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Abstract
The 3D digital rock technology is extensively utilized in analyzing rock physical properties, reservoir modeling, and other 
related fields. This technology enables the visualization, quantification, and analysis of microstructures in rock cores, leading 
to precise predictions and optimized designs of reservoir properties. Although the accuracy of 3D digital rock reconstruc-
tion algorithms based on physical experiments is high, the associated acquisition costs and reconstruction processes are 
expensive and complex, respectively. On the other hand, the 3D digital rock random reconstruction method based on 2D 
slices is advantageous in terms of its low cost and easy implementation, but its reconstruction effect still requires significant 
improvement. This article draws inspiration from the Concurrent single-image generative adversarial network and proposes 
an innovative algorithm to reconstruct 3D digital rock by improving the generator, discriminator, and noise vector in the 
network structure. Compared to traditional numerical reconstruction methods and generative adversarial network algorithms, 
the method proposed in this paper is shown to achieve good agreement with real samples in terms of Dykstra-Parson coef-
ficient, porosity, two-point correlation function, Minkowski functionals, and visual display.
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List of symbols
b  Average curvature
b  Average width
Dn  Discriminator of stage n
Gn  Generator of stage n
�i ∶  Length of the i-th edge
Ladv  Confrontation loss
Lrec  Reconstruction loss
m  The number of generated samples
N  Total number of stages
n  The current number of stages
P  Pore phase

p  Poisson's distribution
r  Rescaling scalar
r  Separation distance
S  Surface area
S2  Two-point probability function
Sv ∶  Specific surface area
V   Volume
XN  3D rock sample
xn  Real image
x0  Downsampled image
x̃i  The i-th generated sample
x̂(i)  The average sample of i weights
z(i)  The i-th 3D noise vector
�  The weight factor of reconstruction loss
�i ∶  Angle between the outer normal of two surfaces 

touching on the  i  -th edge
�  Scaling factor
∈  Weight
�  Learning rate
�D ∶  Parameter of discriminator
�G  Parameters of generator
�1(x)  Maximum radii of curvature
�2(x)  Minimum radii of curvature
�  Porosity
�  Euler characteristics
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Introduction

Three-dimensional digital rock cores can provide a virtual 
representation of real rock samples, enabling researchers 
to study their physical and chemical properties without 
the need for physical experimentation. This technology 
can be used to simulate fluid flow and rock properties in 
oil and gas reservoirs, aiding in reservoir characteriza-
tion, oil recovery prediction, and reservoir management. 
Furthermore, digital rock technology enables research-
ers to optimize drilling, hydraulic fracturing, and other 
extraction techniques, ultimately leading to more efficient 
and cost-effective oil and gas production. Currently, three-
dimensional digital rock reconstruction methods are gener-
ally divided into two categories: (1) The 3D digital rock 
reconstruction based on physical experiments; (2) The 3D 
digital rock reconstruction based on numerical reconstruc-
tion (Linqi et al. 2019).

The 3D digital rock reconstruction method based on 
physical experiments involves scanning physical experi-
mental samples, such as rock core samples, to obtain 
high-resolution images, which are then converted into 3D 
digital models using computer algorithms. This method 
requires the sample to be cut into standard sizes, which can 
result in waste and damage during the research process. 
However, the resulting digital rock model generated by 
this method is highly accurate and reliable, providing a 
visual representation of the real sample for analyzing its 
physical and chemical properties. The four main physi-
cal experimental methods for creating 3D digital cores 
include a series of two-dimensional slice stacking imaging 
(Tomutsa et al. 2007), focused ion beam scanning (Sok 
et al. 2010), X-ray computed tomography (Youssef et al. 
2008), and confocal laser scanning (Rembe and Draben-
stedt 2006; Yunhai et al. 2013).

The two-dimensional slice stacking imaging method 
cuts the rock sample parallelly and polishes to obtain flat 
surfaces and then obtains microscopic images of these pol-
ished rock surface to form a 3D core image. The disadvan-
tage of this technique is that it is easy to generate static 
electricity on the rock sample surface and may damage 
the sample itself, which is not conducive to core imaging. 
The focused ion beam scanning method grinds the sample 
surface, which may cause loss of the sample's physical 
form during the grinding process, thus damaging the accu-
racy of the observation. The X-ray computed tomography 
method involves X-rays passing through the rock sample 
and being converted into electrical signals in a photodetec-
tor. The computer then reads these signals to obtain the 
three-dimensional data of the rock sample. This technique 
is currently the most widely used technology due to its 
high accuracy. However, it cannot simultaneously produce 

high-resolution and large-scale images. The confocal laser 
scanning method uses a confocal laser scanning micro-
scope to capture the 3D distribution of pores and fissures 
in the rock sample. However, the maximum penetration 
depth of the confocal laser scanning microscope is limited, 
requiring a certain thickness of the rock sample. Further-
more, this method requires the injection of a staining agent 
into the rock sample, but it cannot be injected into small 
and independent pores, resulting in inaccurate pore distri-
bution imaging. Therefore, this method is not widely used 
in practical research. In conclusion, the three-dimensional 
reconstruction method of obtaining rock core samples 
through physical experiments is difficult to industrialize 
due to cost issues and technical issues.

Currently, experts and scholars have developed various 
numerical reconstruction-based algorithms for digital core 
reconstruction and have made excellent progress in research. 
Different algorithm models can be applied according to dif-
ferent rock types, optimizing the generation effect for differ-
ent rock properties. However, there are still several problems 
in this field that have not been completely solved. The main 
issues are: (1) poor universality of the reconstruction model. 
Most methods can only generate on homogeneous porous 
media, and it is difficult to capture the internal structural 
characteristics of heterogeneous porous media; (2) some 
methods require hard data constraints, resulting in increased 
parameters and longer reconstruction time. (3) The connec-
tivity of the generation effect is poor and shows some dif-
ferences from the actual microstructural characteristics of 
porous media.

The process of conventional 3D digital core reconstruc-
tion based on numerical reconstruction mainly involves the 
following steps: first, actual 3D digital core data is obtained 
as training samples. Then, using mathematical modeling, the 
information in 2D single images is mapped to the distribu-
tion characteristics of core images in the training samples. 
Finally, the 2D information is converted to 3D information 
based on the mapping information to reconstruct the 3D 
digital core. Common numerical reconstruction algorithms 
include the Gaussian field algorithm, Simulated Annealing 
algorithm, Sequential Indicator Simulation algorithm, Multi-
point Geostatistics method, and Markov chain Monte Carlo 
algorithm.

The Gaussian field algorithm (Joshi 1974; Quiblier 1984) 
is based on statistical information of 2D rock core slices. Its 
advantages are that the reconstruction process is simple and 
computationally efficient, but its disadvantage is the poor 
connectivity reconstruction of digital cores. The Simulated 
Annealing algorithm (Hazlett 1997) has the advantage of 
effectively outputting constraint function information to 
the final reconstructed 3D digital core, showing the spatial 
structural characteristics of the pore space. This algorithm 
can introduce any statistical property as a constraint during 
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the reconstruction process and is very effective for recon-
structing rocks with high porosity and high permeability, and 
relatively simple pore structures. However, it can be easily 
limited by the modeling information, and as the constraints 
increase, the reconstruction process becomes slower. When 
reconstructing large rocks with complex pore structures, the 
speed and accuracy can be greatly reduced. Sequential Indi-
cator Simulation (Keehm 2003) is a method that combines 
directional kriging interpolation with conditional stochastic 
simulation to create a probability distribution field for data. 
The algorithm's reconstructed 3D digital rock core is highly 
similar to the real rock core, but it falls short of fundamen-
tally addressing the issue of reconstructing the connectivity 
of digital rock cores, and its accuracy in reconstruction can 
be easily influenced by the quality of the images. Addition-
ally, due to the algorithm's relatively fixed evaluation func-
tion, the model's potential for improvement is limited. Multi-
point geostatistics (Okabe and Blunt 2004, 2005) draws on 
the principles of multi-point statistics in geological modeling 
algorithms to consider the correlation between spatial multi-
points. It uses a training image to represent the spatial struc-
ture of geological variables and then randomly reconstructs 
images with similar features. This method produces a digital 
core with good connectivity, which can effectively replicate 
2D or 3D models of pore structure and reconstruct the long-
distance connectivity of pore space. However, reconstructed 
rock samples have similar structural features in different 
directions, the calculation speed is slow, and hard data con-
straints need to be given in advance (Ting et al. 2010). The 
Markov Chain Monte Carlo algorithm (Keijan et al. 2004) 
is a method that creates a state sequence of a Markov chain. 
The state value at each position depends on a limited number 
of positions in front of it, and the probability of this state is 
called conditional probability. Wu et al. (2006) obtained the 
conditional probability of the neighborhood template under 
various conditions and introduced the concept of a 15-point 
neighborhood in 3D space for value reconstruction. This 
algorithm considers spatial structural information, resulting 
in a digital core with good connectivity, which is typically 
more accurate than the Sequential Indicator Simulation algo-
rithm. However, it is not suitable for samples with strong 
heterogeneity (Chenchen et al. 2013), and the reconstructed 
digital core has weak heterogeneity and a concentrated pore 
radius distribution.

With the progress of deep learning, numerous data 
reconstruction issues have been effectively solved. In 2017, 
Mosser et al. (2017) introduced the deep convolutional gen-
erative adversarial network (3D-DCGAN) to digital core 
reconstruction. This algorithm employs 3D convolution to 
comprehend the three-dimensional data distribution, result-
ing in remarkable reconstruction outcomes on the Berea 
sandstone dataset. One notable advantage of this approach 
is its ability to generate multiple pore structures quickly by 

exploiting the implicit representation of the learned data 
distribution. However, this model also faces challenges, 
such as unstable training and convergence difficulties. Du 
et al. (2020) used a deep transfer learning algorithm to 
reconstruct porous media, extracting complex features of 
porous media with deep neural networks, and then replicat-
ing these features to obtain reconstruction results through 
transfer learning. This method shortens the reconstruction 
time and reduces the burden on the CPU. Zhang et al. (2021) 
used a model combining generative adversarial networks and 
variational autoencoders (VAE) to reconstruct 3D digital 
cores, proposing the VAE-GAN model. Combining GAN 
with VAE balances the advantages and disadvantages of 
both, improving reconstruction efficiency and quality. The 
aforementioned deep learning-based models require a large 
amount of sample data for training, and the high cost of 
obtaining rock slice data has led to some obstacles in their 
application and promotion. Li et al. (2022) based on the 
dimensionality enhancement concept in deep learning and 
super-dimension theory, designed a cascading progressive 
generative adversarial network to reconstruct 3D gray-
scale rock core images. The input object of this model is 
a two-dimensional grayscale image, so its advantages are: 
it requires less training samples, shorter training time, and 
strong generalizability. However, the model has the disad-
vantage of difficulty in convergence for reconstructing struc-
turally complex and highly heterogeneous rock cores.

To overcome the difficulty of collecting large-scale data-
sets, this study was inspired by the Concurrent-Single-Image 
GAN (ConSinGAN) (Hinz et al. 2020) and replaced the 2D 
convolution kernels in the generator and discriminator with 
3D ones, and modified the input 2D noise vector to 3D, 
resulting in a 3D input sample that preserves the texture 
information of the reconstructed structure and maintains the 
continuity and variability between the reconstruction layers. 
Several stages were trained simultaneously in a sequential 
multi-stage manner, which reduces the number of model 
parameters, speeds up training, and makes the model more 
stable. Compared with traditional reconstruction methods 
and existing GANs, our method demonstrates significant 
advantages in terms of reconstruction quality and stability.

Materials and methods

The model structure

The 3D-Porous-GAN consisting of a 3D generator G and a 
3D discriminator D. The generator learns the image distri-
bution and produces samples, while the discriminator dif-
ferentiates between the generated samples and real images. 
These two components are linked via forward and backward 
propagation and trained alternatively to achieve the objective 
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of generating high-quality images. The network structure of 
the model is illustrated in Fig. 1.

It is a gradual generator. The training of the generator 
includes six stages, from stage 0 to stage 5. Each stage con-
sists of three convolution blocks, and each convolution block 
consists of one convolution layer and one LeakyReLU layer. 
Each layer of convolutional neural network has 64 convo-
lution kernels with a size of 3 × 3 × 3, and the convolution 
step size is 1. The patch discriminator (Isola et al. 2017) 
limits attention to local image blocks and only punishes on 
the scale of the patches. The discriminator consists of five 
convolution blocks, and each convolution block of the mid-
dle three convolution blocks consists of a convolution layer 
with a convolution kernel size of 3 × 3 × 3 and a LeakyReLU 
layer except the head and tail.

We use the same loss function as the original SinGAN 
(Shaham et al. 2019). The receptive field related to the gen-
erated image size decreases with the increase in the number 
of stages. When the image resolution is low, the discrimi-
nator pays more attention to the global distribution of the 
image. When the image resolution is high, the discriminator 
pays more attention to the texture details of the image. In 
all stages, the weights of the discriminators in the previous 
stage are used to initialize the weights of the discriminators 
in the next stage. In a given stage n, the formula for optimiz-
ing the sum of the confrontation loss and the reconstruction 
loss is shown in Eq. (1):

Among them, Ladv

(
Gn,Dn

)
 is the confrontation loss of 

WGAN-GP (Gulrajani et al. 2017) and Lrec

(
Gn

)
 is the recon-

struction loss, which is used to improve the training stability 
of the model. � is the weight factor of reconstruction loss. In 
all experiments, � = 5.

For the reconstruction loss, the generator Gn , takes the 
downsampled image x0 of the original image xn as input, 
and then trains to reconstruct the image at the resolution of 
stage N. The reconstruction loss in the stage N is the squared 
difference between the reconstructed image Gn

(
x0
)
 and the 

original image xn , and the formula is Eq. (2):

Model training process

(1) The 3D rock sample XN is downsampled for N − 1 
times, and N downsamples including rock sample XN 
are obtained as the input of each stage discriminator. 
The down sampling ratio is calculated according to 
Eq. (3):

(1)L = min
Gn

max
Dn

Ladv(Gn,Dn) + �Lrec(Gn)

(2)Lrec

(
Gn

)
=
‖
‖
‖
Gn

(
x0
)
− xn

‖
‖
‖

2

2

(3)
xn = XN × r((N−1)∕log(N))*log(N−n)+1 forn = 0,… ,N − 1

Fig. 1  The3D-Porous-GAN training process
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Among them, n is the current number of stages, and N is 
6, which is the total number of stages. For example, the input 
x0 in stage 0 is substituted by Eq. (3) to get x0 = XN × r6 , 
and the input x1 in stage 1 is substituted by Eq. (3) to get 
x1 = XN × r((5 log(6))*log(5)+1) , and so on.

 (2) The following parameters are initialized: the number 
of iterations k of the discriminator D, the number of 
generated samples m , the learning rate � , the param-
eters �D , �G of Gand D, the number of stages N , the 
gradient penalty correlation coefficient � , and the 
weight factor � of reconstruction loss. The training 
starts from stage 0, and the current stage number is 
n . For the generator, the parameters of the last three 
stages are trained at the same time, and the parameters 
of the previous stage are fixed. For the discriminator, 
in all stages, the weight of the previous stage (stage 
n − 1 ) discriminator is used to initialize the weight of 
the given current stage.

 (3) Perform n stages of training, starting from stage 0, and 
when n < N , perform steps (4) to (13).

 (4) When G does not converge, perform the following 
steps.

 (5) Perform steps (6), (7), (8), and (9) ktimes.
 (6) m three-dimensional noises 

{
z(1), z(2),… , z(m)

}
 are 

extracted from the random vector that obeys the dis-
tribution pz(z) and input into the generator.

 (7) G e n e r a t e  m  r o ck  ge n e r a t i o n  s a m p l e s {
x̃(1), x̃(2), x̃(3),… , x̃(m)

}
 by using the noise term input 

by generator x̃i = G
(
zi
)
.

 (8) Randomly select a weight ∈ , ∈∼ U[0, 1] from the uni-
form distribution of 0–1 to obtain m weighted average 
samples x̂(i) =∈ xn + (1− ∈)̃x(i), i = 1, 2, 3,… ,m.

 (9) The parameter �D of the discriminator is updated by 
using the random gradient ascending method so that 
Eq. (4) gets the maximum value:

 (10) Step (4) End of execution.
 (11) Randomly extract m noise vectors 

{
z(1), z(2),… , z(m)

}
 

from the noise distribution pz(z) and input them into 
the generator.

 (12) Input noise vector with generator x̃i = G
(
zi
)
 to gener-

ate m shale samples 
{
x̃(1), x̃(2), x̃(3),… , x̃(m)

}
.

 (13) Use the random gradient drop algorithm to update 
the parameter �G of the generator to get the minimum 
value.

(4)

V =
1

n

n∑

i=1

[
D
(
x̂
(i)
)
− D(x(i)) + �

(‖
‖x̂D(̂x)

‖
‖∇2 − 1

)2]
,

�
D
← �

D
+ �∇V

(
�
D

)

 (14) Whenever the generator converges and the number of 
current training stages n < N , it is supposed to enter 
the next training stage n = n + 1 . The generator adds 
3 layers of convolution blocks on the basis of the pre-
vious stage and connects (Kaiming et al. 2016) the 
original up-sampled feature residual to the output of 
the newly added convolution layer. When the gen-
erator converges and the current number of training 
stages n = N , the execution of step (3) ends, as shown 
in Fig. 1.

 Training the last three stages at the same time is beneficial 
to the rapid training of the network, and the scaling factor 
of the learning rate � is set to make the previous stage use a 
smaller learning rate. The generator Gn uses learning rate �0� 
for training in stage n , learning rate �1� for training in stage 
n − 1 and learning rate �2� for training in stage n − 2 , which 
helps to reduce over-fitting. The process is shown in Fig. 2.

Model evaluation method

Dykstra‑Parson coefficient

The Dykstra-Parson coefficient (Johnson 1956) is a measure 
used to describe the permeability of heterogeneous media. It 
is defined as the ratio of the total porosity of all connected 
pores in the media to the equivalent porosity. Porosity is 
the ratio of the total pore volume to the total volume of the 
media, while equivalent porosity is the ratio of the connected 
pore volume to the total volume of the media. Therefore, the 
Dykstra-Parson coefficient can be expressed as the porosity 
divided by the equivalent porosity. The significance of this 
expression lies in the fact that the Dykstra-Parson coefficient 
reflects the degree of pore connectivity in the media. When 
there are isolated areas between pores, the ratio of porosity 
to equivalent porosity decreases, resulting in a decrease in 
the Dykstra-Parson coefficient and vice versa.

When converting 3D sandstone and shale images into 
binary images with pixel values of 0 and 255, the equivalent 
porosity can be used to represent the proportion of pixels 
that truly represent pores. Therefore, in this study, the equiv-
alent porosity was calculated as the sum of the porosity and 
the proportion of pixels with a value of 255. The principle 
of this calculation is that the pixels with a value of 255 after 
binary conversion represent pores, so the number of pixels 
with a value of 255 is equivalent to the number of pores. 
Then, for these pixels, their area, i.e., pixel size, can be cal-
culated and expressed as the square root. By calculating the 

(5)
Ṽ = −

1

n

n∑

i=1

[
D
(
x̃
(i)
)]

− �
‖
‖
‖
x̃
(i) − x

n

‖
‖
‖

2

2
, �

G
← �

G
− �∇V

(
�
G

)
,
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average of the square roots of all these pixels, the average 
pore size can be obtained. Finally, the equivalent porosity 
is the sum of the pore volume and the size of the remaining 
space, which is calculated based on the proportion of the 
average pore size. This method can more accurately estimate 
pores in rocks because it not only considers the number of 
pores in pixels but also takes into account the size distribu-
tion of pores.

Two‑point correlation

The two-point probability function is one of the most com-
monly used evaluation methods in 3D pore structure recon-
struction (Ghazavizadeh et al. 2012). By calculating a two-
point probability function of the porous medium pore phase 
to characterize the second-order structure of the porous 
media (Lin et al. 2017). The two-point probability function 
of each direction is defined as the probability that any two 
points in the set ℝd are in the same phase. Equation (6) rep-
resents the probability that two points x and x + r separated 
by the separation distance r are both located in the pore 
phase P.

When r = 0 , S2(0) is equal to the porosity � , and when 
r approaches infinity, S2(r) is stable around �2 . Because 
of the heterogeneity of pores, the average value of S2(r) 
is calculated along the three directions of x, y, and z in 
this paper.

Minkowski functional

The research shows that the flow characteristics at pore 
scale may be related to the morphological characteristics 
of the pore–solid interface of porous media (Joshi 1974). 

(6)S2(r) = P(x ∈ P, x + r ∈ P) for x, r ∈ ℝ
d

Hadwiger theorem shows that any continuous rigid body 
motion invariant estimation on compact convex subset 
ℝ

d can be described by the linear combination of d + 1 
independent parameters representing the object. There-
fore, a set of morphological descriptors called Minkowski 
functional can be defined, which represent the topological 
structure of 3D objects and are stereological estimators 
that provide local and global morphological information 
related to the single-phase flow mechanism (Mecke and 
Arns 2005; Arns et al. 2010).

In three dimensions, there are four Minkowski func-
tionals describing the geometric parameters of set X with 
smooth surface �(X) , volume V(X) , surface area S(X) , inte-
gral b(X) of average curvature, and Euler characteristics 
�(X):

Among them, �1(x) and �2(x) correspond to the curvatures 
of the maximum and minimum radii of curvature. Equa-
tions (7), (8), (9), and (10) correspond to zero-order, first-
order, second-order, and third-order functional, respectively.

In this experiment, in order to evaluate the accuracy of 
the model, the zeroth-order functional is defined as porosity, 
that is, the ratio of pore phase space volume Vpore to sample 

(7)V(X)∫X

dx

(8)S(X) = ∫�X

dx

(9)b(X) =
1

2� ∫�X

�1(x) + �2(x)

2

(10)�(X) =
1

4� ∫�X

�1(x)�2(x)dx

Fig. 2  The 3D-Porous-GAN 
learning rate scaling diagram
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volume V  . The porosity represents the ability to store fluids 
in porous media, which is represented by Eq. (11):

The first-order functional is defined as the specific surface 
area, which controls the adsorption and dissolution process 
of porous media, and is expressed by Eq. (12):

The second-order functional is defined as the average 
width. In integral geometry, the integration of the average 
width and the average curvature is significantly different in 
any dimension. Although the average width is 1-dimensional 
and the integral of average curvature is (n − 2)-dimensional, 
in the three-dimensional case, that is, when n = 3 , the inte-
gral of average width and average curvature is equivalent 
and is a constant. Meanwhile, the average width is propor-
tional to the integral of the average curvature (Serra 1982; 
Ohser and Schladitz 2010). The average width is related to 
the curvature and indicates the flow resistance in the tubular 
network (Barbosa et al. 2019). In three dimensions, for a 
given direction � , which is perpendicular to the normal � of 
the convex set K and completely surrounds the convex set K , 
the maximum distance between two mutually parallel hyper-
planes is the width b of the convex set K in the direction � . 
Now, the average width b of the convex set K is defined as 
the average width in all directions �all . In the special case 
of polyhedron P in ℝ3 , the average width can be calculated 
by Eq. (13):

Among them, m is the number of edges, �i is the length 
of the i-th edge, and �i is the angle between the outer normal 
of two surfaces touching on the i-th edge.

The third-order functional is defined as the Euler char-
acteristic � normalized by the sample volume V  , which is 
expressed by Eq. (14):

When calculating the Euler characteristics � , instead of 
directly calculating the integral in Eq. (10), the Euler eigen 
relation of any polyhedron is used, which is expressed as 
follows:

Among them, D is the number of vertices, E represents 
the number of edges, F represents the number of faces, 

(11)� =
Vpore

V

(12)Sv =
1

V ∫ dS

(13)b(P) =
1

4�

m∑

i=1

�i�i

(14)�v =
�

V

(15)� = D − E + F − O

and O represents the number of entities (Blunt 2017). This 
expression is the basis of an efficient algorithm for calculat-
ing Minkowski functional of arbitrary geometry expressed 
as volume voxel domain (Lang et al. 2001). In the calcula-
tion, this paper calculates the sum of the number of vertices, 
edges, faces, and entities using a 6-adjacency system consid-
ering only the three main directions.

The Euler characteristics describes the connectivity of 
the volume. For the pore network, the region with positive 
Euler characteristics has more connected skeletons and less 
connected pores, indicating that the pore connectivity in this 
region is small. The area with negative Euler characteristics 
has more connected pores, so the pores in this area have 
greater connectivity.

Although porosity indicates the ability to store fluid in 
porous media, the adsorption and dissolution processes 
are controlled by specific surface area. The Euler property 
describes the connectivity of porous media and character-
izes the flow ability of fluid in porous media. Therefore, 
the reconstructed porous media should be consistent with 
the Minkowski functional of real samples to simulate the 
properties of relevant physical processes at the pore scale.

Dataset

To verify the reconstruction effect of this algorithm on 
homogeneous and heterogeneous cores, a set of Berea sand-
stone dataset (Mosser et al. 2017) is used as the homogene-
ous core sample set, and a set of shale samples scanned by 
focused ion beam scanning electron microscope (FIB-SEM) 
is used as the heterogeneous core sample set for training and 
verification.

Shale dataset

Shale is a typical heterogeneous porous medium. In order to 
verify the expression ability of the model on heterogeneous 
porous medium, a group of real shale samples scanned by 
focused ion beam scanning electron microscope were sam-
pled for training and verification. Figure 3a shows a section 
in the scanned image of the shale sample. Figure 3b shows 
the label image of the real shale image, in which green is 
the pore label, blue is the organic matter label, and gray is 
the rock skeleton label. In this paper, gray and blue labels 
are considered as skeleton phase. The real shale image is 
marked, cut, and its pores are extracted, i.e., skeletal binary 
features and then make the image into binary form. Black is 
the skeleton and white is the pore, as shown in Fig. 3c. The 
shale sample used for training is a binary three-dimensional 
image with size 250 × 250 × 250 (pixels). Figure 4 shows the 
three-dimensional display of the dataset.
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Berea sandstone dataset

Berea sandstone is a typical homogeneous porous medium. 
In order to verify the expression ability of the model in 
homogeneous porous medium, a group of Berea sandstone 
from a quarry near Berea, Ohio, was sampled for training 
and verification. The size of the dataset is 400 × 400 × 400 
(pixels). Figure 5a shows the two-dimensional image display 
of the training sample, and Fig. 5b shows the three-dimen-
sional image display of the training sample.

Experiment results

In this experiment, the dataset used by 3D-DCGAN is 
as follows. For the experimental comparison under the 
size of  1003 (pixels), the shale dataset of this experiment 
is made by cutting 1000 3D shale images with the size 
of 100 × 100 × 100 (pixels) layer by layer with the size 
of 250 × 250 × 250 (pixels) 3D shale images as the step 
size of 16. The Berea sandstone dataset with the size of 
400 × 400 × 400 (pixels) is divided into 6,859 3D images 
with the size of 100 × 100 × 100 (pixels) layer by layer 
with the step size of 16 as the Berea sandstone dataset of 
this experiment. For the experimental comparison under 
the size of  643 (pixels), a total of 1680 3D shale images of 
size of 64 × 64 × 64 (pixels) were cut layer by layer with 
the size of 250 × 250 × 250 (pixels) as step 16 and used as 
the shale dataset in this experiment. The Berea sandstone 
dataset with the size of 400 × 400 × 400 (pixels) is divided 
into 10,648 3D images with the size of 64 × 64 × 64 (pix-
els) layer by layer with the step size of 16 as the Berea 
sandstone dataset of this experiment.

In this experiment, the dataset used by 3D-Porous-
GAN is as follows. For the experimental comparison 
under the size of  1003 (pixels), the 3D shale image with 

the size of 250 × 250 × 250 (pixels) was downsampled to 
the size of 100 × 100 × 100 (pixels) as the shale dataset 
of this experiment. A 100 × 100 × 100 (pixels) 3D image 
randomly cut from the 400 × 400 × 400 (pixels) Berea 
sandstone dataset was used as the Berea sandstone data-
set of this experiment. For the experimental comparison 
under the size of  643 (pixels), the 3D shale image with 
the size of 250 × 250 × 250 (pixels) was downsampled 
to the size of 64 × 64 × 64 (pixels) as the shale dataset. 
A 3D image of size 64 × 64 × 64 (pixels) randomly cut 
from the 400 × 400 × 400 (pixels) Berea sandstone dataset 
was used as the Berea sandstone dataset. The traditional 
methods, Sequential Indicator Simulation (SIS) and Multi-
point Geostatistics (MPS), were used on datasets from 
the aforementioned 250 × 250 × 250 (pixels) shale and 
400 × 400 × 400 (pixels) Berea sandstone datasets.

The training stage of 3D-Porous-GAN model is set as 
6, and each stage is composed of three convolutional lay-
ers plus LeakyReLU activation function, and the residual 

(a) Real images of shale (b) Shale label images (c) Shale binary image

Fig. 3  Shale data

Fig. 4  Three-dimensional pore structure of shale



2337Journal of Petroleum Exploration and Production Technology (2023) 13:2329–2345 

1 3

connects the input and output of each stage. Among them, 
LeakyReLU's negative slope = 0.05; The weight factor of 
reconstruction loss � = 5 , the maximum size is 100 pixels, 
the minimum size is 50 pixels, the weight of superimposed 
noise is 0.1, the learning rate adjustment weight of lower 
stage is 0.01, the gradient penalty weight is 0.1, the learn-
ing rate of generator and discriminator is 0.0001, and the 
optimizer is Adam optimizer. Table 1 shows the main archi-
tectural configurations of the 3D-Porous-GAN model.

Discussion

Compared with SIS and MPS methods

In this study, we first created datasets using traditional 
methods. The 400 × 400 × 400 (pixels) sandstone and 
250 × 250 × 250 (pixels) shale datasets were reduced in 
dimension and transformed into 400 2D sandstone images 
of size 400 × 400 (pixels) and 250 2D shale images of size 
250 × 250 (pixels), respectively. The 3D-Porous-GAN 
method was then applied to the original 400 × 400 × 400 
(pixels) sandstone and 250 × 250 × 250 (pixels) shale data-
sets. The original images and 3D display images generated 
using these three methods are shown in Figs. 6 and 7.

To our surprise, the image quality generated by the two 
traditional methods was not as poor as expected. The overall 
reconstruction effect was good, but there were differences 
in local reconstruction, and the internal structural features 
could not be reconstructed, resulting in differences in con-
nectivity. From the perspective of the images, our method 
outperformed the traditional methods in both overall and 
local reconstruction of sandstone and shale. Both SIS and 
MPS algorithms have limitations in reconstructing pixels 
with significant differences from the original pixels due to 
the randomness of the algorithm and inherent restrictions. 
This can result in blurred spherical particles and protrusions 

on the surface of the shale in local areas. Similar problems 
arise when reconstructing three-dimensional sandstone 
images, where the compact structure of the sandstone leads 
to the generation of many blocky protrusions on the surface, 
and longer rock bodies are segmented during reconstruction, 
resulting in blurred local areas.

As shown in Table 2, regarding the indicators of rock het-
erogeneity, we calculated that the sandstone images recon-
structed by MPS, SIS, and 3D-Porous-GAN differ from 
the real images by 0.190, 0.133, and 0.005, respectively, in 
terms of porosity. The shale images reconstructed by MPS, 
SIS, and 3D-Porous-GAN differ from the real images by 
0.291, 0.298, and 0.032, respectively, in terms of porosity. 
Regarding the Dykstra-Parson coefficient, the sandstone 
images reconstructed by MPS, SIS, and 3D-Porous-GAN 
differ from the real images by 0.097, 0.062, and 0.004, 
respectively, while the shale images reconstructed by MPS, 
SIS, and 3D-Porous-GAN differ from the real images by 
0.228, 0.249, and 0.022, respectively. The experimental 
results show that the porosity and Dykstra-Parson coeffi-
cient of the two rocks reconstructed by 3D-Porous-GAN are 
closest to the original images, indicating that our method 
outperforms traditional methods in terms of reconstructing 
heterogeneity indicators.

Comparison with 3D‑DCGAN

We conducted experiments comparing the performance of 
3D-Porous-GAN and 3D-DCGAN in reconstructing sand-
stone and shale to demonstrate their distinct reconstruc-
tion abilities. Through visual comparison of the generated 
sample slices from both models, the experimental results 
showed that 3D-Porous-GAN could produce convergent 
samples with good reconstruction quality. Therefore, the 
accuracy of the reconstruction was evaluated using two-
point correlation function, porosity, Minkowski functionals, 
and Dykstra-Parson coefficient and compared with real sam-
ples. However, due to the complex convolutional network 

Fig. 5  Berea sandstone dataset

(a) 2D image of Berea sandstone (b) 3D image of Berea sandstone
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Table 1  The 3D-Porous-GAN 
network structure configuration

Structure Stage Type Convolution kernel Number of 
convolution 
kernels

Step size Activation function

Generator Head Conv3D (3, 3, 3, 1) 1 1 LeakyReLU
Generator 0 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 0 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 0 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 1 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 1 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 1 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 2 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 2 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 2 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 3 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 3 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 3 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 4 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 4 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 4 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 5 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 5 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator 5 Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Generator tail Conv3D (3, 3, 3, 64) 64 1 Tanh
Discriminator all Conv3D (3, 3, 3, 1) 1 1 LeakyReLU
Discriminator all Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Discriminator all Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Discriminator all Conv3D (3, 3, 3, 64) 64 1 LeakyReLU
Discriminator all Conv3D (3, 3, 3, 64) 64 1

Fig. 6  a shows the real 3D display of shale, b shows the 3D recon-
structed porosity using the SIS method, c shows the 3D reconstructed 
porosity using the MPS method, and d shows the 3D reconstructed 
porosity using 3D-Porous-GAN for shale

Fig. 7  a shows the 3D display of the real Berea sandstone image, b 
displays the 3D pore reconstruction of the Berea sandstone using the 
SIS method, c displays the 3D pore reconstruction of the Berea sand-
stone using the MPS method, and d shows the 3D pore reconstruction 
of the Berea sandstone using the 3D-Porous-GAN method
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structure of 3D-DCGAN, the model parameters increased 
significantly, causing it to fail to converge, resulting in poor 
core reconstruction performance. Therefore, the relevant 
statistical information of 3D-DCGAN was not calculated. 
In each experiment, a real sample was used as the target, and 
20 randomly generated samples were tested and compared. 
The results are presented below.

The reconstructed sandstone results are shown in the 
central slice of Fig. 8, demonstrating the generated results 
for homogeneous porous media of varying sizes and itera-
tion numbers. Both 3D-DCGAN and the proposed model 
produce high-quality  643 (pixels) images. However, as the 
size of the training image is increased to  1003 (pixels), the 
complex convolutional layer structure of 3D-DCGAN leads 
to a higher number of parameters, making it challenging to 
capture the intrinsic structure of the training image and con-
verge within the same number of iterations. Conversely, our 
model's parallel multi-stage network structure design sig-
nificantly reduces the number of parameters, allowing it to 
learn the distribution characteristics of homogeneous porous 
media more quickly and reliably within the same number of 
iterations, resulting in superior reconstruction results.

The image in Fig. 9 depicts the central slice of the recon-
structed shale. It presents the generated results of hetero-
geneous porous media under different sizes and iteration 
numbers. In comparison with the proposed model, the 
3D-DCGAN exhibits a poorer fitting ability for heterogene-
ous porous media due to its complex convolutional layer 
structure. Regardless of the image size,  643 (pixels) or  1003 
(pixels), the 3D-DCGAN cannot reconstruct a reasonable 
three-dimensional structure. In contrast, the proposed model 
has excellent reconstruction ability for heterogeneous porous 
media and greater versatility.

As shown in Figs. 10 and 11, the 3D digital cores recon-
structed by the proposed model have similar global distri-
bution with real shale samples and real Berea samples, but 
from a visual perspective, they are not completely consistent 
locally, indicating the diversity of the generated 3D digital 
cores.

As shown in Fig. 13, the average porosity of the generated 
samples using the �3D−Porous−GAN = 0.184 ± 0.012 , which is 
very close to the porosity value of the real sample � = 0.185 . 
The porosity values and their differences between the real 

and generated samples demonstrate excellent consistency. 
In Fig. 12, we compare the two-point correlation functions 
in the x, y, and z directions between the real samples and 
the samples generated by our proposed model on the Berea 
dataset. Figure 13 presents the comparison of radial mean 
two-point correlation functions between the real and gen-
erated samples on the Berea dataset. Figure 14 shows the 
comparison of Minkowski functionals between the real and 
generated samples on the same dataset. The two-point cor-
relation function, radial average two-point correlation func-
tion, and Minkowski functional of the generated samples in 
all three directions exhibit excellent consistency with the 
real samples. These results once again prove the capability 
of our proposed model to reconstruct homogeneous porous 
media.

As shown in Fig. 16, the average porosity of the gen-
erated sample is �3D−Porous−GAN = 0.091 ± 0.022 , and the 
real sample is � = 0.083 . The size and porosity difference 
between the real and generated samples are in excellent 
agreement. Figure 15 illustrates the comparison of two-
point correlation functions in the x, y, and z directions 
between the real samples and the model-generated samples 
proposed in this paper on the shale dataset. Additionally, 
Fig. 16 compares the radial average two-point correlation 
function between the real sample and the sample generated 
by the proposed model on the shale dataset. Furthermore, 
Fig. 17 shows the comparison of the Minkowski functional 
between the real sample and the sample generated by the 
proposed model on the shale dataset. The two-point corre-
lation function, radial average two-point correlation func-
tion, and Minkowski functional of the generated samples 
in all three directions show good consistency with the real 
samples. This provides further evidence that the proposed 
model can effectively reconstruct heterogeneous porous 
media.

Analysis of results

As presented in Table 3, the 3D-Porous-GAN utilizes only 
one 3D data as the training dataset, whereas 3D-DCGAN 
demands a considerable amount of data for training. Given 
the challenging and expensive nature of rock sample 

Table 2  Comparison table of 
porosity and Dykstra-Parson 
coefficient generated by 
different methods for sandstone 
and shale

Berea Shale

Porosity Equivalent 
porosity

Dykstra-Parson 
coefficient

Porosity Equivalent 
porosity

Dykstra-Par-
son coefficient

Real 0.741 0.855 0.867 0.336 0.538 0.625
MPS 0.931 0.966 0.964 0.627 0.735 0.853
SIS 0.874 0.941 0.929 0.634 0.725 0.874
3D-Porous-GAN 0.736 0.845 0.871 0.368 0.569 0.647
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acquisition, employing the 3D-Porous-GAN model for train-
ing requires fewer samples, leading to a significant reduc-
tion in sample acquisition costs. The experimental findings 
indicate that 3D-DCGAN can effectively reconstruct the 
Berea sandstone sample at the size of  643 (pixels); however, 
the model fails to converge and the reconstruction qual-
ity deteriorates when the size is increased to  1003 (pixels). 
Conversely, the 3D-Porous-GAN can generate high-quality 
reconstructions at both  643 (pixels) and  1003 (pixels) sizes. 
Additionally, the 3D-Porous-GAN achieves favorable recon-
struction outcomes for both shale samples at the two scales, 
while 3D-DCGAN struggles to converge. By using a loss 
function with gradient penalty to enhance the stability of 
training, 3D-Porous-GAN adopts a multi-scale, multi-stage 
parallel training strategy in which the training image is 
down sampled to the minimum size at the low stage and 
the model focuses on the global image information. At the 

high stage, the training image size gradually increases, ena-
bling the model to capture the local image details. Therefore, 
the 3D-Porous-GAN outperforms 3D-DCGAN in terms of 
model generalization and can reconstruct more types of rock 
samples. Moreover, 3D-Porous-GAN is more efficient as it 
requires less training time.

We have calculated and compared the heterogeneity indi-
ces of 3D-DCGAN and 3D-Porous-GAN, and also deter-
mined the porosity and Dykstra-Parson coefficient of the 
real sandstone and shale images at two different sizes, as 
presented in Table 3. For 3D-DCGAN, only the images 
reconstructed from the sandstone dataset of size 64 × 64 × 64 
(pixels) were considered for calculation, as the models failed 
to converge for other datasets. Conversely, for 3D-Porous-
GAN, all datasets of both rock types were included in the 
calculation. Therefore, we calculated that the  643-size sand-
stone images reconstructed by 3D-DCGAN differ from the 

Fig. 8  Comparison of Berea 
samples with size  643(pixels) 
and size  1003(pixels) recon-
structed by different methods, 
and generated sample center 
slices under different iterations

Fig. 9  Comparison of shale 
samples with size  643 (pixels) 
and size  1003 (pixels)in dif-
ferent methods and generating 
sample center slices under dif-
ferent iterations
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Fig. 10  The figures a, b, c, and d show four different samples selected from the Berea dataset, and the corresponding pore-throat network struc-
tures and orthogonal section images in three directions generated by the 3D-Porous-GAN model

Fig. 11  Figures a, b, c, and d show four different samples selected from the shale dataset, and the corresponding pore-throat network structures 
and orthogonal section images in three directions generated by the 3D-Porous-GAN model



2342 Journal of Petroleum Exploration and Production Technology (2023) 13:2329–2345

1 3

real images by 0.215 and 0.149 in terms of porosity and 
Dykstra-Parson coefficient, respectively. For 3D-Porous-
GAN, the minimum difference in porosity between the 
reconstructed images at two sizes and the real images was 
0.001, and the maximum difference was 0.06. The mini-
mum and maximum differences in Dykstra-Parson coeffi-
cient were 0.002 and 0.027, respectively. The experimental 
results indicate that our model's reconstructed images are 
closer to the real images in terms of porosity and Dykstra-
Parson coefficient, demonstrating better reconstruction 
performance.

Conclusions

To address the challenges of acquiring difficult and costly 
samples, the limited generalizability of existing models, and 
the instability and convergence issues in training porous 

Fig. 12  Comparison of the two-point correlation functions in the x, y, and z directions between real Berea samples and samples generated by 
3D-Porous-GAN

Fig. 13  Comparison of radial average two-point correlation functions 
between real Berea samples and samples generated by 3D-Porous-
GAN

Fig. 14  Comparison of the Minkowski functionals between real Berea samples and 3D-Porous-GAN generated samples
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media, this paper enhances the generator, discriminator, 
and noise vector components of the ConSinGAN network 
structure. It introduces a loss function with gradient pen-
alty and adopts a multi-scale, multi-stage parallel training 
strategy. The proposed algorithm is applied in an innovative 
manner to reconstruct 3D digital rock cores. Comparative 
experiments are conducted on the Berea sandstone dataset 
and shale dataset, comparing against traditional methods and 
the 3D-DCGAN approach. The results lead to the following 
conclusions:

• Superior results in reconstructing 3D rock cores using 
a smaller amount of training data are achieved by the 
developed model in this study.

• The 3D-Porous-GAN model excels in reconstructing 
both anisotropic and isotropic porous media, showcas-
ing its high level of generalizability. Furthermore, it 
effectively reduces the number of parameters, lowers 

Fig. 15  Comparison of the two-point correlation functions in the x, y, and z directions between real shale samples and samples generated by 
3D-Porous-GAN

Fig. 16  Comparison of radial average two-point correlation functions 
between real shale samples and samples generated by 3D-Porous-
GAN

Fig. 17  Comparison of the Minkowski functionals between real shale samples and 3D-Porous-GAN generated samples
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the complexity of training, and facilitates rapid conver-
gence.

• Reconstructed images produced by the 3D-Porous-
GAN closely resemble real images in terms of het-
erogeneity index, two-point correlation function, 
Minkowski function, and visual display.
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