengths are its accu-
racy, applicability, and potential impact on drilling optimiza-
tion and automation. This research marks a significant mile-
stone in enhancing the understanding and management of stick 
and slip vibrations, paving the way for continued advance-
ments in offshore drilling technology.

Background of machine learning regression 
models

This research stems from earlier studies where several work-
flows and techniques were used to predict stick and slip using 
available input variables. As academics increasingly move 
away from empirical correlations, machine learning has 
become entrenched. Individual drilling parameters offer criti-
cal information concerning drill string vibrations. However, 
when some subsets are used, they can predict stick and slip 
more accurately. Researchers sometimes employ the Pearson 
correlation coefficient to identify significant variables, while 
others rely on wrapper approaches, intricacy techniques, and 
algorithms that use metaheuristics to identify powerful fea-
tures. This indicates that no definitive collection of features 
exists for making this prediction. However, a robust workflow 
is needed to utilize model-agnostic techniques to solve this pre-
diction problem. This study investigates the correlation among 
the most crucial input-relevant variables in predicting vibra-
tions caused by sticks and slips in oil well drill strings. The 
relevant features selected by the model-agnostic techniques 
will then be input features. Based on their learning theory and 
ability to work with high-dimensional and complex data, sev-
eral machine learning models will be used to predict stick and 
slip. The reviewed models perform differently depending on 
learning theory, dimensionality, small or large data, and dif-
ferent data distributions. Identifying a suitable model that can 
handle all these problems has become necessary since drilling 
data are commonly highly dimensional, small or large, with 
different data distributions.

Based on these assertions, this study establishes relevant 
features that can lead to lower prediction errors. Improved 
accuracy in estimating stick and slip vibration will have a mas-
sive influence on field operations and the overall integrity of 
the well. Hence, although dependent on data type, machine 
learning models can be applied to drilling operations with 
similar input features. The most common issue with machine 
learning models and their varying performance is centered 
on data. Having the capability of explaining the input vari-
ables and determining causation has been the pinnacle of this 
study as more innovative approaches are created to solve this 
issue. The slightest gain in accuracy is critical to improving the 
decision-making process within the petroleum business, thus 
indicating the importance of this field for advancing research. 
The summary analysis of the reviewed models used in this 
study is presented in Table 1, which can be found as follows.
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Data collection and data description

This research's main objective focuses on improving the pre-
diction of stick and slip using data from the offshore oilfield 
on the Norwegian continental shelf during drilling opera-
tions. Fields located in the North Sea, near the southern 
end of the Norwegian sector, are described as fault block 
structures with approximately 173 million barrels of origi-
nal oil in place (OOIP). Reservoirs are small dome-shaped 
structures formed when adjacent salt deposits collapsed over 
the Middle of the Jurassic (Geurts et al. 2006). The data con-
sists of 78,000 data points with 23 features compiled from 
resources such as measurement while drilling (MWD), daily 
drilling reports (DDRs), final drilling well reports, and liter-
ature. However, after removing missing data, 49,000 points 
remained. Table 2 shows the description of real-time MWD 
measurement records in this study. Also, Table 3 shows the 
descriptive statistics of some selected features. The main 
input features for this research are;

a.	 Real-time downhole drilling data Stick and slip indi-
cator, collar rotational speed, turbine revolution per 
minute, transverse shock risk, ARC shock level, Isonic 

shock, power drive shock risk, equivalent circulating 
density, annular pressure, and annular temperature.

b.	 Real-time surface drilling data Surface weight on bit, 
torque, the total flow rate of all active pumps, and pump 
pressure.

c.	 Formation characteristics Gamma-ray, formation type, 
bit depth, and penetration rate.

One of the main advantages of applying data analyt-
ics and machine learning to data is finding patterns and 
hidden information in high-dimensional data. As such, 
some input variables will be deemed irrelevant in predict-
ing stick and slip vibrations. Table 4 presents the typical 
lithology observed in the wells of the oil fields located on 
the Norwegian continental shelf. For this study, the lithol-
ogy was encoded into numeric variables ranging from 1 
to 19, illustrated in Table 5. The coordinates for each well 
were also removed.

Table 1   An overview of the algorithms described in this research and the corresponding authors

Model Description Developed or implemented by

Ridge Regression A robust technique against multicollinearity 
minimizes standard errors by applying some 
bias to the model estimates, resulting in a 
more reliable prediction. The Ridge regres-
sion model works by calculating differences 
between standardized dependent and non-
dependent variables and dividing them by 
their standard deviations

A study by Hoerl and Kennard published 
in (1970)

Least Absolute Shrinkage and Selection Opera-
tor (LASSO)

Robust against multicollinearity performs better 
with lower-dimensional data, prevents overfit-
ting, and reduces standard errors

Tibshirani (1996)

Support Vector Machine (SVM) Structural risk minimization induction produces 
improved generalized robust, sparse, and 
unique results based on a geometrically 
straightforward approach

Vapnik in collaboration with Lerner (1963)

Decision Tree (DT) It uses induction and pruning techniques to 
build hierarchical decision boundaries and 
remove unnecessary structures from the deci-
sion tree to battle overfitting

Li et al. (1984)

The Extreme Gradient Boosting method 
(XGBoost)

Gradient-boosted decision trees are imple-
mented of the first- and second-order maxi-
mize loss functions, adding regularization 
terms to avoid overfitting by adjusting the final 
weights

Chen and Guestrin (2016)

Extremely Randomized Trees (Extra Tree or 
ET)

Potentially achieves better performance than 
the random forest, a simpler algorithm is 
employed to construct the decision trees used 
as an ensemble member

Geurts et al. (2006)

Random Forest (RF) An advanced decision tree that is robust against 
overfitting and offers easy interpretability

Breiman (2001)
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Methodology

Data analysis and visualization

To aid in the understanding of how the input features relate 
to the output, data analysis and visualization were used. The 
degree of relationship between input and output variables was 
quantified using the Spearman rho matrix of covariance. To 
study linear and nonlinear relationships, we used Pearson's 
coefficients, Kendall correlations, as well as Spearman's rank 
coefficients based on Eqs. (1), (2), and (3).

(1)r =

∑n

i=1

�

xi − x
��

yi − y
�

�

∑n

i=1

�

xi − x
�2

�

∑n

i=1

�

yi − y
�2

(2)� =
nc − nd

1

2
n(n − 1)

In Eq. (1) x and y are our samples, and the variables y and 
x are an average between samples, and n is a sample size. 
nc and nd indicate the number of concordant and discordant 
pairs, as given by Eq. (2). Furthermore, Eq. (3) specifies D 
as the difference between the ranks of the two groups and 
n as their volume. Pearson, Kendall, and Spearman coef-
ficients are correlated more strongly if they are close to +1 
or − 1 . In contrast, the input parameters are independent if 
these coefficients are close to zero. Due to this independence 
of input parameters, more information can be incorporated 
into the models as a result of selecting features that integrate 
more information. Knowing the difference between these 
two is important, and that correlation does not imply causa-
tion. This Heatmap of Fig. 1 shows the features that have a 
moderate correlation to the target. Figure 2 shows stacked 
horizontal bar charts for different correlation coefficients. 

(3)rs = 1 −
6
∑n

i=1
D2

n
�
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�

Table 2   Description of real-time MWD measurement records used in this study

Name Mnemonic Unit Description

Depth DEPT M Bit depth in meters or measured depth (MD)
Rate of penetration ROP5 M/HR Drilling progress in distance and time-averaged every 5 (ft.)
Gamma-ray ARC_GR_UNC_RT ̊API The record of the emission of endogenous radioactive elements to the rock
Traveling block position BPOS M The height at which the traveling block is located on the mast or derrick
Traveling block velocity BVEL M/HR The velocity of movement of the block and the hoisting system
Surface weight on bit SWOB KKGF Measurement of the weight exerted by the string on the bit and, therefore, on the 

formation
Hook-load HKLD KKGF Measurement of the load on the hook by the working and drilling string
Torque TQA KMN The torque exerted by TDS derived from string rotation in units of kilometers 

decanewtons
Revolution per minute RPM RPM Measurement of the revolutions of the turbine contained in the BHA to energize 

downstream components
Drill string revolutions or 

collar rotational speed
CRPM_RT RPM Revolutions of the BHA at the level of lastraberrenas

Total pump flow TFLO LPM The flow rate of drilling mud to well
Bottom turbine revolutions TRPM_RT RPM Measurement of the revolutions of the turbine contained in the BHA to energize 

downstream components
Pump pressure SPPA BAR Friction losses in the hydraulic system
Transverse shock risk SHKRSK_RT –- –-
ARC shock level SHK2_RT –- –-
Isonic shock SHK_ISONIC_RT –- –-
Power drive shock risk PDSHKRSK –- –-
Shock peak SHKPK_RT G The magnitude of the biggest shock experienced by the Power Pulse is the Shock 

Peak
Equivalent circulating density ECD_ARC​ SG The density of the bottom-well fluid
Annular pressure APRS_ARC​ BAR Downhole annular pressure measurements
Annular temperature ATMP DEGC Bottom annular space temperature measurement
Job on-bottom time BDTI HR –-
Stick and slip indicator Stick_RT RPM Torsional vibration
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Some features correlate to torsional vibration, including 
shock peak, equivalent circulating density, and Isonic shock. 
In addition, there is a slight correlation between total pump 
flow, annular temperature, and bottom turbine revolutions 
related to stick and slip. The pair plot also depicts the non-
linear distribution between some of the input and the target. 
Figure 3 shows that none of the features correlated linearly 
with the target based on the nonlinear distribution. There-
fore, nonlinear models were deemed appropriate for this res
earch.

Application of machine learning models

The cross-validation approach involves resampling input 
data into multiple groups to evaluate its predictive perfor-
mance and minimize prediction errors on unknown data 
(Otchere et al. 2021a, b). This study employed the hold-
out cross-validation approach, where randomly partitioned 
data was divided into 85% for training and 15% for testing, 
with 7,350 data points dedicated to testing. This approach 
ensures that separate data points, not seen by the trained 
model, are used to validate the model, preventing overfit-
ting and selection bias. This research aimed to identify a 
model capable of predicting stick and slip vibrations with 
minimal errors. Consistency was maintained by using the 

same out-of-sample data throughout the study, ensuring that 
similar data points were used across all models.

The hyper-parameter tuning process was carried out 
using the Bayesian Optimization (BO) algorithm to improve 
the performance of the final model. BO is a model-based 
sequential optimization technique that utilizes the Bayes 
Theorem to explore the extrema of objective functions 
efficiently. It involves iteratively training a probabilistic 
Bayesian approximation of the target model based on prior 
outcomes approximation. The probabilistic model, which 
relates hyper-parameters to the objective function's prob-
ability score, is then evaluated using an acquisition function 
to select the best measurements for optimizing the accurate 
parameter. Hyper-parameter tuning aims to update the model 
parameters that control accuracy and performance during 
the training process, thereby optimizing the model's per-
formance by minimizing the cost function (Otchere et al. 
2022a, b, c).

Explainable AI

This research will employ model-agnostic methods to 
assess the significance of input features and provide 
explanations independent of the machine learning model 
used. The objective is to identify features that contribute 

Table 3   Summary statistics of 
input and target characteristics

Count Mean std min 25% 50% 75% max

DEPT 49,099.00 3207.16 295.60 2780.83 2927.10 3173.92 3483.09 3750.05
ROP5 49,099.00 17.66 7.88 3.20 10.10 18.35 24.24 36.73
ARC_GR_UNC_RT 49,099.00 44.29 39.09 0.00 24.52 37.36 49.63 257.22
BPOS 49,099.00 137.10 4.81 62.96 133.01 136.54 141.00 150.25
BVEL 49,099.00 174.06 12.56 8.95 172.40 176.27 180.60 193.21
SWOB 49,099.00 60.50 12.55 0.00 50.03 61.38 70.71 152.01
HKLD 49,099.00 60.21 12.44 39.29 49.80 61.24 70.83 109.87
TQA 49,099.00 6.40 2.96 0.00 4.44 6.41 8.39 55.25
RPM 49,099.00 12.16 3.31 0.00 10.76 12.67 14.44 21.04
CRPM_RT 49,099.00 145.38 44.43 0.00 139.00 163.00 172.00 242.00
TFLO 49,099.00 148.59 44.86 0.00 140.00 169.00 179.00 182.00
TRPM_RT 49,099.00 73.67 62.58 0.00 27.00 54.00 99.00 381.00
SPPA 49,099.00 0.00 0.02 0.00 0.00 0.00 0.00 2.00
SHKRSK_RT 49,099.00 0.48 4.07 0.00 0.00 0.00 0.00 344.00
SHK2_RT 49,099.00 21.62 12.08 2.22 10.97 22.19 31.59 45.07
SHK_ISONIC_RT 49,099.00 0.01 0.01 0.00 0.00 0.01 0.01 0.19
PDSHKRSK 49,099.00 78.80 9.62 55.00 73.00 79.00 88.00 95.00
SHKPK_RT 49,099.00 1964.06 97.29 0.00 1962.83 1962.83 2000.25 2067.15
ECD_ARC​ 49,099.00 1.46 0.03 1.37 1.45 1.47 1.48 1.50
APRS_ARC​ 49,099.00 416.78 23.04 365.84 402.27 421.36 433.40 460.85
ATMP 49,099.00 2797.04 141.66 2031.25 2773.44 2812.50 2851.56 4960.94
BDTI 49,099.00 0.00 0.15 0.00 0.00 0.00 0.00 10.00
Stick_RT 49,099.00 44.33 3.26 0.00 44.00 44.00 45.00 48.00
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meaningfully to the model's predictions, regardless of their 
type or nature. Two techniques, namely permutation fea-
ture importance (PFI) and Shapley values, will be utilized 
to analyze the results generated by the models. These tech-
niques require the model, feature vectors, target variable, 
and error metrics as inputs. By applying PFI and Shapley 
values, the features that fail to adequately explain the tar-
get variable will be identified and removed from the input 
feature vector.

Permutation feature importance

The Permutation Feature Importance (PFI) approach, as 
described by Otchere et al. (2022a, b, c), is a model-agnostic 
method used to assess the significance of features. It works 
by permuting the association between a variable and the 
model result, assigning random values to each feature. The 
importance of a component is determined by measuring 
the increase in estimation error after permuting the feature 
multiple times. If shuffling the parameters leads to higher 

Table 4   General lithology in oil field wells of the Norwegian continental shelf (Frankiewicz 2019)

Lithology Description

Seabed Consists of dense to very dense sands overlaying stiff clay
QUARTERNARY​ Clay with thin stringers of sand. Coarser material up to boulder size may occur
NORDLAND GP.—Pliocene and Pleistocene Gray claystone with thin stringers of sand and siltstone
Utsira formation Fine to medium-grained, moderately well and well-sorted sandstone with minor silt 

and limestone stringers
HORDALAND GP.—Eocene to Miocene It is dominated by claystone and minor limestone/dolomite stringers, except for the 

sandy Skade and Grid formations
Skade Fm Medium-grained and moderately sorted sandstone, occasionally calcareous cemented
Grid Fm Very fine to fine-grained sandstone
ROGALAND GP.—L. Paleocene to L. Eocene
Balder Fm Vari-colored claystone, partly tuffaceous with some limestone stringers
Sele Fm Claystone and minor limestone stringers
Lista Fm Non-calcareous claystone with minor limestone stringers
Ty Fm Very fine to medium-grained sandstone, moderately to poor sorted, with some inter-

bedded claystone, siltstone, and a few limestone stringers
SHETLAND GP.—U. Cretaceous
Ekofisk Fm Chalky off-white to light gray limestone, moderately hard with traces of claystone and 

sandstone
Tor Fm White limestone, moderately hard, becoming pale red-brown and very hard with 

depth, traces of claystone
Hod Fm Off-white to white limestone, moderately hard, chalky, grading to marl with depth, 

glauconite
Blodøks Fm Medium to dark gray marl, argillaceous laminations, glauconitic in parts
Hidra Fm Off-white, firm limestone
CROMER KNOLL GP.—U. Cretaceous to L. Cretaceous
Rødby Fm Marl with argillaceous laminations
Sola Fm Marl and claystone
Åsgard Fm Interbedded limestone and marl with some minor layers of claystone and siltstone
VIKING GP.—U. Jurassic
Draupne Fm Very organic-rich claystone, micaceous, carbonaceous, and traces of pyrite
Heather Fm Claystone with limestone stringers and interbedded claystone, kaolin, sandstone, and 

limestone in the lowermost part
VESTLAND GP.—M. Jurassic
Hugin Fm Sandstone, very fine to very coarse-grained, moderately to well sorted. Rare claystone 

stringers
Sleipner Fm Sandstone, very fine to medium-grained, moderately to well sorted, gray claystone, 

and layers of coal
HEGRE GP.—U. Triassic
Skagerrak Fm Fine-grained sandstone with some interbedded silty sections
Smith Bank Fm Reddish brown claystone with occasionally sandstone stringers
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errors, the feature is considered important, whereas if the 
error remains constant, the feature is deemed unimportant. 
The PFI method offers advantages such as straightforward 
interpretation, providing a global overview of a predictive 
model, and not requiring retraining. However, whether train-
ing or test data should be used to measure PFI is unclear. The 
permutation importance function in Scikit-Learn (Pedregosa 
et al. 2011) can be used for PFI analysis, calculating the 
feature importance scores based on specified criteria, with 
higher values indicating better predictive power.

Shapley values

A Shapley value, introduced by Shapley (1997) from the 
theory of cooperative games, serves as a critical means of 
measuring the importance of each feature and its contribu-
tion to a model's performance. Shapley values work by allo-
cating among participants the entire surplus value created 
through the coalition of all participants in each cooperative 
game. According to this theory, four properties must be met: 
efficiency, symmetry, dummy, and additive properties. The 
players represent the input features used in machine learning 
and interpretability, and the Shapley value determines how 
each component influences the outcome. Knowing how the 
features contribute to the model output helps understand the 
essential factors in generating the model's results. The Shap-
ley value is not dependent upon any particular model kind; 
hence, it applies to any model type and structure.

In contrast to other methods of interpreting model results, 
Shapley's values are based on a rigorous conceptual frame-
work. While intuitive reasoning is essential for interpret-
ability, other methods lack the same rigid conceptual frame-
work. Shapley values have the advantage of being evenly 
distributed among an instance's feature values. It has been 
suggested that the Shapley decision may provide the only 
way to offer detailed and complete clarifications in cases 
where the law mandates it. This is the right to explanations. 
Shapley, like any other approach, has inherent drawbacks. In 
most real-world scenarios, it is only possible to calculate an 
approximate solution because it is computationally expen-
sive. It is also easy to misunderstand. Shapley’s value does 
not reflect the difference between a model's expected and 
actual values when the feature is removed from the training 
process. How much does an input value contribute to the real 
and average prediction gap?

The open-source SHAP library works well with SHAP 
values and other metrics. SHAP establishes a link between 
efficient credit allocation and local explanations, making 
it model-agnostic. Doing so brings together optimal credit 
allocation and reasons at the local level. The use of game 
theory's traditional sharp values and their associated expan-
sions has been the focus of numerous recent works. Recent 
academics have expanded on this notion by developing 
approaches incorporating SHAP values into deep learning 
models and gradient explainers. These approaches can esti-
mate SHAP values for any model using specifically weighted 
local linear regression. It also provides various charts to help 
view the data and comprehend the model. This study does 
not include the mathematical foundations of the models uti-
lized because there is a vast collection of published material 
detailing them. An overview of the methodology and work-
flow applied to this research is shown in Fig. 4.

Results and discussion

Model performance evaluation

These models employed in this study were evaluated using 
an Akaike Information Criterion (AIC) to establish which 
model provided the most optimal fit concerning the data 
analysis. The assessment of the results shows that lower AIC 
values have a higher probability of relevant data than larger 
AIC. The following factors were considered when compar-
ing and selecting the most suitable model. A difference in 
AIC findings across models is considered insignificant if 
it is less than 10, moderate between 10 and 50, significant 
between 50 and 100, and strong if above 100. The results 
show that the extra tree algorithm was superior and most 
accurate for stick and slip vibration predictions. There was 
a difference of ~ 932 AIC when the extra tree model was 

Table 5   Numeric codes are assigned to formations in the intended oil 
field on the Norwegian continental shelf

Formation type Numeric code

Utsira Fm 1
Skade Fm 2
Grid Fm 3
Balder Fm 4
Sele Fm 5
Lista Fm 6
Ty Fm 7
Ekofisk Fm 8
Tor Fm 9
Blodøks Fm 10
Hidra Fm 11
Rødby Fm 12
Åsgard Fm 13
Draupne Fm 14
Heather Fm 15
Hugin (Block 1) Fm 16
Sleipner (Block 1) Fm 17
Hugin (Block 2) Fm 18
Sleipner (Block 2) Fm 19
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compared to the random forest model representing the two 
models with the lowest AIC (Fig. 5). Hence, the extra tree 
model showed a strong disparity and improved likelihood 
of fit compared to the other models. Even though AIC can 
calculate the relative quality of a model in terms of its 

convergence with the actual data, the model's bias for over-
fitting or under-fitting remains.

The models' performance was assessed based on the out-
of-sample data results. Since the models have been trained 
with the training data, any attempt to reproduce the values 

Fig. 1   Heatmap to assess the relationships between the input variables and targets; a Pearson correlation, b Spearman correlation, c) Kendall 
correlation
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will likely result in high accuracy. High training accuracy, 
however, is not always desirable since it may overfit the data, 
collecting intrinsic noise and yielding a non-generalized 
model. Test accuracy based on non-sample data refers to 
the possibility of accurate predictions made by algorithms 
based on variables that have not yet been seen or observed. 
Since the model aims to improve unseen data, models must 
have high test accuracy. Correlation coefficient (R2) values 
greater than 0.85 in training and accuracy test scores were 
deemed an acceptable trade-off over biases and variance for 
this work. Table 6 shows that the Extra Tree model had the 
highest R2 on the test data for predicting stick and slip. Fig-
ure 6 compares all of the model estimates to actual results.

Any meaningful gain in accuracy, and hence a reduc-
tion in inaccuracy, achieved by machine learning models 
have a major influence on making decisions. A result of 
the models employed in the study produced mixed perfor-
mance results which were heavily influenced by both their 
theoretical and statistical underpinnings. Figure 7 depicts 
the models' performance as a cross-validation evaluation to 

analyze their exactness, efficiency, and reliability. Based on 
each model's root mean square error (RMSE) findings, it 
can be concluded that the Extra Tree model evaluation is the 
most reliable compared to the real stick and slip values. The 
Mean Absolute Error (MAE) also suggests that the Extra 
Tree model is the most accurate for predicting stick and slip 
vibrations. In selecting the most suitable model, the ranking 
features used in this study are MAE, RMSE, AIC, and R2. 
The performance of the extra tree model is attributed to the 
bias-variance concept used to build this model. When the 
cut-point and features are explicitly randomized, coupled 
with ensemble averaging, the algorithm can significantly 
reduce variance compared to weaker randomization tech-
niques employed by several algorithms. Aside from having 
similar advantages as Decision Trees based on consistency 
for universal generalization and approximation, Extra Trees 
also provide resilience regarding gross model errors. This 
is because outliers affect its predictions slightly and locally. 
When the input features are significantly more than the ran-
dom splits, Extra Trees potentially outperform Decision 
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Fig. 2   Stacked bar chart for the different correlation coefficients
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Trees in terms of computational efficiency while resisting 
irrelevant input features.

Model agnostic results

Permutation importance based on XGBoost has been com-
puted to estimate the variables' significance and analyze 
the influence of multicollinearity among input parameters. 
Accordingly, the results in Fig. 8 show that the collar rota-
tional speed, annular temperature, and gamma-ray highly 
correlate to predict stick and slip variations. The results 
indicate that permuting an input feature reduces the model's 
accuracy by, at most, 0.125, suggesting that some of the 
inputs are relevant. However, Isonic shock, transverse shock 
risk, ARC shock level, rate of penetration, and pump pres-
sure do not offer any improvements to the model prediction. 
A comparison is made between this result and the result 

of the XGBoost algorithm presented in Fig. 9. A model-
agnostic approach can be used to infer causality, despite the 
discrepancy in the result. This is necessary because cor-
relation does not mean causation; hence, feature selection 
techniques based on correlation may not entirely improve 
model performance.

Analysis of features using agnostic model metrics

An illustration of the PFI results for the input features in 
the entire data set is shown in Fig. 10. The final model 
prediction was made using the same train/test split as in 
the previous study to maintain consistency. As a result 
of the initial testing, R2 using this Random Forest (RF) 
model reached 0.94. The importance score is calculated 
so that higher values indicate higher predictive power. A 
significant part of the accuracy score 0.94 is attributed 

Fig. 3   Pair plot distribution of some variables color-coded against the formation type
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to the value of the most relevant features. According to 
the results, some input variables are significantly under-
weighted. According to these outcomes, we can conclude 
that a very limited number of variables have significant 
predictive power. This result indicates that some of the 
characteristics are more relevant than others. Based on 
the high test accuracy computation, this outcome follows 
the results.

The initial permutation importance calculated on the 
training data shows the model dependency on each feature 
during training. However, it is vital to continue to mention 
that this analysis is done for both the training and testing 
datasets. This is to help account for features that may help 
with the generalization power of the model. If a feature is 
considered important for the train set but not for the test 

Fig. 4   A flow chart summarizes 
the procedure and methodology 
used in the research

Fig. 5   AIC results comparing 
all the models on the test data

40000 45000 50000 55000 60000 65000 70000 75000
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Table 6   Training and testing the coefficient of correlation score for 
each model used in this study

Models R2 score for training R2 score for testing

Ridge regression 0.818433313 0.776743
Lasso regression 0.814570912 0.773679
Support vector machine 0.999954119 0.757682
Decision tree 1 0.920748
Random forest 0.999274577 0.938261
Extra tree regression 1 0.944944
Gradient boosting regres-

sion
0.913981113 0.867297

XGBoost 0.99113411 0.936788
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Fig. 6   Cross-plot of predicted vs. actual stick and slip for all models based on test data
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set, the model will likely overfit. Sensitivity analysis was 
performed to select the relevant features for further pre-
diction. The RF model was used to predict stick and slip 
vibrations using the top 24–18 features, and the result is 
illustrated in Table 7. The results indicate that the optimal 
number of features to use in predicting stick and slip is 22.

Analysis of features using shapley values model 
agnostic metrics

The extra tree model was used to predict drill string vibra-
tions using all the features. The same training and testing 
datasets used in the PFI analysis were used. Since machine 
learning models are supposed to be interpretable to help 
understand how a model made a particular prediction, 
model-agnostic metrics are helpful. Shapley's values origi-
nated from game theory, and it is necessary to clarify its 
application to supervised machine learning interpretability. 
A game represents the prediction assignment for a specific 
event in the dataset. The gain is calculated by comparing 
the actual forecast for a particular instance to the average 
estimates applied to all the cases. A given instance's feature 

values collaborate to achieve the gain in the stick and slip 
forecast. Figure 11 visualizes the shapely values as abso-
lute values in a feature importance plot. In shapely feature 
importance, the most important features are those with high 
absolute values. The average mean of the Shapley values 
for each feature across the data is computed to evaluate the 
global importance. The collar rotational speed, annular tem-
perature, and gamma-ray feature variables were highly cor-
related, with gamma-ray playing the most significant role 
and affecting the target by an average of 34.06 r/min on the 
x-axis. The plot also indicated that the correlation of forma-
tion type, bottom turbine revolutions, and ARC shock level 
to the target was low, with the inclusion of ARC shock level, 
disagreeing with PFI results.

Based on this result, further investigation was neces-
sary to ascertain which features were irrelevant to the tar-
get. The importance of Shapley values is an alternative to 
the significance of permutation features. Both importance 
measures have significant differences. The decline in model 
performance determines the permutation feature's relevance, 
whereas Shapley values are primarily determined by the 
magnitude of the features' provenances. In terms of feature 
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importance, the plot is informative; however, it provides few 
other details outside of this significance. The bee swarm 
technique, a more informative plot, is used for analysis.

Figures 12 and 13 visualize the shapely values as abso-
lute values in a bee swarm summary plot for train and test 
data, respectively. The y-axis determines a feature, and the 
x-axis defines a Shapley value. The feature importance with 

Fig. 8   Permutation importance plot

Fig. 9   XGboost feature importance to the target features
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associated effects is combined into global explanations 
whereby a feature matrix of Shapley values is achieved for 
every instance. According to the summary plot, the first 
indications of a positive and negative correlation between 
the value of a feature and its impact on a target are identi-
fied. All the data points, made up of all the training data 
points, overlap and are scattered on the y-axis. This type 
of visualization depicts how Shapley values are distributed 
across features. Feature values are arranged in descending 
order of significance. From the plots, low feature values are 
represented in blue, while high feature values are denoted 
in red. Analyzing the influence of gamma ray and annular 
temperature, it is observed that low values predict high stick 
and slip values, whereas high values predict low stick and 
slip values. The distribution of the gamma-ray data points 
also indicates a global explanation that explains the entire 
model's behavior. This analysis confirms that this correla-
tion alone cannot be termed causality. As a result, to fully 
understand the influence of other variables on stick and slip 

prediction, a model-agnostic approach is needed. From the 
bee swarm plot, it can be observed that about 22 features can 
globally explain how the predictions were made.

The results of the bee swarm plot confirmed that features 
that have high importance in both the train and test results 
exhibit their significance in the global explanation of the 
target. From the demonstrated results, the following analysis 
was derived:

1.	 Feature importance: The features are ranked in descend-
ing order, and torque and bit depth are ranked first from 
the train and test data plot. The formation type feature 
has close to zero importance because it does not have 
any causal effect on predicting stick and slip.

2.	 Impact: There is a negative correlation between torque 
and bit depth, with a high prediction effect in general, 
as shown by the horizontal location of the data points.

Fig. 10   Permutation features the importance of the input variables

Table 7   Selection of input features based on accuracy performance

Input features Features dropped Accuracy

24 None 0.938261
23 Formation type 0.944203
22 Formation type, bottom turbine revolutions 0.954385
21 Formation type, bottom turbine revolutions, ARC shock level 0.954103
20 Formation type, bottom turbine revolutions, ARC shock level, transverse shock risk 0.954188
19 Formation type, bottom turbine revolutions, ARC shock Level, transverse shock risk, rate of pen-

etration
0.954245

18 Formation type, bottom turbine revolutions, ARC shock level, transverse shock risk, rate of penetra-
tion, torque

0.954261
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Feature values based on Shapley values are based on a 
solid theoretical basis in game theory and compute feature 
values reasonably distributed to the target. This method 
also contributes to the unification of linguistic learning. 
Fast computations allow multiple Shapley values to be cal-
culated for global model interpretations. Because Shapley 
values represent a small element of global variations, those 
interpretations are compatible with local explanations.

Evaluation of top features

Further analysis was performed using the top 5 performing 
models for the top 22 features based on PFI and Shapley 
values. This was done to see if they would outperform the 
initial model predictions. PFI resulted in the removal of for-
mation type and Isonic shock. While Shapley values resulted 
in the reduction of formation type and bottom turbine 

Fig. 11   A measure of the importance of a SHAP feature is the mean absolute Shapley value
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revolutions. Table 8 provides a summary of the results of 
the research. All three top-performing approaches improved 
when new features based on PFI and Shapley values were 
used. Although Shapley values selected the most relevant 
features, most of the enormous improvement in model accu-
racy can be seen.

Model optimization

This study employed the Bayesian optimization (BO) tech-
nique to tune specific model parameters to improve model 
performance. In developing our Bayesian optimized extra 
trees (ET) model, a range of hyper-parameters were carefully 

selected and tuned to optimize the algorithm's performance. 
A comprehensive table detailing the chosen hyper-parame-
ters, their descriptions, and their respective values can be 
found in Table 9. This table provides a clear understanding 
of the algorithm's configuration. It allows for easy replica-
tion of our methodology. By referring to Table 9, readers 
can gain insights into the intricacies of our model and under-
stand how the selected hyper-parameters contribute to the 
prediction of stick and slip vibrations in drilling operations.

The results in Fig. 14 show the model performance of 
the extra tree model using the top 22 features identified by 
Shapley values and the BO_ET model. The results were 
compared to those of Srivastava et al. (Srivastava et al. 

Fig. 12   A bee swarm summary plot of the effect of SHAP values on a model target using the train data
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2022). The authors used the same data as this study but 
employed different techniques and models for predicting 
stick and slip vibrations. Notably, although machine learn-
ing models depend, most data are expected to be identical. 
Consequently, this comparison focuses on the input fea-
tures and how they explain the target rather than down-
grading the other researchers' results.

From the error analysis performed, it was observed that 
the features selected based on the Shapley values greatly 
reduced the model's error. The initial extra tree model 
recorded an MAE of 5.50 r/min, while the MAE from the 
Shapley selected features was 1.E-06 r/min. This result 
represents about a 95% reduction in MAE. Similarly, the 
RMSE for the extra tree model using all 24 features was 

9.9672 r/min. The RMSE from the Shapley selected fea-
tures was recorded as 4.4616 r/min. Again, this represents 
about a 99% reduction in this error metric. The extra tree 
was further improved by hyper-parameter tuning where 
BO_ET recorded MAE and RMSE values of 0.002156 as 
well as 0.024495 r/min, accordingly. Moreover, the supe-
riority of the extra tree model can largely be attributed to 
the bias-variance concept used to build this model, which 
makes it resilient to outliers. Based on all evaluation cri-
teria, it can be concluded that Shapley selected parameters 
are highly relevant, offers a global generalization of the 
target, and improve model efficiency.

Fig. 13   A bee swarm summary plot of the effect of SHAP values on a model target using the train data
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Sensitivity analysis

In Fig. 15, we demonstrate the kernel density estimates for 
predicted and actual stick and slip results. A blue line indi-
cates predicted values, while a purple line indicates actual 
values. As a result of observing the testing data, the BO_ET 
has a much higher degree of agreement with the real data. 
Specifically, this investigation indicates that the BO_ET can 
capture a wider range of values than the other algorithms 
used in this study. Consequently, this observation makes 
it suitable for evaluating stick and slip vibrations in other 
wells using the relevant drilling parameters. As a result, the 

sensitivity analysis verifies the assessment metrics outlined 
above.

In this study, explainable AI was demonstrated using 
model-agnostic metrics. Since correlation does not mean 
causation, simple statistical techniques may not be able to 
indicate the causal effects of each input on the target. The 
findings show that gradually increasing the input variables 
above 22 causes a degradation in the model's accuracy. 
Based on Shapley values, formation type and bottom tur-
bine revolutions are among the variables that have no direct 
influence on stick and slip vibrations. Hence, it should not 

Table 8   Computed the accuracy 
of the test data using the top 5 
algorithms

Various models Achieving accuracy based 
on all features

Accuracy based on PFI's 
top 22 features

Accuracy based on Shap-
ley values top 22 features

Gradient Boosting 0.867297 0.872997 0.995597
Decision Tree 0.920748 0.934348 0.993548
Random Forest 0.938261 0.943361 0.991361
Extra Tree 0.944944 0.956144 0.999888
XGBoost 0.936788 0.941888 0.991288

Table 9   Hyper-parameters of 
Bayesian Optimized Extra Trees 
(ET) Algorithm

Hyper-parameter Description Value

n_estimators Number of trees in the forest 100
max_depth Maximum depth of the tree 10
min_samples_split Minimum number of samples required to split an internal node 2
min_samples_leaf Minimum number of samples required to be at a leaf node 1
max_features The number of features to consider when looking for the best split sqrt
bootstrap Whether bootstrap samples are used when building trees False

Fig. 14   Comparing the estima-
tion errors of top-performing 
models
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be used to train the model. Using relevant causal features, 
model-agnostic approaches have provided some trustwor-
thiness and useful solutions for drilling-string vibration 
prediction. The ability to adequately predict stick and slip 
before drilling gives vital information to help choose optimal 
RPM and WOB for suppressing such a phenomenon. As a 
result, forecasting stick and slip can reduce costly downtime, 
including downhole motor failures, twisting off, and damage 

to drill bits (Fig. 16). Predicting stick and slip vibrations can 
give valuable insight into the type of interventions required 
to be implemented.

Assessing results validity in stick–slip prediction 
models for oil fields

Regarding the validity of the results, we point out that the 
test set was kept separate from both the training and valida-
tion sets throughout the entire procedure. It was essential 
to determine the models' performance on unseen data and 
compare them to one another. This is discussed in Sect. 4.2. 
However, it is critical to note that test accuracy varies sig-
nificantly within the individual wells of the test set. This is 
despite our efforts to test the model as accurately as pos-
sible. In this regard, the findings might have differed had 
the data been split differently. Additionally, the data itself 
had a significant impact on this paper. The data sets for the 
desired oil field were carefully chosen. This is discussed 
in section "Data analysis and visualization". The data sets 
for the desired oil field were carefully selected for accurate 
generalization.

Because the model was not trained on the test set, it could 
not predict torsional vibrations. This is because there was a 
stick or slip in the test set. As stated in the paper, we used 
data from the Norwegian Petroleum Directorate (NPD), 
which can be regarded as a valid source of information. 
There are various sources and periods from which the data 
were reported to NPD, which may result in the differing 
quality of the reported data. Since the equipment used for 
data collection has evolved and improved over the years, 

Fig. 15   Kernel density estima-
tion for BO_ET model stick 
and slip prediction demonstrat-
ing the closeness of projected 
values to real values

Fig. 16   BO_ET versus actual stick and slip per formation type 
(R2 = 0.9999)



199Journal of Petroleum Exploration and Production Technology (2024) 14:175–201	

1 3

the time aspect of data collection is relevant. In addition, 
differences in data collection processes between companies 
may also have affected the results. This paper presents arti-
ficial intelligence (AI) learning algorithms that can only be 
applied to predict stick and slip based on the data given to 
them. Humans can determine the right stick and slip for-
mations using their experience and possibly other measure-
ments. A machine learning algorithm will detect false pat-
terns if fed erroneous data.

Recognizing and overcoming limitations

Although our research demonstrates promising results 
regarding predicting stick–slip vibrations in drilling opera-
tions using machine learning, it is important to acknowledge 
some potential limitations of this study. By addressing these 
limitations, we can improve the validity of our findings and 
identify areas for future research.

1.	 Limited data: The model's performance depends on 
the quality and quantity of downhole sensor data and 
drill string model information. The availability of com-
prehensive and accurate data is essential for the model 
to make accurate predictions. However, if the data is 
insufficient or of low quality, it may hinder the model's 
performance.

2.	 Generalizability: Our model may be limited to the spe-
cific drilling operations or conditions it was trained on, 
reducing its applicability across different geological 
formations or drilling operations. Further testing and 
adaptation may be necessary to ensure the model's effec-
tiveness in diverse scenarios.

3.	 Model complexity: Our study's Bayesian Optimized 
Extra Trees approach may be computationally expen-
sive. This could limit the model's applicability in 
real-time drilling operations or where computational 
resources are constrained. Future research could explore 
optimizing the computational efficiency of the model.

4.	 Comparison with other models: While our model out-
performed several reported models, a more extensive 
comparison with a wider range of existing models would 
provide greater insight into its true value and relative 
performance. This could also highlight potential areas 
of improvement for our model.

5.	 Implementation challenges: Integrating our model into 
automatic driller systems could encounter hardware 
limitations, integration difficulties, and resistance from 
industry practitioners reluctant to adopt new technolo-
gies. Future work should address these challenges and 
facilitate the model's adoption in practical settings.

In conclusion, recognizing and addressing these limita-
tions can further refine our model and enhance its applicabil-
ity in predicting stick–slip vibrations in drilling operations, 
ultimately contributing to more efficient and cost-effective 
drilling processes.

Conclusions

	 1.	 This research introduces a novel method for predicting 
stick and slip vibrations in drilling operations using 
machine learning techniques, specifically model-
agnostic regression models combined with Bayesian 
Optimized Extra Trees. The approach demonstrates 
significant innovation in addressing downhole vibra-
tions and holds the potential to enhance drilling effi-
ciency and safety in the oil and gas industry.

	 2.	 Various data analysis and visualization techniques were 
employed to quantify the relationships between input 
and output variables, revealing both linear and nonlin-
ear correlations. The selection of input features based 
on metrics such as MAE, RMSE, AIC, and R2 aided 
in identifying the most relevant variables for accurate 
stick and slip predictions.

	 3.	 The Extra Tree model outperformed other models, 
achieving superior accuracy in stick and slip vibra-
tion predictions as indicated by lower AIC values and 
higher R2 scores. The model's performance was vali-
dated using out-of-sample data, emphasizing its reli-
ability and ability to generalize to unseen data.

	 4.	 Integration of downhole sensor data and a drill string 
model enabled the model to accurately identify stick 
and slip occurrences in real-time, providing opportuni-
ties for optimizing drilling parameters such as revolu-
tions per minute (RPM) and weight on the bit (WOB). 
By mitigating stick and slip severity, the proposed 
method improves the rate of penetration (ROP) and 
contributes to enhanced productivity and safety in the 
oil and gas industry.

	 5.	 The research highlights the significance of feature 
selection and the importance of relevant input fea-
tures. Collar rotational speed, annular temperature, 
and gamma-ray exhibit high correlations with stick and 
slip vibrations prediction. On the other hand, variables 
such as Isonic shock, transverse shock risk, ARC shock 
level, rate of penetration, and pump pressure have lim-
ited impact on the model's prediction.

	 6.	 The methodology employed in this research, includ-
ing permutation feature importance and Shapley val-
ues, provides insights into the relevance and impact of 
input variables on stick and slip predictions. The use 
of Bayesian Optimization for hyper-parameter tuning 
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enhances the performance of the Extra Tree model, 
resulting in even lower MAE and RMSE values.

	 7.	 The proposed method demonstrates its superiority 
over existing models reported in the literature through 
rigorous testing on data from a Norwegian oil field. 
The potential integration of this method into automatic 
driller systems on offshore drilling rigs offers real-time 
identification and management of stick and slip vibra-
tions, contributing to improved drilling efficiency and 
safety in the oil and gas industry.

	 8.	 The adoption of machine learning techniques, as dem-
onstrated in this research, presents the potential for 
solving complex problems in the oil and gas sector. 
The reduction in the need for human operators to iden-
tify and manage stick and slip vibrations saves time 
and resources while minimizing drill string failures 
and associated costs.

	 9.	 By embracing data-driven technologies and integrat-
ing this approach into existing drilling systems, the oil 
and gas industry can transform its practices, leading 
to improved performance, cost savings, and positive 
environmental impacts. The proposed method's ability 
to optimize the penetration rate contributes to more 
sustainable drilling operations by reducing energy 
requirements.

	10.	 This research provides a comprehensive analysis of the 
proposed method, its advantages over existing models, 
and the potential practical implications for the oil and 
gas industry. The findings emphasize the innovative 
nature of the approach and offer valuable insights for 
decision-making and future advancements in machine 
learning in the oil and gas sector.
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