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Abstract

Natural fractures play an essential role in the characterization and modeling of hydrocarbon reservoirs. Modeling fractured
reservoirs requires an understanding of fracture characteristics. Fractured zones can be detected by using seismic data,
petrophysical logs, well tests, drilling mud loss history and core description. In this study, the feed-forward neural networks
(FFNN), cascade feed forward neural networks (CFFN) and random forests (RF) were used to determine fracture density
from petrophysical logs. The model performance was assessed using statistical measures including the root mean squared
error (RMSE), coefficient of determination (R?), mean absolute error (MAE), Kling Gupta efficiency (KGE) and Willmott’s
index (WI). Conventional good logs and full-bore micro-resistivity imaging data were available from three drilled wells of
the Mozduran reservoir, Khangiran gas field. According to the findings of this research, the FFNN model showed a higher
KGE and WI, and a higher correlation coefficient (R?) compared to the CENN model. The CENN model outperformed the
FFNN model with lower neurons. The models' performance was also improved by increasing the number of neurons in the
hidden layers from 8 to 35. The findings of this study demonstrate that the measured and FFNN calculated fracture intensity
is in excellent agreement with image log results showing a correlation coefficient of 92%. The RF algorithm showed higher
stability and robustness in predicting fracture intensity with a correlation coefficient of 93%. The results of this study can
successfully be used as an aid in a more successful reservoir dynamic modeling and production data analysis.
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X pi Predicted value
a (SDR) Standard deviation ratio
Introduction

Natural fractures are the most significant factors determin-
ing the hydraulic behavior of oil and gas reservoirs. Proper
knowledge of fractures is essential in oil production and
development plans. In general, fractures play a significant
part in the production of fractured reservoirs (Kadkhodaie
et al. 2021; Derafshi et al. 2022; Pejic et al. 2022; Hossein-
zadeh et al. 2023). Natural fractures in reservoirs range from
large to small-scale fractures. Large-scale fractures are like
significant faults seen at seismic sections. Different methods
have been proposed to identify small-scale fractures around
the well (e.g. Kosari et al. 2015, 2017; Pejic et al. 2022;
Mazdarani et al. 2023). One of the methods is to use petro-
physical logs such as neutron, density and sonic. However,
they are not accurate enough due to their low resolution.
This method is cost-effective and is currently in use. Image
logs of the formation; provide essential information about
fractures, such as their dip and azimuth, fracture spacing,
fracture density and aperture. In addition, by interpreting
them, other geological features such as stratification, stylo-
lite, faults and anhydrite nodes can be identified. Image logs
can identify fractures in the excellent way with a high resolu-
tion. Using image logs in a well is economically expensive
and is acquired in a few wells of a hydrocarbon field. In this
study, an artificial intelligence approach was used to derive
image log-derived fracture parameters from petrophysical
logs quickly with reliable accuracy. Numerous studies on
the characterization of naturally fractured reservoirs have
been conducted recently. Tokhmechi et al. (2010) utilized
the power of petrophysical logs and a novel technique for
estimating fracture density in fractured zones. In their study,
the energy of the petrophysical logs was calculated in the
fractured zones and linear and nonlinear regressions were
established between them. Their investigation demonstrated
a significant relationship between fracture density and the
energy of calipers, sonic (DT), density (RHOB) and lithol-
ogy (PEF) logs in each well. Using artificial neural networks
and conventional well logs calibrated to core data, Zazoun
(2013) implemented a model that can forecast fracture den-
sity (ANNs). Ja’fari et al. (2011) presented a model that
uses an adaptive neuro-fuzzy inference system to estimate
fracture density using conventional good logs. Their results
demonstrated that the observed and neuro-fuzzy calculated
fracture density may be reconciled well (correlation coef-
ficient of 98%). Aghli et al. (2019) proposed employing the
preprocessed petrophysical logs as a trustworthy and afford-
able tool to assess the fracture parameters in the heteroge-
neous carbonate reservoir based on Adaptive Neuro-Fuzzy
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Inference System (ANFIS) technique. The results show that
conventional well logs might be improved as instrumental
tools for evaluating fractures if they were statistically pre-
processed and coupled with image logs or core data. They
found a high correlation between petrophysical logs and
images or cores results (R*>=0.8). Zerrouki et al. (2014)
used four conventional log data consisting of deep resis-
tivity, density, neutron porosity and gamma-ray to predict
fracture porosity using fuzzy ranking and artificial neural
network (ANN).

In this paper, a new method is presented for estimating
fracture intensity using a combination of image logs, petro-
physical logs, and artificial intelligence networks.

Geological setting

The Khangiran gas field is an NW-SE structure located in
the northeastern part of Khorasan Razavi province, near the
political border with Turkmenistan, around 180 km north-
east of Mashhad city in Iran (Fig. 1). This field is situated
in the Kopet Dagh Basin, and its neighboring field in Iran is
Gonbadli Field and Dauletabad Field in Turkmenistan. The
Kopet-Dagh Basin is located southern margin of the Amu-
Darya basin which is a highly productive petroleum province
in Turkmenistan and Uzbekistan, extending southwestward
into Iran and southeastward into Afghanistan. The Hercyn-
ian accreted terrane made up of deformed and commonly
metamorphosed Paleozoic rocks forms the basement of the
Amu-Darya Basin. The Upper Jurassic carbonates (Moz-
duran Formation) and Lower Cretaceous sandstones (Shuri-
jeh Formation) are the two reservoir sequences hosting giant

Khangiran Field A

Fig. 1 Location map of Khangiran gas field, northeastern, Iran
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gas reserves in Khangiran Field. The Relationship between
sedimentary basins (e.g., Khavari et al. 2009, Arian et al.
2012, Arian and Aran 2014, Ehsani and Arian 2015, Aram
and Arian 2016) and basement faulting (e.g., Arian (2012),
Nouri et al. (2013a, b), Nouri and Arian (2017), Nabilou
et al. (2018) and Mansouri et al. (2017, 2018) indicates the
role of faults in controlling the sedimentary basins of NE
Iran. In terms of lithofacies, especially the role of tectonics
in the sedimentary basins, Arian (2015), Razaghian et al.

(2018) and Taesiri et al. (2020) divided sedimentary basins
of Iran into several large scale tectonic-stratigraphic zones.
In the study area, a northwest-southeast rift has been formed
at early Jurassic. The rift developed as a back-arc basin for
the Neotethyan Ocean and the Mozduran and Shurijeh For-
mations were deposited, but the deformation of the basin
started from Eocene by inversion tectonics. The stratigraphic
chart of Kopet-Dagh Basin is shown in Fig. 2. To data a total
of 77 wells have been drilled in the Khangiran Field (22

Fig.2 Stratigraphic column of
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wells in Shurijeh Formation, 51 wells in Mozduran Forma-
tion, three wells in the Kashafrud formation, and one well 0 2
is under drilling during the preparing of this manuscript. It § % Sl18 8
should be noted that the number of wells, which were com- FEE|Sd —
pleted in the Shurijeh, Mozduran and Shurijeh-Mozduran =
formations are 31, 40, and 2, respectively. Most of the car- ;
bonate rocks of the Mozduran formation were deposited in a S - e o
carbonate platform adjacent to a deeper marine environment. g 8 S25S2
The slope and basial environment were separated from an
extensive shelf lagoon and tidal flat by platform margin ooid/ )
bioclast grain stones forming a rimmed shelf platform. The S E
vertical sequence of the Mozduran formation indicates five 5' 'é S 2oz
significant episodes of deepening and shallowing (Callovian - O S <SS 3
to early Kimmeridgian), with numerous shallowing-upward
Para sequences. Both tectonic and Autocycles mechanisms a2
are suggested as the main cause of the generation of these E o = < <
cycles. = 3352 E
Materials and methods =

= 8533
Data collection - -ee°
The dataset used in this study was taken from an oil field mg
in northeastern Iran. To date, a total of 77 wells had been En
drilled in the field, and of which has both image logs and ) o e e
petrophysical logs data. The fracture densities were derived 5 SRSz
from image logs interpretation, and after a resampling pro-
cess, the correlation between well logs and fracture inten- s
sity was investigated. The relationship between the frac- §
ture intensity and well log data, including Depth (Depth), o 8288
sonic log (DT), gamma ray log (GR), volume of dolomite i “ °eee<
(VOL_DOLOM), volume of calcite (VOL_CALCIT), poros- é
ity (PHIT), effective porosity (PHIE), neutron porosity log E ) o e
(NPHI) and bulk density log (RHOB) is summarized in % ;ﬂ/ R
Table 1. A total of 70% of the data were used as the training £ |0 = -
dataset, and the remaining 30% were utilized as the testing E
and validation dataset. Identical inputs were exposed to the gn 8
models in both training and testing phases to compare the = g o — n
accuracy of the models. gle Izeg

It should be noted that the training dataset were not used B a Toew

to test the model's performance. To estimate the fracture =
zones and their densities, the current study used FFNN and § g
CFFNN methodologies. The network architectures of FFNN % = AN
and CFFNN are comparable. An input layer, one or more = & § § § a
hidden layers and an output layer are all features of the struc- % a oo
tures. Signal transmission between neurons differs between _q;)
the two systems; FFNN only transmits neurons from the E ﬁ
input layer to the output layer, but CFFNN is not confined § %
to one-way transfers, and each layer is connected with both é g g
preceding and succeeding levels (Warsito et al. 2018). Cas- Z s §
cade Forward Neural Network (CFNN) is a kind of arti- % % s % § E
ficial neural network (ANNS5) that is extensively used for e & s =25
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predicting numerous applications (Ac and Avc 2016; Badde
et al. 2012; Elbita et al. 2014; Ganesh et al. 2018; Zhao et al.
2020; Giindodu and Elbir 2021). Any input-to-output map-
ping may also utilize it. While CFNN and FFNN are similar,
CFNN has links between each layer's inputs and previous
layers. Each neuron in the input node of a CFNN is linked
to another neuron in the hidden and output nodes, which is
the only difference between them (Karaca 2016).

Artificial neural networks (ANNs)

In recent decades, artificial neural networks (ANNSs) have
become a prominent AI method. They have been used in
various fields, including geosciences and engineering. An
artificial neural network (ANN) is a computer tool that can
link factors influencing a complicated event. It is inspired by
the human brain and comprises many essential processing
components (Raikar 2004). The ANN model is trained using
a collection of input data, then it can make predictions. In
general, an ANN operation starts with data processing in
neurons (nodes) and signals are exchanged between nodes
through connections. Each connection has a weight assigned
to it depending on the relevance of the nodes it connects.
To identify the output signal from the input signal, each
node employs a nonlinear activation function (Raikar 2004).
Most multilayer ANNs have three layers: an input layer, one
or more hidden layers and an output layer, with each layer
containing many neurons. ANN technologies have been pre-
sented in a variety of ways, and they are classified in a vari-
ety of ways. Feedforward (perceptron) networks, competitive
networks and recurrent networks are the three main types of

Fig.3 Feed-forward neural
network architecture for fracture
intensity estimation

Input Layer

ANNSs employed for prediction problems in earth sciences
(Vaghefi et al. 2020).

Model development

FFNN and CFFNN As previously mentioned, the FFNN and
CFFNN algorithms use many neurons as input and output
variables in the input and output layers. A network for the
fracture properties was necessary for the current investiga-
tion. As illustrated in Figs. 3 and 4, a network with nine
neurons in the input layer and one in the output layer was
utilized to estimate fracture intensity based on the gathered
data.

The number of hidden layers, the number of neurons in each
hidden layer, the activation function and the training process
all affect the models accuracy (Vaghefi et al. 2020). There is
no reliable method for determining these values. As a result,
they are estimated by trial and error (Mahmoodi et al. 2018).
Earlier research has shown that the Levenberg—Marquardt
algorithm is one of the most efficient and acceptable training
algorithms compared to the other standard training methods
(Huang et al. 2006). As a result, the Levenberg—Marquardt
training method was used in this study for fracture intensity
estimation. In addition, the hidden layer used a sigmoid trans-
fer function, whereas the output layer used a linear transfer
function. According to Bishop (1995), no more than two hid-
den layers are usually required. Using trial and error, the cur-
rent work increased the number of hidden layers from 1 to 5,
with 1-40 neurons in each layer. Two hidden layers were found
to have the maximum accuracy. It was also discovered that
the model’s accuracy changed with each iteration for a certain
number of hidden layers and neurons. This has been reported

FRACTURE
INTENSITY

Hidden Layers Output Layer
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Fig.4 Cascade feed forward
neural network for fracture
intensity estimation

Input Layer

in previous publications (Vaghefi et al. 2020). To get the best
accuracy, the model was iterated 50 times for each variation
in the number of hidden layers and neurons.

Evaluation of the models

To assess the model’s efficacy and accuracy, the correlation
coefficient (R), Kling Gupta efficiency (KGE), Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) and Will-
mott’s Index (WI) were utilized as follows:

N
1 2

RMSE = 4| ; (Xomi — X1) (D

Zil (Xmi - im> (Xpi - ip)
R=—= — - ()

VIR (K= Xa)” IV, (X = X,)

1 N
MAE = o ; | (X = Xp) 3)
KGE:I—\/(R—1)2+(a—1)2+(ﬁ—1)2 “

where X,,; is the observed value, X, is the predicted value,
R is the correlation coefficient of observed and predicted
values, Xm is the mean observed value, a is the standard
deviation ratio (SDR) of X,,; and X;, B is the mean ratio of
X,; and X;, and N is the number of data points. The optimal
model would be determined by its R, KGE, and WI values,
as well as its RMSE and MAE values.

@ Springer
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Results and discussion
The performance evaluation of the models

The advantages of cascade neural networks are well known.
First, no structure of the networks is predefined; that is, the
network is automatically built up from the training data.
Second, the cascade network learns fast because each of its
neurons is trained independently of the other. However, a
disadvantage is that the cascade networks can be over-fitting
in the presence of noisy features. To overcome this prob-
lem, we used the random forest algorithm. A random forest
is a collection of Decision Trees; each, Tree independently
makes a prediction and the values are then averaged (Regres-
sion)/Max voted (Classification) to arrive at the final value.
The accuracy of Random Forest is generally very high; its
efficiency is particularly Notable in large datasets, and pro-
vides an estimate of essential variables in classification; For-
ests Generated can be saved and reused, unlike other models,
it does not overfit with more features.

Table 2 compares the accuracy of the ANN models in
estimating fracture intensity. As can be observed, each
model performed well and was accurate in the fracture inten-
sity estimation derived from the image logs data. The FFNN
had the lowest estimation error, while the CFFNN had the
greatest, according to the indices used in the testing step.
During the testing phase, the RMSE for the estimation of the
fracture intensity for FENN-7 was 0.395 1/m. The RMSE of
the FFNN-7 model was lower than that of the CFFNN by
43.54, 54.71 and 64.94 percent.

Furthermore, in fracture intensity estimation, FFNN
showed a KGE of 0.975 in the testing step, being as high
as 2.67%, 13.02%, and 15.89% greater than CFFNN. This
suggests that FFNN outperformed CFFNN. Figure 5
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Table 2 The accuracy O.f the ANNSs architecture RMSE MAE KGE WI R? Best linear fitting
ANN models in estimating
the fracture intensity from Train Test Train Train Test Train Test All
petrophysical data
FFNN-1  9-08-08-1 231 1.14 254 1.15 062 0.64 061 044 0.70 y=048x+1.3
CFFNN-1 9-08-08-1 1.03 215 0.76 097 0.63 063 062 0.56 086 y=0.77x+0.56
FFNN-2  9-12-09-1 091 0.70 1.82 096 0.76 0.78 0.72 0.76 0.86 y=0.78x+0.52
CFFNN-2 9-12-09-1 0.88 1.35 0.69 095 0.72 0.74 0.68 0.72 0.85 y=0.82x+0.43
FFNN-3  9-15-10-1 0.89 0.69 1.64 0.89 080 0.81 0.86 0.82 0.89 y=0.85x+0.39
CFFNN-3 9-15-10-1 0.88 1.21 0.63 093 0.76 0.78 0.81 0.78 0.89 y=0.82x+0.45
FFNN-4  9-20-11-1 0.71 0.61 158 0.89 088 0.89 0.88 0.86 0.87 y=0.76x+0.53
CFFNN-4 9-20-11-1 0.84 0.68 1.73 0.89 0.84 085 084 0.82 0.87 y=0.78x+0.51
FFNN-5  9-25-12-1 0.62 0.58 157 085 090 090 090 090 091 y=0.87x+0.35
CFFNN-5 9-25-12-1 0.77 0.67 179 0.83 086 087 085 0.86 0.87 y=0.75x+0.57
FFNN-6  9-30-15-1 043 047 151 085 094 091 093 093 0.89 y=0.83x+0.31
CFFNN-6 9-30-15-1 0.77 0.64 144 0.79 090 0.88 0.89 0.89 0.87 y=0.78x+0.56
FFNN-7  9-35-20-1 040 045 149 0.82 099 098 098 095 093 y=0.89x+0.27
CFFNN-7 9-35-20-1 0.65 058 1.08 0.75 095 094 094 091 091 y=0.83x+0.42
124 RP=0.92% "
~[E 10 .
B 3500 {0, M 0
g i e =
g N 3450] “ 4
g k ) — Simulated ANN Fracture Intensity
I;', 44 3400 0 0 Measurment Fracture Intensity
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Fig.5 The FFNN-predicted intensity of fracture profiles for one of
the test wells (FFNN-7). As is seen, the FFNN-predicted profiles are
in good agreement with the image log observations

represents the scatter plots for the observed versus mod-
eled data for the fracture intensity estimation. As is seen,
the models with a correlation coefficient greater than 0.9
could explain the measurements with reasonable accu-
racy. FENN shows the highest correlation of R=0.995 in
fracture intensity estimation. A comparison of measured
and estimated fracture intensity using FFNN is shown in
Fig. 6.

Fracture intensity model based on RF algorithm
A popular tree-based machine-learning methodology is the

Random Forest (RF) method (Breiman 2001; Mohana et al.
2021). Random Forest, in addressing complex correlations
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Fig.6 A comparison of measured and estimated fracture intensity by
using FEFNN
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between variables, has risen in favor in recent years because
of its ability to correctly foresee complicated relationships
between variables (Matin et al. 2016; Matin and Chelgani
2016). The RF algorithm uses a unique sampling method
called bootstrap sampling to increase the diversity of sam-
ple selection. The two forms of data created in this tech-
nique are out-of-bag (OOB) data and in-bag data. OOB data
refers to the 1/3 of the original sample removed from the
bag, whereas in-bag data relates to the remaining sample
(Lei et al. 2018).

This bootstrap dataset is used to generate many deci-
sion trees. Numerous decision trees are created from this
bootstrap dataset and combined to get much more accurate
and stable prediction. RF does not depend on a single deci-
sion tree; instead, it takes predictions from the individual
trees and predicts the outcome depending on the majority
of votes. Cross-plots showing the correlation coefficient
between the measured and estimated fracture density using
the random forest algorithm in the training and test dataset
are shown in Fig. 7.

Sensitivity analysis (SA)

Garson (1991) devised a method (Eq. 5) based on the weight
matrix for the estimation of the relative relevance of each
input parameter. The relative influence of each input vari-
able (mentioned in Fig. 8) on fracture intensity is graphically
shown in Fig. 8.

Test Data
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N, =number of hidden neurons.
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Fig. 7 Cross plots showing the correlation coefficient between the measured and estimated fracture density using the random forest algorithm in

the training and test data set
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The letters i, h, and o stand for input, hidden, and output
layers, respectively, whereas the letters k, m, and n stand
for input, hidden, and output neurons. Figure 8 shows how
the FFNN and random forest models compare in identifying
the essential inputs. The depth profile in the random forest
model may be regarded to be the influencing variable intro-
duced into the model by post-processing procedures.

Conclusions

In the current study, attempts were made to formulate petro-
physical data into fracture intensity derived from image logs
interpretation. Followings are concluded.

e The Feed-Forward Neural Network (FFNN), the Cascade
Feed Forward Neural Network (CFFNN) and the Ran-
dom Forest (RF) methods were used in the current work
to forecast the fracture density using petrophysical log
data including depth, gamma ray, neutron, density, effec-
tive porosity, total porosity, calcite volume and dolomite
volume.

e The models were developed utilizing the results of image
logs interpretation. Evaluation of the models showed that
FFNN and RF resulted in satisfactory results. There is
a good agreement between the measured and estimated
fracture intensity. Post-processing techniques were used
to evaluate the significance of input variables.

e The results indicated that the FFNN with the lowest error
outperformed the CFFNN models in fracture intensity
estimation. The comparative study indicates the superior
capacity of the random forest to forecast fracture inten-
sity in terms of the correlation coefficient, stability and
robustness.

¢ In the absence of expensive image logs such as full-bore
formation micro imager (FMI), using the intelligent mod-
els can forecast fracture intensity from easily available
well logging data. This will enhance the applicability of
well logs for extraction of further parameters in addition
to their routine job for petrophysical evaluation of hydro-
carbon reservoirs.

e The well log-derived fracture intensity data can be used
to construct continuous fracture network (CFN) and
discrete fracture network (DNF) models and study the
impact of fracture models on production.
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