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Abstract
Facies studies represent a key element of reservoir characterization. In practice, this can be done by making use of core and 
petrophysical data. The high cost and difficulties of drilling and coring operations coupled with the time-intensive nature 
of core studies have led researchers toward using well-log data as an alternative. In the Teapot Dome Oilfield, where core 
data are limited to those from only a single well, we used well-log data for reservoir electro-facies (EF) studies via two 
unsupervised clustering methods, namely multi-resolution graph-based clustering (MRGC) and self-organizing map (SOM). 
Satisfactory results were obtained with both methods, distinguishing seven electro-facies from one another, where MRGC 
had the highest discriminatory accuracy. The best reservoir quality was exhibited by electro-facies 1, as per both methods. 
Our findings can be used to avoid some time-intensive steps of conventional reservoir characterization approaches and are 
useful for prospect modeling and well location proposal.
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Abbreviations
AHC	� Ascendant hierarchical clustering
ANN	� Artificial neural network
ANNs	� Artificial neural networks
BMU	� The best matching unit
DC	� Dynamic clustering
DEN	� Density log
DT	� Sonic log
GR	� Gamma ray log

H-D	� Higher-dimensional
KNN	� The k-nearest neighbor
LLD	�  Resistivity log
LF	� Lithofacies
L-D	� Low-dimensional
MRGC​	� Multi-resolution graph-based clustering
NPHI or PHIN	� Neutron log
PE	� Photoelectric log
PRB	� The Powder River Basin
RHOZ	� Density log
SOM	� Self-organizing map
TSF	� Tensleep sandstone formation

List of symbols
D (x, y)	� Distance function
Dij	� Distance between input vector and com-

munication weights
Dist (X, Y)	� Euclidean distance between two samples 

x and y
KRI	� Kernel representative index
M (x, y)	� Neighborhood function
N	� Total number of data points
NI or I	� Neighboring index function
P	� Total number of properties
s(x)	� Sum of the weighted ranks for a given 

measurement at point x
T	� Maximum number of iterations or train-

ing length
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t	� Iterations number of the training 
algorithm

Wij	� Communication weights between the 
map unit j and the input sample i

x	� mTh nearest neighbor of y (m ≤ N − 1)
Xk	� Input vector
�(t)	� Learning rate
�0	� Initial training rate
a	� Smoothing parameter greater than zero

Introduction

Electro-facies (EF) study is a basic step of any reservoir 
characterization effort. Conventionally, it has been done 
based on a combination of core and petrophysical (i.e., 
well-log) data. In the meantime, the relatively high cost of 
coring and difficulties of core study as the number of cores 
grow larger have boosted the importance of well-log data for 
lithofacies studies. Well logs have been used for reservoir 
characterization and geological evaluation. Manual analysis 
of well-log data is however difficult to perform due to the 
relatively large amount of such data. EF studies have been 
emerged to address this problem. An EF refers to a series 
of log responses that characterize a particular rock unit as 
is distinctive of other rock units (Serra et al. 1982). An EF 
usually captures one or more reservoir properties as log 
responses are measurements of physical rock properties. The 
concept of EF was originally used by geologists to identify 
rock units of similar properties and hence maturate prospects 
of hydrocarbon, coal, minerals, etc. The term (i.e., EF) was 
however first coined by Gressly (1838). By definition, EF 
refers to a specific set of properties for a sedimentary rock 
unit. These characteristics initially included only geological 
and fossilogical features, including color, stratification, com-
position, texture, sedimentary structures, and fossil append-
ages. Later on, a better and more comprehensive definition 
of EF was proposed by Selley (1976): A sedimentary EF 
characterizes a complex of sediments or sedimentary rocks 
with particular lithology, geometry, fossil appendages, sedi-
mentary structures, and paleo-stream patterns, which can 
be discriminated from other sediments. Lithological-based 
facies are referred to as lithofacies (LF) (Selley 1986). Most 
geologists have asserted that sedimentary facies represent 
geological units (Embry and Johannessen 1993; Odezulu 
et al. 2014; Sisinni et al. 2016; Tomassetti et al. 2018). LFs 
reflect significant reservoir parameters, with each LF char-
acterizing a distinguished stratum from the others (Kadhim 
et al. 2015). This highlights the role of LF classification in 
reservoir characterization (Avanzini et al. 2016). Previous 
research works have demonstrated that proper arrangement 
of LFs facilitates the interpretation of vertical distribution 
of geological events such as sedimentary sequences and 

evolutions (Serra and Abbott 1982), not to mention reser-
voir properties distribution (Shoghia et al. 2020). LF studies 
have been done by core, well-log, and seismic data. Core 
data can provide accurate information about sedimentary 
processes, but the cost and time intensiveness of coring and 
core data analysis limits their availability in many cases. As 
a workaround, core data have been combined with traditional 
well-log data to obtain the best description of the LFs (Jarvie 
et al. 2007; Loucks and Ruppel 2007; Dong et al. 2015). 
This hybrid approach with well-log and core data has been 
proven to be effective (Bishop 1995; Lim and Kim 2004; 
Wang 2012; Bhattacharya et al. 2016; Schlanser et al. 2016). 
Well logs represent many rock characteristics that are well 
correlated to core data for geological interpretation (Rider 
and Kennedy 2011). Among other well-log data, gamma ray 
(GR), density (RHOB), sonic (DT), porosity (NPHI), and 
photoelectric index (PE) logs have been acknowledged as the 
best to describe underground rocks (Davis et al. 1997; Qing 
and Nimegeers 2008). Many statistical algorithms have been 
used for EF characterization; these include support vector 
machines (SVMs) (Vapnik et al. 1997; Smola and Schölkopf 
2004), artificial neural networks (ANNs) (Liu et al. 1992; 
Dubois et al. 2007), and multi-resolution graph-based clus-
tering (MRGC) (Ye and Rabiller 2000; Wu et al. 2020).

In Iranian carbonate reservoirs, researchers have used 
various mathematical and statistical concepts for EF studies. 
An EF study of Darian Formation was performed by MRGC 
at 22 wells penetrating this formation. The reservoir quality 
corresponding to different EFs was then evaluated using core 
data. 3D modeling was performed, and sequential simulation 
was applied as a geostatistical approach. Results confirmed 
the consistency of the 3D models built by the petrophysical 
logs over the Darian Formation, indicating the effectiveness 
of EF studies for reservoir characterization (Mehmandosti 
et al. 2017). EF classification in reservoir zones has been 
practiced by various researchers. For instance, Pabakhsh 
et al. (2012) used the MRGC for estimating photomechanical 
properties and hence distinguish between different lithologi-
cal formations. Kumar and Kishore (2006) used an ANN 
to estimate EFs in a carbonate/clastic reservoir. In another 
work, Bahar et al. (1999) introduced different clustering 
methods and used them to identify reservoir EF in a carbon-
ate reservoir. Ye and Rabiller (2000) used MRGC for clas-
sification of EFs. Using different clustering methods includ-
ing MRGC, self-organizing map (SOM), dynamic clustering 
(DC), ascending hierarchical clustering (AHC), and ANN, 
Khoshbakht and Mohammadnia (2012) achieved acceptable 
permeability prediction accuracy. Mahmoudi et al. (2011) 
utilized multivariate cluster analysis at Western Salt Well 
No. 1 (Bandar Abbas, Iran) to identify different EFs and 
zonate the reservoir accordingly. Hemmati et al. (2016) 
employed four clustering approaches to zonate a carbonate 
reservoir in southern Iran based on geological/petrophysical 
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Fig. 1   Geologic column of the 
Teapot Dome and the study for-
mation inside the red rectangle
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facies. The best clustering performance was obtained with 
AHC and MRGC although AHC marginally outperformed 
the MRGC.

In the Teapot Dome Oilfield, Natrona County, Wyoming, 
the vast area of the field coupled with the large number 
of drilled wells complicate the study of facies using core 
data. Accordingly, we alternatively opted for well logs to 
undertake EF assessments. To increase the reliability of 
the results, several logs, rather than one, were used in the 
present study. These included GR, DT, RHOB, and NPHI, 
among others.

The main goal of this study was to find the best reservoir 
quality in Teapot Dome Oilfield based on EF classification 
on well-log data with the help of MRGC and SOM. The 
results were then verified and compared to the correspond-
ing core data. In the proposed methodology, our findings 
can be used to avoid some time-intensive steps of conven-
tional reservoir characterization approaches and are useful 
for prospect modeling and well location proposal, especially 
when reservoir heterogeneity is not significant.

The rest of this article is managed as follows. Sec-
tion “Geological setting” presents the geological setting of 
the study area. Section “Materials and methods” elaborates 
on the used data and the proposed methodology, with the 

results presented and discussed in Section “Results and dis-
cussion.” Final conclusions are drawn in Section “Results 
and discussion”.

Geological setting

The Teapot Dome is a faulted dome structure within the Salt 
Creek Anticline in the southwestern sector of the Powder 
River Basin (PRB), Natrona County, Wyoming. It is a part 
of the Basin-Margin Anticline Play of the PRB petroleum 
province (Dolton et al. 1995), where a Precambrian base-
ment is overlaid by Paleozoic strata composed of relatively 
thin interbedded sequences of sandstones (dune/interdune 
origin), dolomites, limestone, and evaporites with marine 
origin. Sedimentary strata of the Cretaceous age range 
from fluvial sandstones and shales to marine shales and 
sandstones.

The top two hydrocarbon-producing reservoirs in the 
Teapot Dome are the Shannon Sandstone and Second Wall 
Creek Sands of the Upper Cretaceous Cody Shale and Fron-
tier formations, respectively. Hydrocarbons have also been 
produced from other Upper and Lower Cretaceous forma-
tions including Niobrara and Steele Shale and also from 
Lower Cretaceous non-marine sands of the Thermopolis 
Shales, the Muddy Sandstone, and the Dakota Sandstone 
(Dennen et al. 2005).

Being a major hydrocarbon-producing horizon in the 
Teapot Oilfield, Wyoming, the Pennsylvanian Tensleep 
Sandstone Formation (TSF) is partially eolian in origin. 
The TSF consists of marine carbonate/dolomite beds and 
porous and permeable eolian cross-bedded sandstones of 
dune and interdune origin. The siliciclastic units comprise 
the dominant part of the TSF with alterations of dolomite 
(Dolton et al. 1995, Kamran Jafri et al. 2016). Figure 1 
shows the geologic column of the Teapot Dome.

Materials and methods

Details of the data used

The core data from Well 48-X-28 were only available 
for the depth range of 5300–5653 m from mean sea level 
(MSL)—i.e., only for TSF, and the data from this well 
were subsequently used for testing the results. Core images 
and descriptions were used to describe the A- and B-dolo-
mite and B-sandstone units in the TSF, as per a previous 
study by Kamran Jafri et al. (2016). Figure 2 shows an 
image of a core box containing core samples from top of 
B-dolomite, base of sandstone-B and C1-dolomite at Well 
48-X-28. Given the wide extension of the study area and 

Fig. 2   An image of a core box from Well 48-X-28 showing the top of 
B-dolomite, the base of B-sandstone, and C1-dolomite (Kamran Jafri 
et al., 2015)
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practical infeasibility of studying core data at the many 
wells drilled into the Teapot Dome, well-log data were 
focused in this work. In this study, a total of 45 wells were 
selected where the required well logs for facies study were 
available. Indeed, well selection was done in such a way to 
ensure the availability of resistivity (LLD), GR, RHOB, 
NPHI, and DT logs in most of the wells. LLD measure-
ments can be used to distinguish between hydrocarbon-
bearing and water-bearing areas, not to mention its appli-
cability for porosity and permeability evaluations. Among 
other applications, GR log data help determine the shale 
(clay) volume (Vshale, Vclay) in sandstone reservoirs con-
taining uranium minerals, potassium feldspar, mica, and/
or glauconite, differentiation between radioactive and oil 

shale reservoirs, rock source assessment, potash deposit 
assessment, and geological correlations. A sonic (DT) log 
serves as an indication of porosity by measuring the inter-
val transit time (t, delta t, or Dt) for a compressed acoustic 
wave traveling through the formation along the axis of 
the well, thus indicating the porosity in the rock. RHOB 
log data contribute to identification of evaporite minerals, 
gas-bearing zones, and hydrocarbon density, highlight-
ing sandstone reservoirs. NPHI log records porosity data 
by measuring the hydrogen content of the formation. In a 
clean (i.e., shale-free) formation where the pore space is 
filled with water or oil, the NPHI log measures the fluid-
filled porosity (Asquith et al. 2004).

Clustering methods

Clustering has been acknowledged as a powerful approach to 
data analysis. First introduced in 1935, it has been developed 
into numerous aspects with a handful of different applica-
tions. Multivariate analysis aims at understanding and 
describing possible associations among multiple variables. 
In presence of complex relationships among different param-
eters, single-parameter statistics tend to ignore variations of 
other variables. Hence, different methods have been devel-
oped to handle multivariate data. Properties of univariate 
and bivariate datasets can be easily extracted by examining 
the corresponding 2D histogram/plot. A 3D representation 
is however necessary to analyze a trivariate dataset, which 
can be developed by compiling multiple 2D histograms of 
data points. As the number of dimensions increases, these 
simple solutions may no longer work and one needs to 
reduce the problem dimensionality before it can be solved 
properly. Several methods have been used to group similar 
features (i.e., variables) considering the studied dataset, so 
as to achieve reduced dimensionality of the problem. Such 
methods are generally referred to as clustering (Webb 2002). 

Fig. 3   A 2D SOM: all nodes of the map are directly connected to the 
input vector, with no inter-node connection (Kohonen 2000)

Fig. 4   Workflow of a SOM
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The basic idea behind the clustering is that visual interpreta-
tion of a large problem can be quickly achieved by clustering 
the entire dataset into distinctive clusters. In this respect, a 
cluster refers a set of objects with maximum similarity to 
one another and maximum distinctiveness to other clusters. 
Herein, the similarity can be measured by different criteria. 
An example of similarity criterion is the inverse distance 
between different objects, so that the higher the inverse dis-
tance of the objects, the higher their similarity.

The followings are some of the conventional clustering 
models:

1.	 Connectivity models (e.g., hierarchical clustering), 
where model is built based on a distance criterion.

2.	 Centroid models (e.g., K-means clustering), where each 
cluster is represented by an average vector.

3.	 Distribution models, where clusters are modeled using 
statistical distributions.

4.	 Density models, where clusters (e.g., areas) are distin-
guished by density.

Clustering algorithms can be classified based on their 
clustering model. So far, more than 100 clustering algo-
rithms have been presented. The following subsections 
explain the two clustering algorithms used in this study.

Clustering by SOM

SOM is an unsupervised ANN that produces a low-dimen-
sional (L-D) graph called a “map.” It is distinctive of other 
neural networks in that it uses a neighborhood function to 
maintain topological properties of the input space, reflect-
ing an L-D representation of high-dimensional (H–D) input 
data. In other words, SOM maps an H–D input to the cor-
responding L-D map. This is done by finding the node with 
the closest weight vector to the input vector and assigning 
the coordinates of that node on the map to the corresponding 
input vector. Similar to other neural networks, SOM works 
in two phases: training and mapping (i.e., automatic clas-
sification of unseen input vectors) (Fig. 3).

Mechanism of the SOM algorithm

An SOM algorithm goes through an iterative process involv-
ing vector measurements through the following steps:

1.	 Initialize the weight for each output node.
2.	 Select a random vector from the training data and take 

it to the SOM.
3.	 Calculate the distance between the input vector and com-

munication weights of each output node as

4.	 dij =||xk − wij|| to find the best matching unit (BMU).
5.	 Calculate the neighborhood radius around the BMU 

using the desired neighborhood function. The size of 
this neighborhood decreases with increasing the algo-
rithm time.

6.	 Adjust communication weights of the nodes in the BMU 
neighborhood to make them closer to the BMU. For this 
purpose, further adjustment must be applied to closer, 
rather than farther, nodes to the BMU.

7.	 Repeat Steps 2 to 6 iteratively until the algorithm con-
verges (i.e., the weight vectors exhibit no significant 
change).

BMU calculation is based on the Euclidean distance, 
as the similarity criterion, between the weight vectors of 
the output nodes and the values of the input vectors. The 
neighborhood radius shrinks as the training algorithm 
proceeds, eventually encompassing the BMU alone. The 
neighborhood is usually determined by a Gaussian or 
exponential function so that nodes closer to the winning 
BMU are more affected than the farther nodes. The learn-
ing rate is set by an exponential function to ensure SOM 
convergence (Cai et al. 2019).

In Eq. (1), �0 indicates learning rate, t is the iteration 
number of the training algorithm, and T is the maximum 
number of iterations (i.e., training length).

Then in the mapping step, SOM automatically catego-
rizes unforeseen input vectors.

An ANN is applied in two stages:

1.	 Determining the entries from the record dataset.
2.	 Designing an error backpropagation neural network with 

an appropriate training algorithm.

An error backpropagation network is a training moni-
toring tool that feeds inputs to the network and compares 
the error between the target output and the generated out-
put by the training dataset.

The error of the network is then backpropagated, and 
the weights are adjusted through multiple iterations. The 
training process terminates the calculated output which 
is close enough to the designed output. In many cases, 
training algorithms have been optimized by updating the 
weights and biases (Sefidari et al. 2014; Cai et al. 2019), 
and Fig. 4 shows the workflow of a SOM.

The network efficiency criterion was set to be the cor-
relation coefficient of the considered feature between the 
modeling results and expected data, which was supposed 

(1)�(t) = �0

(

1 −
t

T

)
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Fig. 5   GR, DT, RHOB, NPHI, 
and LLD logs along Well 
14-15-SX in Teapot Dome and 
demonstration of the depth 
matching



2204	 Journal of Petroleum Exploration and Production Technology (2023) 13:2197–2215

1 3

Fig. 6   Histograms of GR, DT, RHOB, NPHI, and LLD logs for the studied wells

Fig. 7   Cross-plots of GR, DT, 
and LLD logs for the studied 
wells
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to be minimal (Kohonen 1998; Sefidari et al. 2014, Hem-
mtin et al. 2016; Cai et al. 2019, de Passos et al. 2020).

Clustering by MRGC​

Conventional clustering algorithms suffer from a number of 
limitations. First, the number of clusters to be distinguished 
by the algorithm must be known. Second, they are highly 
sensitive to initial conditions and distinctions among data 
points. Third, they are practically not robust to data discrep-
ancy (Mourot and Bousghiri 1993). As a modern-generation 
algorithm, MRGC has been shown to be free of such limi-
tations and superior to conventional clustering algorithms.

K-nearest neighborhood (KNN) is a clustering algorithm 
that considers a fixed (i.e., k) number of neighboring data 
points rather than a fixed neighborhood in space (Dubois 
et al. 2005). This approach comes with particular advan-
tages. Being easy to implement, this method allows you to 
record and examine clusters of small size and very different 
densities. The fact that the power of estimation by KNN is 

still exponentially proportional to the number of data points 
has limited its application for clustering purposes. The 
KNN classifier is usually based on the Euclidean distance 
between an experimental sample and a training sample. The 
Euclidean distance between two samples x and y is defined 
as follows:

Then the samples are sorted by their distance to the 
neighbors and the k-nearest neighbors are identified.

Graphical classification methods are known to be suitable 
for analyzing low-dimensional small datasets. They are gen-
erally robust to different batch sizes (Aghchelou et al. 2013).

MRGC is a nonparametric method that combines the 
KNN method with the graphical approach to enjoy benefits 
of both for clustering datasets of any dimension and complex 
structure.

(2)Dist(X,Y) =

√

√

√

√

N
∑

i=1

(X
i
− Y

i
)
2

Table 1   Results of SOM clustering for the studied wells

Facies Weight GR (GAPI) GRR (GAPI) LLD (OHMM) MSFL (OHMM) NPHI (V/V) RHOB (K/M3) DT (US/M)

1 2102 112.6 112.6 6.73 5.41 0.31 2446.56 292.02
2 986 107.66 107.66 8.46 7.14 0.27 2498.03 274.07
3 642 99.6 99.6 13.31 11.73 0.21 2576.58 244.24
4 1636 99.39 99.39 8.15 6.71 0.29 2483.24 292.6
5 342 90.03 90.03 12.71 10.41 0.23 2526.39 269.09
6 860 78.2 78.2 25.63 20.38 0.16 2600.23 234.9
7 1300 84.85 84.85 10.15 8.4 0.27 2506.88 292.29
8 871 71.32 71.32 19.91 15.25 0.2 2539.06 263.82
9 1295 58.16 58.16 47.52 32.71 0.13 2608.41 228.93

Fig. 8   Logs of the EFs identified by SOM clustering based on the input logs
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MRGC: why and how?

Facies analysis is very important to determine reservoir 
characteristics. Two nearby points along a wellbore may 
render geologically far different from one another—this 
issue has been referred to as dimension problem. MRGC 
offers good capabilities for identifying such geological (i.e., 
facies) contrasts. Unlike conventional clustering algorithms, 
this method does not need a previous knowledge of the data 
structure and number of clusters. Indeed, the optimum num-
ber of clusters is herein determined automatically, and this 
task can be adjusted, according to specific requirements of 
the problem at hand, by setting the neighbor index (NI) and 
kernel representative index (KRI) (Ye and Rabiller 2000).

NI is based on the weighted classification of a given 
measurement point x concerning all other measurement 
points y. Accordingly, a high NI indicates easily distinguish-
able points (for more information on NI and KNN, see Ye 
and Rabiller 2001). The number of clusters (i.e., facies in 
this work) can be easily determined as follows:

The KRI combines NI (x) with a neighborhood function 
and a distance function. By NI (x), the kernel of a cluster 
can be identified. The number of neighbors, M, helps create 

(3)s(x) =

N−1
∑

n=1

exp(−m∕a)

(4)Smin = Min
i=1,N

{

S(x
i
)
}

(5)Smax = Max
i=1,N

{

S(x
i
)
}

(6)NI(x) =
S(x) − Smin

Smax − Smin

groups of equal size while groups of equal volume can be 
obtained by the distance (for more information on KRI, see 
Ye and Rabiller 2001). KRI is expressed as follows:

Main advantages of MRGC are listed below:

•	 Ability to identify natural patterns within graph data, 
representing the facies arrangement.

•	 No need to previous knowledge of the dataset.
•	 Automatic determination of the optimal number of clus-

ters (i.e., facies).
•	 Capability of handling real-time data with complex struc-

ture.
•	 With adjustable parameters, it produces consistent 

results.
•	 No theoretical limitation in the number of dimensions, 

points and categories (Tian et al. 2016; Shi et al. 2017; 
dos Passos et al. 2020).

Results and discussion

Well-log data clustering was performed by SOM and 
MRGC in Geolog software. For this purpose, depth match-
ing was performed based on anomalous log readings and 
necessary corrections were made. Figure 5 shows the GR, 
DT, RHOB, NPHI, and LLD logs recorded at Well 14-15-
sx in the Teapot Dome together with the depth matching 
results. Once finished with the initial data verification, 
facies clustering was practiced using the Facimage mod-
ule in the Geolog. To this end, we opted for a well that 
provided good information about the field. Subsequently, 
feature (i.e., log) selection was performed to identify the 
training data. Accordingly, GR, DT, RHOB, NPHI, and 

(7)KRI(x) = NI(x) ×M × D

Fig. 9   The EFs identified by the SOM clustering after the merging process
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LLD logs were selected and their histograms were checked 
to see the data distribution and frequency range (Fig. 6). 
Results indicated the data normality and suitability for 
training the algorithm.

Figure 7 shows cross-plots of different logs. On this fig-
ure, different colors indicate density of the data points. This 
figure shows that particular logs exhibit similar trends that 
are well correlated to one another. According to this fig-
ure, the highest density of data points was seen to exhibit 
GR values of 60–120 API and DT values of 200–350 μs/m, 

indicating good reservoir quality when GR readings are 
small.

Results of SOM

The 2D SOM clustering method was applied to distin-
guish between different clusters in the data. In this method, 
horizontal and vertical axes are defined to determine the 
number of clusters. In this work, input data to the SOM 
clustering included the horizontal and vertical coordinates 

Fig. 10   Cross-plots of the logs used for final SOM clustering
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of each group in the network space. A training algorithm 
was developed to structure SOM ensembles in such way to 
represent the entire dataset and associated weights at each 
iteration. At each iteration, a horizontal vector was randomly 
selected from the dataset and its distance to all weighted 
vectors of the network was calculated. Therefore, after the 
training phase, we ended up running the SOM to obtain a 
model of 9 distinctive facies. Table 1 displays the results of 
SOM clustering at the studied wells (Fig. 8).

In the next step, EFs of similar characteristics were 
merged to prevent cluster overgrowth. After reviewing the 
clustering results, it was found that EF1, EF2, EF3, and EF5 
are similar enough to be merged into a single EF. Follow-
ing this procedure, final number of EFs was reduced to 7. 
Figure 9 shows the identified EFs after the merging process, 
and Fig. 10 shows cross-plot of the logs used for the final 
clustering. From the cross-plots of Fig. 10, it is evident that 
EF1 and EF7 provide the best and worst reservoir quali-
ties, respectively. On the other hand, EF2, EF3, EF4, EF5, 

and EF6 exhibited similar characteristics corresponding to 
medium reservoir quality. Ultimately, KNN clustering was 
deployed to generalize the results to all intervals of the well.

Results of MRGC​

MRGC is an unsupervised clustering algorithm for identify-
ing similar areas, categories, or facies. Some unsupervised 
clustering algorithms (e.g., SOM) require that the number of 
final clusters is known. MRGC, however, works based on the 
number of dimensions of the search space, where data distri-
bution density determines the number of clusters. Upon clus-
tering, the produced cross-plots indicate different clusters 
(i.e., facies) clearly, as shown by different colors. Afterward, 
one can see the number of facies and distribution of different 
logs with respect to each facies (i.e., number of samples to 
which each facies is assigned and average values of each log 
against that facies). Optimal models were obtained with 10, 
14, 18, 20, and 23 facies. Given the geological setting of the 

Table 2   Results of MRGC for the studied wells

Facies Weight GR (GAPI) GRR (GAPI) LLD (OHMM) MSFL (OHMM) NPHI (V/V) RHOB (K/M3) DT (US/M)

1 404 26.29 26.29 560.95 248.75 0.05 2816.93 191.49
2 382 28.32 28.32 187.33 49.83 0.06 2534.12 202.22
3 1014 57.35 57.35 15.78 13.77 0.18 2455.48 270.87
4 672 72.81 72.81 31.04 32.78 0.1 2665.26 217.67
5 800 100.7 100.7 23.66 22.49 0.16 2696.15 202.82
6 950 94.82 94.82 8.48 8.08 0.21 2541.57 260.87
7 360 118.49 118.49 3.74 2.08 0.38 2252.92 295.22
8 2512 91.52 91.52 8.35 6.97 0.3 2521.24 305.81
9 2255 122.38 122.38 7.14 6.48 0.3 2488.05 288.97
10 685 87.22 87.22 5.07 2.3 0.34 2281.75 263.87

Fig. 11   The EFs identified from the MRGC after the merging process
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Fig. 12   Cross-plots of the logs used after implementing the MRGC method
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Fig. 13   Comparing EF clustering outputs with petrophysical logs at Well 14-15-SX
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Fig. 14   a, b Boxplots of GR log for the EFs obtained from the SOM and MRGC algorithms, and c, d boxplots of DT log for the EFs obtained 
from the SOM and MRGC algorithms

Fig. 15   Cross-plots of GR versus LLD for the EFs resulting from a MRGC and b SOM
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study area and previous studies, we ended up developing a 
10-EF model. Table 2 displays the results of the MRCG for 
the studied wells.

As in the SOM method, the EFs of similar characteristics 
were merged to prevent cluster overgrowth. This led to a 
reduction of the number of facies to 7. Figure 11 shows the 
EFs after the merging process, and Fig. 12 shows cross-plots 
of the logs used for the clustering. From this cross-plot, it 
is evident that EF1 and EF2 refer to the best reservoir while 
the worst reservoir quality is associated with EF6 and EF7. 
On the other hand, EF3, EF4, and EF5 exhibited similar 
characteristics corresponding to medium reservoir quality.

The KNN algorithm was then utilized to propagate the 
results to the entire well column. In Fig. 13, one can see and 
compare the set of identified EFs on petrophysical logs. The 
leftmost column indicates the depth in m. The GR and DT 
logs are visualized along Tracks 1 and 2, respectively, while 
Track 3 hosts RHOB and NPHI logs. The two columns on 
the right demonstrate the results of EF clustering through 
MRGC and SOM algorithms, respectively. 

Prioritization of EF logs based on reservoir quality

Reservoir quality is known to be controlled by reservoir 
porosity, permeability, and shale volume. Accordingly, any 
geological process that improves either of these parameters 
can contribute to reservoir quality. Such processes can be 
physical or chemical. The generated EF logs were examined 
and prioritized in terms of reservoir quality. For analyzing 
the EF logs, interpretations were made on each final EF 
based on the number of EFs merged to obtain that final EF. 
Separate analysis for EF can be done using box diagrams. 
Figure 14 shows variations of GR and DT logs in different 
EFs identified by the SOM and MRGC methods. Indeed, 
the lower the GR reading and/or the higher the DT reading, 
the higher the reservoir quality. Accordingly, EF1 and EF2 
in Fig. 14a refer to the best reservoir quality, as indicated 
by their low GR readings (i.e., small shale volume), while 
EF7 marks the lowest reservoir quality due to its high GR 
readings. In Fig. 14b, however, the best and worst reser-
voir qualities are shown by EF1 and EF7, respectively. On 
Fig. 14c, DT values range from 200 to 300 US/M, while the 
corresponding DT readings to Fig. 14d fall in the range of 
150–300 US/M.

From the above, we find that EF1 exhibits the best reser-
voir quality by both methods, while EF6 and EF7 showed 
the worst reservoir quality with the SOM and MRGC meth-
ods, respectively. In professional communities, it is usually 
common to classify different facies as either good or bad 
ones. To provide a reliable standard for drilling and verify 
the results in terms of correctness and practicality, Fig. 15 
shows a cross-plot of GR versus LLD. This figure validates 
the results.

Fig. 16   Comparing the MRGC- and SOM-derived EFs against petro-
physical logs at Well 48x-28
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Figure 16 depicts the depth, well logs (GR, LLD, and 
RHOB), and the results of MRGC and SOM at Well 48x-
28. By comparing the MRGC- and SOM-derived EFs 
with the logs, one may see that the MRGC outperformed 
the SOM. Since core data were available from the men-
tioned well in a depth interval of 1615–1723 m, Fig. 17 
presents photographs of the core box corresponding to dif-
ferent EFs. On this figure, facies (a) corresponds to EF1, 
which has the highest porosity coupled with low GR and 
is encountered in a wide range of depths (1289–1304 m, 
1660–1757 m); facies (b) corresponds to EF2, exhibits a 
GR close to facies (a), and is abundant in the depth ranges 
of 870–885 m and 1319–1332 m; facies (c) corresponds 
to EF3, exhibits medium reservoir quality, and occurs in 
depth ranges of 152–163 m and 1703–1704 m; facies (d) 
corresponds to EF4 and refers to a rock of lower reser-
voir quality than EF3, being found in the depth ranges 
1308–1312 m, 1430–1559 m, and 1605–1615 m; facies (e) 
corresponds to EF5 with a medium-to-weak reservoir qual-
ity in terms of porosity and GR and occurs in the depth 
ranges of 757–813 m, 887–930 m, and 1204–1303 m; 
facies (f) corresponds to EF6 with poor reservoir quality 
and is found in the depth ranges of 163–405 m, 609–632 m, 
1176–1197 m, and 1398–1319 m; and facies (g) corre-
sponds to EF7 with extremely poor reservoir quality and 
occurs in the depth ranges of 472–753 m, 828–869 m, 
931–1171 m, and 1398–1402 m. From Fig. 16, we find 
that the MRGC method gives a better result than SOM, 

and this can be clearly seen by matching the records, for 
example the facies at a depth of 1694–1703 m.

Conclusions

Data compilation is the basis of modeling and classifica-
tion algorithms. A clustering algorithm identifies differ-
ent clusters of similar properties in a large set of data and 
tries to maximize the similarity within each cluster while 
minimizing it between different clusters. The SOM algo-
rithm maps an H–D input space to a L-D map space. The 
MRGC algorithm is a nonparametric method that com-
bines the KNN method with the graphical classification 
techniques. Based on the results, the following conclusions 
were drawn:

•	 Considering the conditions of the research problem, we 
focused on a particular set of well logs, including GR, 
RHOB, DT, NPHI, and LLD.

•	 Necessary corrections were made to raw data and the 
Facimage module in the Geolog software was utilized 
to implement SOM and MRGC algorithms.

•	 With both methods, we ended up with 7 EFs, with the 
results verified by cross-plots of GR versus RT for the 
identified EFs coupled with photographs of the cor-
responding core boxes.

Fig. 17   Photographs of core 
box from Well 48x-28. On this 
figure, lithofacies (a), (b), (c), 
(d), (e), (f), and (g) correspond 
to EF1, EF2, EF3, EF4, EF5, 
EF6, and EF7, respectively
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•	 With both algorithms, EF1 showed the best reservoir 
quality, as shown by low GR coupled with high NPHI 
readings. At the other end of the spectrum, EF6 and 
EF7 were associated with the poorest reservoir quality, 
as indicated by high GR coupled with low NPHI read-
ings.

•	 Comparing the results of the two algorithms with well 
logs, it was found that MRGC outperformed the SOM 
in terms of accuracy.

•	 Using the core data, actual lithofacies corresponding 
to the identified EFs were delineated.

•	 EF1 exhibited the best reservoir quality in terms of 
porosity and GR and occurred in the depth ranges of 
1289–1305 m and 1659–1452 m. However, EF7 ended 
up with the poorest reservoir quality and occurred 
in the depth ranges of 472–753 m, 827–869 m, 931–
1172 m, and 1397–1402 m.
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