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Abstract
Natural fractures play an essential role in the characterization and modeling of hydrocarbon reservoirs. Modeling fractured 
reservoirs requires an understanding of fracture characteristics. Fractured zones can be detected by using seismic data, 
petrophysical logs, well tests, drilling mud loss history and core description. In this study, the feed-forward neural networks 
(FFNN), cascade feed forward neural networks (CFFN) and random forests (RF) were used to determine fracture density 
from petrophysical logs. The model performance was assessed using statistical measures including the root mean squared 
error (RMSE), coefficient of determination (R2), mean absolute error (MAE), Kling Gupta efficiency (KGE) and Willmott’s 
index (WI). Conventional good logs and full-bore micro-resistivity imaging data were available from three drilled wells of 
the Mozduran reservoir, Khangiran gas field. According to the findings of this research, the FFNN model showed a higher 
KGE and WI, and a higher correlation coefficient (R2) compared to the CFNN model. The CFNN model outperformed the 
FFNN model with lower neurons. The models' performance was also improved by increasing the number of neurons in the 
hidden layers from 8 to 35. The findings of this study demonstrate that the measured and FFNN calculated fracture intensity 
is in excellent agreement with image log results showing a correlation coefficient of 92%. The RF algorithm showed higher 
stability and robustness in predicting fracture intensity with a correlation coefficient of 93%. The results of this study can 
successfully be used as an aid in a more successful reservoir dynamic modeling and production data analysis.
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X pi  Predicted value
α (SDR)  Standard deviation ratio

Introduction

Natural fractures are the most significant factors determin-
ing the hydraulic behavior of oil and gas reservoirs. Proper 
knowledge of fractures is essential in oil production and 
development plans. In general, fractures play a significant 
part in the production of fractured reservoirs (Kadkhodaie 
et al. 2021; Derafshi et al. 2022; Pejic et al. 2022; Hossein-
zadeh et al. 2023). Natural fractures in reservoirs range from 
large to small-scale fractures. Large-scale fractures are like 
significant faults seen at seismic sections. Different methods 
have been proposed to identify small-scale fractures around 
the well (e.g. Kosari et al. 2015, 2017; Pejic et al. 2022; 
Mazdarani et al. 2023). One of the methods is to use petro-
physical logs such as neutron, density and sonic. However, 
they are not accurate enough due to their low resolution. 
This method is cost-effective and is currently in use. Image 
logs of the formation; provide essential information about 
fractures, such as their dip and azimuth, fracture spacing, 
fracture density and aperture. In addition, by interpreting 
them, other geological features such as stratification, stylo-
lite, faults and anhydrite nodes can be identified. Image logs 
can identify fractures in the excellent way with a high resolu-
tion. Using image logs in a well is economically expensive 
and is acquired in a few wells of a hydrocarbon field. In this 
study, an artificial intelligence approach was used to derive 
image log-derived fracture parameters from petrophysical 
logs quickly with reliable accuracy. Numerous studies on 
the characterization of naturally fractured reservoirs have 
been conducted recently. Tokhmechi et al. (2010) utilized 
the power of petrophysical logs and a novel technique for 
estimating fracture density in fractured zones. In their study, 
the energy of the petrophysical logs was calculated in the 
fractured zones and linear and nonlinear regressions were 
established between them. Their investigation demonstrated 
a significant relationship between fracture density and the 
energy of calipers, sonic (DT), density (RHOB) and lithol-
ogy (PEF) logs in each well. Using artificial neural networks 
and conventional well logs calibrated to core data, Zazoun 
(2013) implemented a model that can forecast fracture den-
sity (ANNs). Ja’fari et al. (2011) presented a model that 
uses an adaptive neuro-fuzzy inference system to estimate 
fracture density using conventional good logs. Their results 
demonstrated that the observed and neuro-fuzzy calculated 
fracture density may be reconciled well (correlation coef-
ficient of 98%). Aghli et al. (2019) proposed employing the 
preprocessed petrophysical logs as a trustworthy and afford-
able tool to assess the fracture parameters in the heteroge-
neous carbonate reservoir based on Adaptive Neuro-Fuzzy 

Inference System (ANFIS) technique. The results show that 
conventional well logs might be improved as instrumental 
tools for evaluating fractures if they were statistically pre-
processed and coupled with image logs or core data. They 
found a high correlation between petrophysical logs and 
images or cores results (R2 = 0.8). Zerrouki et al. (2014) 
used four conventional log data consisting of deep resis-
tivity, density, neutron porosity and gamma-ray to predict 
fracture porosity using fuzzy ranking and artificial neural 
network (ANN).

In this paper, a new method is presented for estimating 
fracture intensity using a combination of image logs, petro-
physical logs, and artificial intelligence networks.

Geological setting

The Khangiran gas field is an NW–SE structure located in 
the northeastern part of Khorasan Razavi province, near the 
political border with Turkmenistan, around 180 km north-
east of Mashhad city in Iran (Fig. 1). This field is situated 
in the Kopet Dagh Basin, and its neighboring field in Iran is 
Gonbadli Field and Dauletabad Field in Turkmenistan. The 
Kopet-Dagh Basin is located southern margin of the Amu-
Darya basin which is a highly productive petroleum province 
in Turkmenistan and Uzbekistan, extending southwestward 
into Iran and southeastward into Afghanistan. The Hercyn-
ian accreted terrane made up of deformed and commonly 
metamorphosed Paleozoic rocks forms the basement of the 
Amu-Darya Basin. The Upper Jurassic carbonates (Moz-
duran Formation) and Lower Cretaceous sandstones (Shuri-
jeh Formation) are the two reservoir sequences hosting giant 

Fig. 1  Location map of Khangiran gas field, northeastern, Iran
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gas reserves in Khangiran Field. The Relationship between 
sedimentary basins (e.g., Khavari et al. 2009, Arian et al. 
2012, Arian and Aran 2014, Ehsani and Arian 2015, Aram 
and Arian 2016) and basement faulting (e.g., Arian (2012), 
Nouri et al. (2013a, b), Nouri and Arian (2017), Nabilou 
et al. (2018) and Mansouri et al. (2017, 2018) indicates the 
role of faults in controlling the sedimentary basins of NE 
Iran. In terms of lithofacies, especially the role of tectonics 
in the sedimentary basins, Arian (2015), Razaghian et al. 

(2018) and Taesiri et al. (2020) divided sedimentary basins 
of Iran into several large scale tectonic-stratigraphic zones. 
In the study area, a northwest-southeast rift has been formed 
at early Jurassic. The rift developed as a back-arc basin for 
the Neotethyan Ocean and the Mozduran and Shurijeh For-
mations were deposited, but the deformation of the basin 
started from Eocene by inversion tectonics. The stratigraphic 
chart of Kopet-Dagh Basin is shown in Fig. 2. To data a total 
of 77 wells have been drilled in the Khangiran Field (22 

Fig. 2  Stratigraphic column of 
Kopet-Dagh Basin, modified 
from Robert et al. (2014)
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wells in Shurijeh Formation, 51 wells in Mozduran Forma-
tion, three wells in the Kashafrud formation, and one well 
is under drilling during the preparing of this manuscript. It 
should be noted that the number of wells, which were com-
pleted in the Shurijeh, Mozduran and Shurijeh-Mozduran 
formations are 31, 40, and 2, respectively. Most of the car-
bonate rocks of the Mozduran formation were deposited in a 
carbonate platform adjacent to a deeper marine environment. 
The slope and basial environment were separated from an 
extensive shelf lagoon and tidal flat by platform margin ooid/
bioclast grain stones forming a rimmed shelf platform. The 
vertical sequence of the Mozduran formation indicates five 
significant episodes of deepening and shallowing (Callovian 
to early Kimmeridgian), with numerous shallowing-upward 
Para sequences. Both tectonic and Autocycles mechanisms 
are suggested as the main cause of the generation of these 
cycles.

Materials and methods

Data collection

The dataset used in this study was taken from an oil field 
in northeastern Iran. To date, a total of 77 wells had been 
drilled in the field, and of which has both image logs and 
petrophysical logs data. The fracture densities were derived 
from image logs interpretation, and after a resampling pro-
cess, the correlation between well logs and fracture inten-
sity was investigated. The relationship between the frac-
ture intensity and well log data, including Depth (Depth), 
sonic log (DT), gamma ray log (GR), volume of dolomite 
(VOL_DOLOM), volume of calcite (VOL_CALCIT), poros-
ity (PHIT), effective porosity (PHIE), neutron porosity log 
(NPHI) and bulk density log (RHOB) is summarized in 
Table 1. A total of 70% of the data were used as the training 
dataset, and the remaining 30% were utilized as the testing 
and validation dataset. Identical inputs were exposed to the 
models in both training and testing phases to compare the 
accuracy of the models.

It should be noted that the training dataset were not used 
to test the model's performance. To estimate the fracture 
zones and their densities, the current study used FFNN and 
CFFNN methodologies. The network architectures of FFNN 
and CFFNN are comparable. An input layer, one or more 
hidden layers and an output layer are all features of the struc-
tures. Signal transmission between neurons differs between 
the two systems; FFNN only transmits neurons from the 
input layer to the output layer, but CFFNN is not confined 
to one-way transfers, and each layer is connected with both 
preceding and succeeding levels (Warsito et al. 2018). Cas-
cade Forward Neural Network (CFNN) is a kind of arti-
ficial neural network (ANNs) that is extensively used for Ta
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predicting numerous applications (Ac and Avc 2016; Badde 
et al. 2012; Elbita et al. 2014; Ganesh et al. 2018; Zhao et al. 
2020; Gündodu and Elbir 2021). Any input-to-output map-
ping may also utilize it. While CFNN and FFNN are similar, 
CFNN has links between each layer's inputs and previous 
layers. Each neuron in the input node of a CFNN is linked 
to another neuron in the hidden and output nodes, which is 
the only difference between them (Karaca 2016).

Artificial neural networks (ANNs)

In recent decades, artificial neural networks (ANNs) have 
become a prominent AI method. They have been used in 
various fields, including geosciences and engineering. An 
artificial neural network (ANN) is a computer tool that can 
link factors influencing a complicated event. It is inspired by 
the human brain and comprises many essential processing 
components (Raikar 2004). The ANN model is trained using 
a collection of input data, then it can make predictions. In 
general, an ANN operation starts with data processing in 
neurons (nodes) and signals are exchanged between nodes 
through connections. Each connection has a weight assigned 
to it depending on the relevance of the nodes it connects. 
To identify the output signal from the input signal, each 
node employs a nonlinear activation function (Raikar 2004). 
Most multilayer ANNs have three layers: an input layer, one 
or more hidden layers and an output layer, with each layer 
containing many neurons. ANN technologies have been pre-
sented in a variety of ways, and they are classified in a vari-
ety of ways. Feedforward (perceptron) networks, competitive 
networks and recurrent networks are the three main types of 

ANNs employed for prediction problems in earth sciences 
(Vaghefi et al. 2020).

Model development

FFNN and CFFNN As previously mentioned, the FFNN and 
CFFNN algorithms use many neurons as input and output 
variables in the input and output layers. A network for the 
fracture properties was necessary for the current investiga-
tion. As illustrated in Figs. 3 and 4, a network with nine 
neurons in the input layer and one in the output layer was 
utilized to estimate fracture intensity based on the gathered 
data.

The number of hidden layers, the number of neurons in each 
hidden layer, the activation function and the training process 
all affect the models accuracy (Vaghefi et al. 2020). There is 
no reliable method for determining these values. As a result, 
they are estimated by trial and error (Mahmoodi et al. 2018). 
Earlier research has shown that the Levenberg–Marquardt 
algorithm is one of the most efficient and acceptable training 
algorithms compared to the other standard training methods 
(Huang et al. 2006). As a result, the Levenberg–Marquardt 
training method was used in this study for fracture intensity 
estimation. In addition, the hidden layer used a sigmoid trans-
fer function, whereas the output layer used a linear transfer 
function. According to Bishop (1995), no more than two hid-
den layers are usually required. Using trial and error, the cur-
rent work increased the number of hidden layers from 1 to 5, 
with 1–40 neurons in each layer. Two hidden layers were found 
to have the maximum accuracy. It was also discovered that 
the model’s accuracy changed with each iteration for a certain 
number of hidden layers and neurons. This has been reported 

Fig. 3  Feed-forward neural 
network architecture for fracture 
intensity estimation
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in previous publications (Vaghefi et al. 2020). To get the best 
accuracy, the model was iterated 50 times for each variation 
in the number of hidden layers and neurons.

Evaluation of the models

To assess the model’s efficacy and accuracy, the correlation 
coefficient (R), Kling Gupta efficiency (KGE), Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE) and Will-
mott’s Index (WI) were utilized as follows:

where Xmi is the observed value, Xpi is the predicted value, 
R is the correlation coefficient of observed and predicted 
values, Xm is the mean observed value, � is the standard 
deviation ratio (SDR) of Xmi and Xpi , � is the mean ratio of 
Xmi and Xpi , and N is the number of data points. The optimal 
model would be determined by its R, KGE, and WI values, 
as well as its RMSE and MAE values.
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Results and discussion

The performance evaluation of the models

The advantages of cascade neural networks are well known. 
First, no structure of the networks is predefined; that is, the 
network is automatically built up from the training data. 
Second, the cascade network learns fast because each of its 
neurons is trained independently of the other. However, a 
disadvantage is that the cascade networks can be over-fitting 
in the presence of noisy features. To overcome this prob-
lem, we used the random forest algorithm. A random forest 
is a collection of Decision Trees; each, Tree independently 
makes a prediction and the values are then averaged (Regres-
sion)/Max voted (Classification) to arrive at the final value. 
The accuracy of Random Forest is generally very high; its 
efficiency is particularly Notable in large datasets, and pro-
vides an estimate of essential variables in classification; For-
ests Generated can be saved and reused, unlike other models, 
it does not overfit with more features.

Table 2 compares the accuracy of the ANN models in 
estimating fracture intensity. As can be observed, each 
model performed well and was accurate in the fracture inten-
sity estimation derived from the image logs data. The FFNN 
had the lowest estimation error, while the CFFNN had the 
greatest, according to the indices used in the testing step. 
During the testing phase, the RMSE for the estimation of the 
fracture intensity for FFNN-7 was 0.395 1/m. The RMSE of 
the FFNN-7 model was lower than that of the CFFNN by 
43.54, 54.71 and 64.94 percent.

Furthermore, in fracture intensity estimation, FFNN 
showed a KGE of 0.975 in the testing step, being as high 
as 2.67%, 13.02%, and 15.89% greater than CFFNN. This 
suggests that FFNN outperformed CFFNN. Figure  5 

Fig. 4  Cascade feed forward 
neural network for fracture 
intensity estimation
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represents the scatter plots for the observed versus mod-
eled data for the fracture intensity estimation. As is seen, 
the models with a correlation coefficient greater than 0.9 
could explain the measurements with reasonable accu-
racy. FFNN shows the highest correlation of R = 0.995 in 
fracture intensity estimation. A comparison of measured 
and estimated fracture intensity using FFNN is shown in 
Fig. 6.

Fracture intensity model based on RF algorithm

A popular tree-based machine-learning methodology is the 
Random Forest (RF) method (Breiman 2001; Mohana et al. 
2021). Random Forest, in addressing complex correlations 

Table 2  The accuracy of the 
ANN models in estimating 
the fracture intensity from 
petrophysical data

ANNs architecture RMSE MAE KGE WI �2 Best linear fitting

Train Test Train Train Test Train Test All

FFNN-1 9-08-08-1 2.31 1.14 2.54 1.15 0.62 0.64 0.61 0.44 0.70 y = 0.48x + 1.3
CFFNN-1 9-08-08-1 1.03 2.15 0.76 0.97 0.63 0.63 0.62 0.56 0.86 y = 0.77x + 0.56
FFNN-2 9-12-09-1 0.91 0.70 1.82 0.96 0.76 0.78 0.72 0.76 0.86 y = 0.78x + 0.52
CFFNN-2 9-12-09-1 0.88 1.35 0.69 0.95 0.72 0.74 0.68 0.72 0.85 y = 0.82x + 0.43
FFNN-3 9-15-10-1 0.89 0.69 1.64 0.89 0.80 0.81 0.86 0.82 0.89 y = 0.85x + 0.39
CFFNN-3 9-15-10-1 0.88 1.21 0.63 0.93 0.76 0.78 0.81 0.78 0.89 y = 0.82x + 0.45
FFNN-4 9-20-11-1 0.71 0.61 1.58 0.89 0.88 0.89 0.88 0.86 0.87 y = 0.76x + 0.53
CFFNN-4 9-20-11-1 0.84 0.68 1.73 0.89 0.84 0.85 0.84 0.82 0.87 y = 0.78x + 0.51
FFNN-5 9-25-12-1 0.62 0.58 1.57 0.85 0.90 0.90 0.90 0.90 0.91 y = 0.87x + 0.35
CFFNN-5 9-25-12-1 0.77 0.67 1.79 0.83 0.86 0.87 0.85 0.86 0.87 y = 0.75x + 0.57
FFNN-6 9-30-15-1 0.43 0.47 1.51 0.85 0.94 0.91 0.93 0.93 0.89 y = 0.83x + 0.31
CFFNN-6 9-30-15-1 0.77 0.64 1.44 0.79 0.90 0.88 0.89 0.89 0.87 y = 0.78x + 0.56
FFNN-7 9-35-20-1 0.40 0.45 1.49 0.82 0.99 0.98 0.98 0.95 0.93 y = 0.89x + 0.27
CFFNN-7 9-35-20-1 0.65 0.58 1.08 0.75 0.95 0.94 0.94 0.91 0.91 y = 0.83x + 0.42

Fig. 5  The FFNN-predicted intensity of fracture profiles for one of 
the test wells (FFNN-7). As is seen, the FFNN-predicted profiles are 
in good agreement with the image log observations

Fig. 6  A comparison of measured and estimated fracture intensity by 
using FFNN
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between variables, has risen in favor in recent years because 
of its ability to correctly foresee complicated relationships 
between variables (Matin et al. 2016; Matin and Chelgani 
2016). The RF algorithm uses a unique sampling method 
called bootstrap sampling to increase the diversity of sam-
ple selection. The two forms of data created in this tech-
nique are out-of-bag (OOB) data and in-bag data. OOB data 
refers to the 1/3 of the original sample removed from the 
bag, whereas in-bag data relates to the remaining sample 
(Lei et al. 2018).

This bootstrap dataset is used to generate many deci-
sion trees. Numerous decision trees are created from this 
bootstrap dataset and combined to get much more accurate 
and stable prediction. RF does not depend on a single deci-
sion tree; instead, it takes predictions from the individual 
trees and predicts the outcome depending on the majority 
of votes. Cross-plots showing the correlation coefficient 
between the measured and estimated fracture density using 
the random forest algorithm in the training and test dataset 
are shown in Fig. 7.

Sensitivity analysis (SA)

Garson (1991) devised a method (Eq. 5) based on the weight 
matrix for the estimation of the relative relevance of each 
input parameter. The relative influence of each input vari-
able (mentioned in Fig. 8) on fracture intensity is graphically 
shown in Fig. 8.

where
Ij = relative importance of jth variable.
Ni = number of input variables.
Nh = number of hidden neurons.
W = connection weight.
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Fig. 7  Cross plots showing the correlation coefficient between the measured and estimated fracture density using the random forest algorithm in 
the training and test data set
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The letters i, h, and o stand for input, hidden, and output 
layers, respectively, whereas the letters k, m, and n stand 
for input, hidden, and output neurons. Figure 8 shows how 
the FFNN and random forest models compare in identifying 
the essential inputs. The depth profile in the random forest 
model may be regarded to be the influencing variable intro-
duced into the model by post-processing procedures.

Conclusions

In the current study, attempts were made to formulate petro-
physical data into fracture intensity derived from image logs 
interpretation. Followings are concluded.

• The Feed-Forward Neural Network (FFNN), the Cascade 
Feed Forward Neural Network (CFFNN) and the Ran-
dom Forest (RF) methods were used in the current work 
to forecast the fracture density using petrophysical log 
data including depth, gamma ray, neutron, density, effec-
tive porosity, total porosity, calcite volume and dolomite 
volume.

• The models were developed utilizing the results of image 
logs interpretation. Evaluation of the models showed that 
FFNN and RF resulted in satisfactory results. There is 
a good agreement between the measured and estimated 
fracture intensity. Post-processing techniques were used 
to evaluate the significance of input variables.

• The results indicated that the FFNN with the lowest error 
outperformed the CFFNN models in fracture intensity 
estimation. The comparative study indicates the superior 
capacity of the random forest to forecast fracture inten-
sity in terms of the correlation coefficient, stability and 
robustness.

• In the absence of expensive image logs such as full-bore 
formation micro imager (FMI), using the intelligent mod-
els can forecast fracture intensity from easily available 
well logging data. This will enhance the applicability of 
well logs for extraction of further parameters in addition 
to their routine job for petrophysical evaluation of hydro-
carbon reservoirs.

• The well log-derived fracture intensity data can be used 
to construct continuous fracture network (CFN) and 
discrete fracture network (DNF) models and study the 
impact of fracture models on production.
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