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Abstract
The geomechanical characteristics of a drill formation are uncontrollable factors that are crucial to determining the optimal 
controllable parameters for a drilling operation. In the present study, data collected in wells drilled in the Marun oilfield of 
southwestern Iran were used to develop adaptive network-based fuzzy inference system (ANFIS) models of geomechanical 
parameters. The drilling specific energy (DSE) of the formation was calculated using drilling parameters such as weight-on-
bit (WOB), rate of penetration (ROP), rotational speed of drilling string (RPM), torque, bit section area, bit hydraulic factor, 
and bit hydraulic power. A stationary wavelet transform was subsequently used to decompose the DSE signal to the fourth 
level. The approximation values and details of each level served as inputs for ANFIS models using particle swarm optimiza-
tion (PSO) algorithm and genetic algorithm (GA). As model outputs, the Young’s Modulus, uniaxial compressive strength 
(UCS), cohesion coefficient, Poisson’s ratio, and internal friction angle were compared to the geomechanical parameters 
obtained from petrophysical logs using laboratory-developed empirical relationships. Both models predicted the Young’s 
modulus, UCS, and cohesion coefficient with high accuracy, but lacked accuracy in predicting the internal friction angle 
and Poisson’s ratio. The root mean square error (RMSE) and determination coefficient (R2) were lower for the ANFIS-PSO 
model than for the ANFIS-GA model, indicating that the ANFIS-PSO model presents higher accuracy and better generali-
zation capability than the ANFIS-GA model. As drilling parameters are readily available, the proposed method can provide 
valuable information for strategizing a drilling operation in the absence of petrophysical logs.
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d3  Details of the third level
d4  Details of the fourth level
DSE  Drilling specific energy
E  Static Young's modulus
Edyn  Dynamic Young's modulus
gbest  Global best
HF  Bit hydraulic factor
HP  Bit hydraulic horsepower
MSE  Mechanical specific energy
NPHI  Neutron porosity
p, q and r  Constant parameters for membership function
Pbest  Personal best
r1, r2  Random numbers
R2  Determination coefficient
RMSE  Root mean square error
ROP  Drilling penetration rate
RPM  Drill string's rotational speed
Torq  Torque
UCS  Uniaxial compressive strength
V  Velocity
Vp  Compressional wave velocity
Vs  Shear wave velocity
Vshale  Volume of shale
w  Inertia weight in PSO algorithm/weight in 

ANFIS algorithm
w  Normalized weight in ANFIS algorithm
WOB  Weight on bit
x  Position in PSO
X, Y  Inputs of ANFIS
Z  Output of ANFIS

Greek letters
�  Membership function
�  Poisson's ratio
�  Density of rock
�  Standard deviation in Gaussian membership 

function
�  Internal friction angle

Introduction

In the upstream oil and gas industry, geomechanical param-
eters are generally derived from petrophysical logs obtained 
by deploying a sonde down the well. As it is costly and 
time-intensive, this acquisition is usually limited to the res-
ervoir part of the well (Maleki et al. 2014). Drilling prob-
lems may occur in the upper layers of the reservoir; thus, 
knowledge of these layers’ geomechanical parameters would 
help prevent these problems and reduce the associated costs. 
Acquiring continuous drilling data from the ground surface 
to the reservoir and using these data to develop a model for 
estimating geomechanical parameters would, therefore, be 

a valuable approach for solving drilling problems in the res-
ervoir’s upper layers. The energy consumed for rock drilling 
is proportional to the geomechanical properties of the rock. 
The denser the rock and the higher the strength, the greater 
the energy required for drilling it (Anemangely et al. 2019). 
Therefore, the energy consumed for rock drilling can be used 
to estimate the geomechanical parameters of the rock.

Teale (1965) introduced the concept of rock mechani-
cal specific energy (MSE) as a parameter determining the 
mechanical efficiency of rock grinding tools. Rock MSE, 
defined as the amount of energy required to grind unit vol-
ume of a rock, has been broadly applied to evaluate the per-
formance of rock drilling machines in studies and projects 
focused on rock drillability.

Ersoy and Atıcı (2004) concluded that MSE can be 
employed for assessing the productivity of a wide range of 
grinding applications. An increase in the rate of penetration 
(ROP) or depth cutting can result in decreased MSE.

In a 2005 pilot project, Weis, Du Priest and Koederlitz 
used data collected from drilling operations to estimate 
the MSE, alternatively modifying drilling parameters and 
checking well log records to maximize the ROP (Dupriest 
and Koederitz 2005; Koederitz and Weis 2005). Their study 
demonstrated that proper monitoring of MSE substantially 
improved drilling efficiency and contributed to establish 
MSE surveillance as a standard for monitoring drilling 
operation data. However, the MSE model proposed by Teale 
did not consider the effect of hydraulics. Armenta (2008) 
argued that hydraulics considerably impact the drilling 
specific energy (DSE). Indeed, the hydraulics of a drill bit 
can increase the bit’s ROP, enhancing drilling performance. 
Mechanical action grinds rocks while a hydraulic agent 
removes the drilled cuttings from the bit face. Faster cuttings 
removal prevents redrilling and lowers the energy require-
ments (Armenta 2008). The DSE is calculated as follows:

where WOB is the weight-on-bit (lb), ROP is the bit rate of 
penetration (ft/h), RPM is the drill string’s rotational speed 
(rpm), AB is the area of the bit involved in grinding  (in2), T 
is the torque (lb-ft), while HP and HF are the bit hydraulic 
horsepower and hydraulic factor, respectively.

In the past two decades, MSE has been widely used to 
optimize drilling operations in the oil and gas industry. In 
these studies, empirical models or regression methods were 
applied to achieve the goals of the studies using the concept 
of specific energy. Hamrick (2011) conducted numerous 
experimental tests, optimizing the controllable parameters 
to minimize MSE and, thus, maximize the ROP. Laosripai-
boon et al. (2015) used a combination of well logging data 
and down-hole specific energy to identify perforated zones 

(1)

DSE =
WOB

AB

+
120 × � × RPM × Torq

AB × ROP
−

1980000 × HF × HP

ROP × AB
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of high production potential. Pinto and Lima (2016) per-
formed a real-time geomechanical analysis based on MSE to 
prevent nonproductive time while drilling through evaporite 
layers. By defining the confined compressive strength (CCS) 
as the lower limit of MSE, they showed that whenever the 
MSE exceeds the value of CCS, it leads to drilling prob-
lems. Majidi et al. (2017) proposed a technique to determine 
pore pressure by applying the concepts of MSE and drill-
ing efficiency. Mohammadi Behboud et al. (2017) devised 
a mathematical equation associated with geomechanical 
parameters and DSE in an oil field based in southwestern 
Iran. By evaluating the relationships of each geomechani-
cal parameter with DSE, they showed that the DSE could 
be obtained with a nonlinear relationship between porosity, 
drilling fluid flow, and uniaxial compressive strength (UCS). 
Alsubaih et al. (2018) increased drilling rates by combin-
ing MSE with a statistical analysis approach (SAA). They 
developed a relationship with SAA to predict the drilling 
rate from drilling parameters. In their study, the nonproduc-
tive drilling time in areas associated with drilling problems 
was reduced by maximizing the drilling rate and bringing 
the MSE value closer to the UCS.

Rock mechanics is predominantly based on experimen-
tation. For most part, completely accurate theoretical for-
mulae do not exist, and most formulae commonly used to 
calculate critical parameters are empirical correlations. Due 
to the complexity of rock structures, rock behavior predic-
tion depends on numerous factors. Therefore, examining the 
interactions between any pair of parameters using empirical 
relations and library data is nearly impossible. Mathematical 
modeling approaches are time-intensive and frequently fail 
to give adequately accurate estimations. Artificial intelli-
gence-based approaches have served as good alternatives 
to mathematical modeling, providing adequately satisfying 
results. Artificial intelligence has been employed to estimate 
shear velocity (Anemangely et al. 2017; Mehrad et al. 2022), 
or predict pore pressure (Matinkia et al. 2022), drilling rate 
(Anemangely et al. 2018; Sabah et al. 2019a, b; Mehrad 
et al. 2020; Sobhi et al. 2022), and estimating the hydrogen 
absorption on porous carbon materials (Vo Thanh and Lee 
2022; Vo-Thanh et al. 2022; Davoodi et al. 2023a), carbon 
dioxide geological trapping indexes prediction (Davoodi 
et al. 2023b), and lost circulation (Sabah et al. 2021). These 
studies have established that artificial intelligence-based 
methods are superior to analytical and regression methods 
in these applications.

Anemangely et al. (2019) used the concept of MSE to 
estimate the geomechanical parameters of rock, including 
CCS, UCS, internal friction angle ( � ), and Poisson's ratio 
( � ). They first identified and removed the outlier data and 
then used MSE, drilling fluid flow, and drill tooth wear rate 
as inputs to a hybrid multilayer perceptron neural network 
with cuckoo and particle optimization algorithms. Their 

results showed that contrary to the low accuracy of models 
in the estimation of � ; CCS, UCS, and � parameters can be 
estimated with high accuracy. However, using neural net-
works due to being a black box can be considered as one of 
the weaknesses of that study, whereas conducting appro-
priate data pre-processing and applying hybrid algorithms 
were its strong points, leading to high-accuracy predictions. 
Gamal et al. (2021) estimated the UCS using the random 
forest and functional network algorithms from the drilling 
parameters of weight on the drill bit (WOB), drilling rate 
(ROP), rotational speed (RPM), torque (Torq), and stand 
pipe pressure. The study’s outcome revealed that the UCS 
could be estimated from drilling parameters with promising 
accuracy. However, their study lacks a logical understand-
ing of the relationship between the used drilling parameters 
and the UCS of the rock. In some other studies, drilling 
parameters were employed as input variables to standalone 
machine learning algorithms to predict � (Ahmed et al. 2021; 
Siddig et al. 2021, 2022a), Young modulus (Siddig et al. 
2022b), UCS (Gowida et al. 2021; Hiba et al. 2022), and 
rock density (Ahmed et al. 2022a, b).

Using fuzzy logic, fuzzy inference systems can model 
qualitative aspects of human knowledge and reasoning 
processes without incorporating qualitative analysis. First 
investigated by Takagi and Sugeno (1985), fuzzy modeling 
and identification have found numerous applications in con-
trol, identification, and prediction (Jang 1993). Combining 
fuzzy structures with artificial neural networks, fuzzy-neuro 
networks are used for system identification and time series 
prediction among many other applications. In the current 
study, we present a model using mud logging data and DSE 
to determine mechanical rock characteristics by means of 
a fuzzy-neuro network combined with a particle swarm 
optimization (PSO) algorithm. Since the DSE of a rock is 
dependent on its geomechanical characteristics, DSE can 
serve as an acceptable parameter to relate drilling param-
eters to mechanical rock characteristics. Therefore, the pre-
sent study aimed at developing a hybrid machine-learning 
model to predict the mechanical parameters of rock using 
DSE as input.

Research methodology

To develop rock properties estimator models based on drill-
ing data, we first calculated the DSE using Eq. (1). The 
approximation and detail coefficients of DSE were subse-
quently extracted using wavelet transformation. Approxi-
mation and detail coefficients contain low frequency and 
high frequency information, respectively. These coefficients 
were used as input for adaptive network-based fuzzy infer-
ence system (ANFIS) models with genetic algorithm (GA) 
and particle swarm optimization (PSO) algorithm. The 
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ANFIS-GA and ANFIS-PSO algorithms’ targets were the 
rocks’ mechanical properties, namely the static Young's 
modulus E, the uniaxial compressive strength (UCS), the 
internal friction angle � , the cohesion C, and the Poisson’s 
ratio � of the rock formation. These mechanical properties 
were estimated from petrophysical logs taken in the studied 
depth range using empirical correlations developed from 
laboratory tests' results. The drilling data was recorded 
meter by meter and the petrophysical logs were acquired 
every 0.1524 m. Therefore, the petrophysical log data were 
upscaled to match the resolution of the drilling data as a 
prerequisite to presenting the geomechanical parameters 
as target parameters for the predictor algorithms. The root 
mean square error (RMSE) was calculated using the algo-
rithms’ output and the mechanical properties calculated from 
the petrophysical logs. Based on the RMSE, the algorithms 
iteratively improved their solutions. This general process is 
illustrated in Fig. 1, and each step is detailed in the follow-
ing sections.

Drilling data

The drilling data used in the present research were collected 
from two vertical wells drilled in the Marun oilfield in south-
western Iran, located in the Dezful depression of the Zagros 
belt. The Aghajari formation outcrops at the surface of the 
Marun oilfield, which consists of three main reservoirs: the 
Bangistan and Khami groups, and the Asmari formation. 
The primary reservoir rock of this field, the Asmari for-
mation, is divided into five reservoir layers. The top three 
reservoir layers (zones 1, 2, and 3) are mainly composed of 
dolomite carbonates, resulting in a high density of fractures, 
especially in zone 1, with a dolomite content reaching 90%. 
With a higher shale and marl content, the lower layers (zones 

4 and 5) are less fragile. Therefore, fractures are less wide-
spread, and microscopic fractures are prevalent (Arian and 
Mohammadian 2009).

Measurements were taken in well A and well B, both 
situated in the Asmari formation, at depth ranges of 
2700–3232 m and 3506.47–3875.35 m, respectively. The 
data sets associated with well A and well B consisted of 533 
and 370 data points, respectively. In model training, a larger 
volume and variety of input data results in a model with bet-
ter generalization capability and higher accuracy; therefore, 
the data sets of wells A and B were combined. The ranges 
of the geomechanical characteristics and drilling parameters 
are presented in Tables 1 and 2, respectively. A total of 25 
data points falling outside the standard deviation of the DSE 
were eliminated.

Applying the operational parameters presented in Figs. 2 
and 3 into Eq. (1), the DSE of the studied range was cal-
culated. The DSE features were subsequently extracted 
via wavelet transform, using a db1 wavelet function. For 
this purpose, the DSE signal was decomposed to the fourth 
level. Figures 4 and 5 report the details of each decomposi-
tion level together with the fourth level approximation. The 
detail coefficients (d1, d2, d3, and d4) and approximation 

Fig. 1  General steps for estimat-
ing the geomechanical proper-
ties of reservoir rock

DSE calcula�on
Feature extrac�on 

using Wavelet

ANFIS-PSO

ANFIS-GA
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Table 1  Range of geomechanical rock characteristics in well A and B

Parameter Unit Well A Well B

Minimum Maximum Minimum Maximum

E Gpa 5.46 30.43 9.13 36.30
UCS Mpa 24.70 127.31 39.78 151.41
C Mpa 5.59 33.48 12.76 45.19
� degree 20.87 51.35 20.87 51.26
� – 0.11 0.27 0.12 0.25
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coefficient (a4) were derived from the extracted DSE fea-
tures by wavelet and subsequently used as inputs for the 
ANFIS model. To determine optimized parameters for the 
membership function, 80% of the dataset was used for model 
training, and the remaining 20% was used for model testing.

Determination of the geomechanical parameters

Elastic rock characteristics, such as the Young’s modulus, 
shear modulus, volumetric modulus, and Poisson ratio, can 
be estimated using density logs, p-wave and s-wave seismic 
records (Boitsov et al. 2011). The dynamic Young’s Modu-
lus can be obtained via Eq. (2). The rock’s dynamic Young’s 
Modulus given by Eq. (2) is generally higher than the static 
Young’s Modulus (Zoback 2007; Boitsov et al. 2011). In this 

equation, the density ρ and seismic wave velocities Vp and 
Vs are expressed in kg/m3 and m/s, respectively:

The difference between the static and dynamic states 
stems from the physical structure and heterogeneous tex-
ture of rocks. As accessing cores directly is often difficult, 
the determination of static rock characteristics is typically 
associated with numerous constraints. Multiple formulae 
exist to transform dynamic elastic rock characteristics into 
static ones; the validity of each relation depends on the geo-
graphical region.

Najibi et al. (2015) used the following equation to esti-
mate the static Young’s Modulus (expressed in GPa) of the 
Asmari and Sarvak Limestones, two main oil reservoirs in 
Iran:

Estimation of the uniaxial compressive strength based 
on Young’s modulus

Young’s modulus of elasticity represents a significant rock 
characteristic directly related to rock strength and can there-
fore be utilized to estimate rock strength. This parameter 
can be measured statically or dynamically. As it is typically 

(2)Edyn = �V2
s

(

3V2
p
− 4V2

s

V2
p
− V2

s

)

(3)E = 0.169V3.324
p

Table 2  Range of drilling parameters in well A and B

Parameter Unit Well A Well B

Minimum Maximum Minimum Maximum

WOB tf 2.24 150.80 8.67 281.72
ROP min/m 10.15 15.62 34.71 54.54
RPM rpm 52.11 66.47 144.93 309.08
HP hp 19.43 102.92 46.81 668.89
Torq daNm 20.90 224.22 41.01 431.55
DSE psi 74.52 150.80 41.01 74.52

Fig. 2  Drilling parameter varia-
tions in well A



1720 Journal of Petroleum Exploration and Production Technology (2023) 13:1715–1740

1 3

Fig. 3  Drilling parameter varia-
tions in well B

Fig. 4  DSE decomposition to 
the 4th level using db1 wavelet 
function in well A. a detail of 
1st level; b detail of 2nd level; 
c detail of 3rd level; d detail of 
4th level; and e approximation 
of 4th level
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lower than the dynamic modulus, the static modulus is 
commonly employed for estimating the uniaxial compres-
sive strength (UCS) of the rock. Archer and Rasouli (2013) 
define the USC as shown in Eq. (4):

where Young’s modulus Esta and the USC are expressed in 
GPa and Mpa, respectively.

Estimation of the inherent cohesion and internal friction 
angle

Sonic log data were incorporated into Eq. (5) to estimate the 
internal friction angle ϕ. In this equation, the porosity NPHI 
and shale volume Vshale are expressed as fractions. The shale 
volume percentage is obtained using Eq. (6), which incorpo-
rates gamma ray (GR) data (Hudson et al. 2002):

Inherent rock cohesion can be defined as the rock’s 
shear strength when the normal stresses are null (Hudson 
et al. 2002). The inherent rock cohesion is given in Eq. (7), 
wherein the sine and cosine arguments are in radians:

(4)UCS = 2.28 + 4.1089E

(5)
� = 26.5 − 37.4

(

1 − NPHI − VShale

)

+ 62.1
(

1 − NPHI − VShale

)2
,

(6)VShale =
GR − GRmin

GRmax − GRmin

Wavelet transformation

Wavelet transforms belong to a group of mathematical func-
tions used to decompose a continuous signal into its spec-
tral components, with each component’s resolution equal 
to its scale. Wavelet transformation is the decomposition of 
a function into a set of wavelet functions. Having a strong 
damping nature and a finite length, wavelets are transformed, 
scaled models of a function (Mother wavelet). Numerous 
wavelet transformations exist; the present study uses a sta-
tionary wavelet transform whose main characteristic is time-
invariance (Pesquet et al. 1996). This method resembles the 
discrete wavelet transform, but the signal subsampling step 
commonly used in discrete wavelet transforms is absent; 
instead, this method employs super sampling filters (Pes-
quet et al. 1996).

Hybrid predictor algorithms

In this section, we will describe each algorithm separately 
before discussing their hybridization.

(7)C = UCS ×
1 − sin(�)

2 × cos(�)

Fig. 5  DSE decomposition to 
the 4th level using db1 wavelet 
function in well B. a detail of 
1st level; b detail of 2nd level; 
c detail of 3rd level; d detail of 
4th level; and e approximation 
of 4th level
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ANFIS

Introduced in 1993, ANFIS combines adaptive neural net-
works with fuzzy logic principles. Model parameters can 
be set via a hybrid learning process to model systems based 
on existing input–output data (Jang 1993). ANFIS is an 
integrated system employing a neural network to improve 
the fuzzy inference system. ANFIS’ structure consists of a 
series of fuzzy if–then rules with associated membership 
functions, selected according to the problem’s conditions 
to generate the stipulated input–output pairs. Based on the 
number and type of membership functions, ANFIS deter-
mines the fuzzy rules, aiming to minimize the estimation 

error. To describe the infinite structure, we consider the two 
following fuzzy if–then rules:

where X and Y are inputs, Ai and Bi are fuzzy sets, Zi are out-
puts in the fuzzy domain determined by fuzzy rules, and pi, 
qi, and ri are parameters determined in the training process. 
To implement these rules, the ANFIS model is structured in 
five layers; these rules are described below and illustrated 
in Fig. 6.

Layer 1: The first layer consists of membership functions 
responsible for fuzzificating the inputs. As seen in Fig. 6, 
this layer consists of adaptive nodes. The output oi of this 
layer corresponds to the degree of membership of each input:

In these equations, �Ai
(X) and �Bi

(Y) are membership 
functions, which are typically Gaussian functions. A Gauss-
ian membership function using a mean c and a standard 
deviation � can be expressed as follows:

Layer 2: This layer, shown in Fig. 6 with the circled letter 
M representing the fixed node associated with the member-
ship function, acts as a multiplier. These nodes’ outputs are 
the fuzzy weights wi of each rule, determined by Eq. (13):

(8)
Rule 1: if

(

X is A1

)

and (Y is B1) then Z1 = p1X + q1Y + r1,

(9)
Rule 2: if

(

X is A2

)

and
(

Y is B2

)

then Z2 = p2X + q1Y + r2,

(10)o1
i
= �Ai

(X), i = 1, 2

(11)o1
i
= �Bi−2

(Y),i = 3, 4.

(12)�(x) = e
−

(x−c)2

2�2 .

(13)wi = o2
i
= �Ai

(X)�Bi
(Y),i = 1, 2.

Fig. 6  ANFIS structure with 
two inputs (X and Y) and one 
output (Z). Squares denote 
adaptive nodes, and circles 
denote fixed nodes (Adaptive 
nodes have parameters that are 
assigned appropriate values for 
them by the training process; 
Meanwhile, fixed nodes do not 
require any adjustment)

Z

Layer 1                     Layer 2                Layer 3                      Layer 4                 Layer 5
ANFIS

Start

Generate particles with randomly assigned 

velocity and position in the search space

Consider the best personal and global equal to infinite

Evaluate objective function

Update the personal best for each particle and the global best

Calculate new velocity for each particle using equation 17

Calculate new position for each particle using equation 18

End

Termination 

criterion 

satisfied?

No

Yes

Fig. 7  PSO algorithm flowchart (Rajabi et al. 2022)
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Layer 3: In this layer, which consists of fixed nodes, the 
normalized fuzzy weights are calculated by dividing the 
weight by the sum of the weights obtained from the previ-
ous layer (Eq. 14):

(14)wi = o3
i
=

wi
∑2

i=1
wi

.

Layer 4: Consisting of two adaptive nodes, this layer pro-
vides the output of the membership functions, as shown in 
Eq. 15:

where p, q, and r are constant parameters associated with the 
membership functions.

Layer 5: This layer’s fixed node is responsible for sum-
ming the input signals as follows:

(15)o4
i
= wiZi = wi

(

piX + qiY + ri
)

, i = 1, 2,

Fig. 8  GA optimization flow-
chart (Sheykhinasab et al. 2022) Start

Randomly initialize population

Evaluate Fitness function

Selection

Crossover

Mutation

End
Termination  

criterion 

satis ed?

No

Yes

Elitism

Parents

Randomly chosen 
crossover point

Random 
muta�on

Start
Establishing a base ANFIS model with 

specified type and number of membership 

functions using a training data

Extracting the values of membership 

functions’ parameters in the 

obtained model

Introducing the extracted values for GA 

and PSO to set the number of decision 

variables and the best probable solution

Improving the values of membership functions’ 

parameters (MFp) using GA and PSO with the 

goal of minimizing the error of prediction

Updating the values of membership functions’ 

parameters introduced by GA and PSO and calculating 

the error of the model prediction for training subsetError value

Values of MFp

Testing the optimized modelEnd

ANFIS optimization

Fig. 9  ANFIS-PSO/GA Hybrid model flowchart
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Particle swarm optimization (PSO) algorithm

The PSO algorithm features fast convergence due to the 
sharing of information between particles and is easy to 
understand and implement (Ma et al. 2011), which has con-
tributed to its widespread use. Each particle, representing an 
individual and a potential optimal solution, moves through 
the problem space following individual and social patterns. 
Solutions are generated based on the particles’ position in 
the problem space. PSO uses the best solution explored by 
each individual as well as the best solution explored by the 
swarm in each iteration to improve the global optimal solu-
tion. Using the best individual increases the diversity in the 

(16)z = o5
i
=

2
�

i=1

wizi =

∑2

i=1
wiZi

∑2

i=1
wi

.

solutions’ quality, which is advantageous for solving highly 
nonlinear and multi-state problems.

To apply this algorithm, we started by randomly assign-
ing the initial position x and velocity V for each particle i. In 
the next step, the random positions assigned to each particle 
were evaluated with an objective function. For each particle, 
the current position and the cost corresponding to that posi-
tion were recorded as the best position Pbest and cost of that 
particle. The particle with the lowest cost was identified, 
and its position and cost were logged as the best current 
position gbest and cost of the entire swarm. In the next step, 
a new velocity for each particle was calculated based on the 
particle’s current velocity, its distance from its best position, 
and its distance from the particle swarm's best position. This 
calculation is formulated in Eq. (17). The new position for 
each particle was obtained by summing the new velocity 
with the current position, as shown in Eq. (18):

Fig. 10  Cross-plot of DSE and 
geomechanical parameters in 
well A. a Young’s modulus E, 
b UCS, c rock cohesion C, d 
internal friction angle � , and e 
Poisson’s ratio �
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where i represents the index of each particle (a natural num-
ber between 1 and the total number of particles); w is the 
inertial weight controlling the particle velocity; c1 and c2 are 
the individual and social learning coefficients, respectively; 
and r1 and r2 are random numbers in the range of [0,1]. 
The new positions were evaluated again with the objective 
function. For each particle, the values of the best position 
Pbest and cost were updated if the new positions' cost was 
lower than the best recorded cost. Likewise, the values of the 

(17)
Vi(new) = wVi(current) + c1r1

(

Pbesti(current) − xi(current)
)

+ c2r2
(

gbest(current) − xi(current)
)

(18)xi(new) = xi(current) + Vi(new),

best position gbest and cost of the entire swarm were updated 
if the lowest updated cost was lower than the cost associ-
ated with the current gbest . This process was iterated until a 
predetermined termination condition was reached. A visual 
illustration of the PSO algorithm is presented in Fig. 7.

Genetic algorithm (GA) optimization

Inspired by the Darwinian theory of evolution and the concept 
of survival of the fittest, the GA is one of the most used algo-
rithms. GA utilizes processes similar to genetic recombina-
tion and mutation to promote population evolution that satis-
fies a predetermined goal. In a crossover process, also known 
as selective reproduction, suitable individuals are preferably 

Fig. 11  Cross-plot of the DSE 
and geomechanical parameters 
in well B. a Young’s modulus 
E, b UCS, c rock cohesion C, d 
internal friction angle � , and e 
Poisson’s ratio �
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selected over individuals with less fitness to produce offspring. 
This creates a clear tendency toward harmonizing the popula-
tion and enhancing the average result with each iteration of the 
algorithm. Subsequently, offspring mutations return diversity 
to the population and explore new regions of the parameter 
search space. Figure 8 gives a visual representation of the GA.

In this technique, we began the optimization process 
by generating a randomly initialized population of candi-
date answers. A fitness score was attributed to each indi-
vidual in the population based on its efficiency. The best 

scoring individuals were then selected as parents; a process 
referred to as elitism in the chart below. Crossover between 
the selected individuals, equivalent to the recombination of 
the parents’ genetic material, was subsequently performed 
to create new offspring. This offspring was then randomly 
altered or mutated to form the next generation, diversify-
ing the population. At the next iteration, the fitness score of 
each individual in the child population was evaluated and 
the individuals with the best score were chosen as the next 
generation’s parents. This cycle continued until a preset 

Fig. 12  The RMSE as a func-
tion of the number of member-
ship functions in the modeling 
of a Young’s modulus E, 
b UCS, c rock cohesion C, d 
internal friction angle � , and e 
Poisson’s ratio �
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termination condition was satisfied, and an appropriate solu-
tion was obtained (Okwu and Tartibu 2021).

ANFIS with hybrid optimization algorithms

The design of an ANFIS model with hybrid metaheuristic 
algorithms started by determining the type and number of 
membership functions. The ANFIS model was subsequently 
trained using the training data subset and a backpropagation 
optimization algorithm. During the training process, the val-
ues of the membership functions’ parameters for each input 
and output parameter were extracted. Next, we introduced 
the extracted values as the best current values of each indi-
vidual in the PSO algorithm and one of the solutions in the 
GA. Based on their respective performance mechanisms, the 
optimization algorithms improved the values of the mem-
bership functions’ parameters, minimizing the error of the 
ANFIS model created with these values. By determining 
the optimal values of the membership functions’ parameters 
after satisfying the termination condition for the optimiza-
tion algorithms, the optimized ANFIS model was created, 
and its performance was assessed using the testing data sub-
set. This process is illustrated in Fig. 9.

Results and discussion

The relationships between the DSE and each of the geome-
chanical parameters were investigated in the form of a 
cross-plot. Results are presented in Fig. 10 for well A and in 
Fig. 11 for well B. As can be seen in Fig. 10, the geomechan-
ical parameters in well A are directly related to the DSE: 

an increase in the parameters’ value leads to an increase in 
the energy required for drilling rock. However, there is no 
apparent relationship between the Poisson’s ratio � and the 
DSE in well A. This result is consistent as the energy needed 
to drill is proportional to the rock’s resistance, and E, C, � , 
and UCS are parameters characterizing the rock resistance. 
In well B, the geomechanical parameters exhibit an even 
stronger relationship with the DSE, as can be seen in Fig. 11. 
The Poisson’s ratio � shows a weak relationship to the DSE. 
The UCS and E present a particularly strong relationship 
with the DSE in well A and B.

To achieve a model with high accuracy and good generaliza-
tion ability, a subset of the data set was used to train the hybrid 
ANFIS algorithms. To this end, we selected suitable values 
for controllable parameters, such as the number and type of 
membership functions. Triangular, Gaussian, generalized bell-
shaped, and trapezoidal membership functions were applied to 
the ANFIS algorithm to model geomechanical parameters. The 
model generated using Gaussian membership functions exhib-
ited higher accuracy; therefore, we selected Gaussian mem-
bership functions for use with the metaheuristic ANFIS-PSO 
and ANFIS-GA optimization algorithms. Sensitivity analysis 
conducted on the number of membership functions revealed 
that the modeling error decreases as the number of member-
ship functions increases, as shown in Fig. 12. However, model 
overfitting occurred when the number of membership functions 
exceeded five. Therefore, the number of membership functions 
was set to five in ANFIS-PSO and ANFIS-GA.

Sensitivity analysis was employed to adjust the control 
parameters in the optimization algorithms. We identified the 
optimal value for the controllable parameters by evaluating 
the accuracy of the model obtained from the training data 
for different parameter values. Table 3 presents the optimal 
values for the controllable parameters in GA and PSO. These 
values were obtained using 200 iterations for each algorithm.

Figures 13 and 14 show the cross-plots of the geome-
chanical parameters’ measured and predicted values gen-
erated from ANFIS-GA and ANFIS-PSO, respectively. In 
both models, the geomechanical parameters are overesti-
mated at low values (the line of best fit is under the Y = T 
line), and underestimated at high values (the line of best 
fit is over the Y = T line). This pattern of over- and under-
estimation is most pronounced for the Poisson's ratio with 
both algorithms. Therefore, using the present method to pre-
dict � warrants caution. This result was expected, given the 
weak relationship between � and DSE in both wells. The 
Y = T line deviates less from the line of best fit in the � pre-
diction model than in the � prediction model. Nevertheless, 
both algorithms predict � with relatively low accuracy. Both 

Table 3  The controllable parameters’ optimal values for the 
metaheuristic optimization algorithms

Metaheuristic 
algorithm

Parameter Value

PSO Size of swarm 60
C
1

2.05
C
2

2.05
w 0.98

GA Size of population 70
Selection method Roulette wheel
Crossover Uniform
Mutation Uniform (p = 0.03)
Mutation rate 0.04
Selection pressure 3
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ANFIS-GA and ANFIS-PSO models are highly accurate in 
predicting E, UCS and C. This result was anticipated consid-
ering the strong relationship between these three parameters 
and the DSE (Figs. 10 and 11). Graphs of the membership 
functions resulted from the training process of ANFIS algo-
rithm in the prediction of geomechanical properties of for-
mation are presented in the appendix section.

The cross-plots of the geomechanical parameters’ meas-
ured and predicted values for the testing data subset are 
shown in Figs. 15 and 16. They reveal a pattern of over-
estimation at low parameter values and underestimation 
at high parameter values. This pattern is similar to the 
pattern identified for the training data subset and was, 
therefore, anticipated. Both ANFIS-GA and ANFIS-PSO 

Fig. 13  Cross-plots of geome-
chanical parameters calculated 
from log data and predicted 
with ANFIS-GA using the 
training data subset. a Young’s 
modulus E, b UCS, c rock cohe-
sion C, d internal friction angle 
� , and e Poisson’s ratio �
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models predict � and � poorly for the testing data subset; 
this strongly confirms that using these algorithms to pre-
dict � and � warrants caution. Conversely, ANFIS-GA and 
ANFIS-PSO used with the testing data subset predict E, 
UCS and C with high accuracy. Therefore, we are confi-
dent that the proposed method can also predict these three 

geomechanical parameters with high accuracy for other 
wells in the studied oilfield.

Tables 4 and 5 present the error criteria and coefficients 
associated with the ANFIS-PSO and ANFIS-GA algorithms 
in the training and test phases, respectively. These results 
suggest that the ANFIS-PSO algorithm predicts each of the 

Fig. 14  Cross-plots of geome-
chanical parameters calculated 
from log data and predicted 
with ANFIS-PSO using the 
training data subset. a Young’s 
modulus E, b UCS, c rock cohe-
sion C, d internal friction angle 
� , and e Poisson’s ratio �
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five geomechanical parameters with higher accuracy than 
the ANFIS-GA algorithm. The RMSE of the ANFIS-PSO 
model is lower than that of the ANFIS-GA model in the 
training and test phases, indicating that the ANFIS-PSO 
model is highly generalizable in this application and could 
be employed for predicting geomechanical parameters for 
other wells in the Marun oilfield.

Evaluating input parameters to determine the effect of 
each input on the target parameter is a valuable method for 
detecting anomalies. We performed sensitivity analysis on 
the approximation and detail coefficients (d1, d2, d3, d4, 
and a4) derived from the DSE to determine their respective 
influence on the geomechanical parameters. The results of 
this analysis are presented in Fig. 17. Results indicate that 

Fig. 15  Cross-plots of geome-
chanical parameters calculated 
from log data and predicted 
with ANFIS-GA using the 
testing data subset. a Young’s 
modulus E, b UCS, c rock cohe-
sion C, d internal friction angle 
� , and e Poisson’s ratio �

(a) (b)

(c) (d)

(e)

15 20 25 30 35 40

Predicted E (Gpa)

15

20

25

30

35

40

M
ea

su
re

d 
E 

(G
pa

)

Data point
The best linear fit
Y=T

70 80 90 100 110 120 130 140 150

Predicted UCS (Mpa)

70

80

90

100

110

120

130

140

150

160

M
ea

su
re

d 
U

C
S 

(M
pa

)

Data point
The best linear fit
Y=T

20 25 30 35 40 45

Predicted C (Mpa)

20

25

30

35

40

45

M
ea

su
re

d 
C

 (M
pa

)

Data point
The best linear fit
Y=T

20 25 30 35 40 45

Predicted  (deg)

20

25

30

35

40

45

M
ea

su
re

d
 (d

eg
)

Data point
The best linear fit
Y=T

0.1 0.15 0.2 0.25 0.3

Predicted

0.1

0.15

0.2

0.25

M
ea

su
re

d

Data point
The best linear fit
Y=T



1731Journal of Petroleum Exploration and Production Technology (2023) 13:1715–1740 

1 3

the first-level detail coefficient affects the Young’s modu-
lus most strongly, and the fourth-level detail coefficient has 
the greatest impact on the UCS. The cohesion and internal 
friction angle are most influenced by the third-level detail 
coefficient, while the Poisson’s ratio is most affected by 
the third-level detail coefficient.

Conclusions

In the present study, data collected in two vertical wells 
drilled in the Marun oilfield of southwestern Iran were used 
to develop predictive models of geomechanical param-
eters based on the drilling specific energy (DSE). We first 

Fig. 16  Cross-plots of geome-
chanical parameters calculated 
from log data and predicted 
with ANFIS-PSO using the 
testing data subset. a Young’s 
modulus E, b UCS, c rock cohe-
sion C, d internal friction angle 
� , and e Poisson’s ratio �
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calculated the DSE from the drilling parameters using the 
method proposed in Armenta (2008). Next, the DSE features 
were extracted using a stationary wavelet transform and used 
as input for two hybrid adaptive neural fuzzy inference sys-
tem (ANFIS) models using a genetic algorithm (GA) and 
a particle swarm optimization (PSO) to predict the rocks’ 
geomechanical parameters. The ANFIS-GA and ANFIS-
PSO model outputs were compared to the geomechanical 
parameters obtained from petrophysical logs using labora-
tory-developed empirical relationships. The results of this 
research are as follows:

• The DSE-based numerical prediction of the geomechani-
cal parameters revealed that the Young’s modulus and 
uniaxial compressive strength (UCS) are strongly cor-
related to the DSE. Conversely, the Poisson’s ratio � has 
a weak relationship with the DSE.

• ANFIS models using Gaussian membership functions are 
more accurate than models using triangular, generalized 
bell-shaped, or trapezoidal membership functions.

• The model’s error value decreases as the number of 
membership functions increases; however, the number 
of membership functions used in the ANFIS model was 
limited to five to avoid overfitting.

• The technique proposed in this study predicts the UCS, 
the Young’s modulus, and the rock’s cohesion with high 
accuracy.

• The ANFIS-PSO model exhibits higher accuracy and bet-
ter generalization capability than the ANFIS-GA model. 
The low root mean square error (RMSE) values achieved 
for the Young’s modulus, UCS, and cohesion associated 
with the ANFIS-PSO indicate that this model is highly 
generalizable in its current application.

• The ANFIS-PSO model output’s sensitivity to the input 
parameters revealed that first level details significantly 
affect the Young’s modulus, fourth level details have the 
greatest impact on the UCS, the fourth level approxima-
tion greatly influences the cohesion and internal friction 
angle, and third level details affect the Poisson’s ratio the 
most.

• This study demonstrates that the ANFIS-PSO model 
could be employed for predicting certain geomechanical 
parameters for other wells in the Marun oilfield.

Future studies

Some events that occur during well drilling, such as loss, 
borehole collapse or pore pressure changes, influence the 
DSE. Loss or borehole collapse results in an increase in the 
DSE and a decrease in the energy required to drill. When 
pore pressure exceeds mud pressure (overpressure), rock 
cuttings are removed more efficiently, which lowers the 
drilling energy requirements. These conditions affecting 

Table 4  Model error criteria of 
the ANFIS-GA and ANFIS-
PSO models when used with the 
training data subset

Model Criteria Predicted parameters

E (Gpa) UCS (Mpa) C (Mpa) �(Degree) �

ANFIS-GA ARE 0.0030 0.0028 0.0044 0.0097 0.0166
R2 0.9307 0.9332 0.9063 0.8960 0.7187
RMSE 0.9895 3.9569 1.6070 2.0484 0.0194

ANFIS-PSO ARE 0.0026 0.0024 0.0034 0.0080 0.0154
R2 0.9515 0.9513 0.9471 0.9368 0.7811
RMSE 0.8443 3.3762 1.2449 1.6856 0.0180

Table 5  Model error criteria of 
the ANFIS-GA and ANFIS-
PSO models when used with the 
testing data subset

Model Criteria Predicted parameters

E (Gpa) UCS (Mpa) C (Mpa) �(Degree) �

ANFIS-GA ARE 0.0064 0.0048 − 0.0012 0.0119 0.0288
R2 0.8732 0.8800 0.8154 0.6914 0.5535
RMSE 1.2798 5.1337 2.1738 3.2244 0.0220

ANFIS-PSO ARE 0.0057 0.0042 − 0.0011 0.0106 0.0271
R2 0.9028 0.9102 0.8724 0.8142 0.6360
RMSE 1.1391 4.5214 1.8336 2.6985 0.0207
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the DSE were not considered in the present study. In future 
studies, we intend to further investigate the effects of the 
above parameters on the DSE and the rock’s geomechanical 
parameters.

Appendix

Figures 18, 19, 20, 21, and 22 represent the Gaussian mem-
bership functions for the inputs the ANFIS-PSO models 
generated using the training data subset.

Fig. 17  Influence of the input 
parameters in predicting the 
geomechanical parameters 
using the ANFIS-PSO model. 
a Young’s modulus E, b UCS, 
c rock cohesion C, d internal 
friction angle � , and e Poisson’s 
ratio �
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Fig. 18  Membership functions 
for input parameters used to 
estimate the Young’s modulus E 
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Fig. 19  Membership functions 
for input parameters used to 
estimate the UCS
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Fig. 20  Membership functions 
for input parameters used to 
estimate the cohesion C 
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Fig. 21  Membership functions 
for input parameters used to 
estimate the internal friction 
angle �
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Fig. 22  Membership functions 
for input parameters used to 
estimate the Poisson’s ratio �
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