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Abstract
The rate of penetration (ROP) is an influential parameter in the optimization of oil well drilling because it has a huge impact 
on the total drilling cost. This study aims to optimize four machine learning models for real-time evaluation of the ROP 
based on drilling parameters during horizontal drilling of sandstone formations. Two well data sets were implemented for 
the model training–testing (Well-X) and validation (Well-Y). A total of 1224 and 524 datasets were implemented for train-
ing and testing the model, respectively. A correlation for ROP assessment was suggested based on the optimized artificial 
neural network (ANN) model. The precision of this equation and the optimized models were tested (524 datapoints) and 
validated (2213 datapoints), and their accuracy was compared to available ROP correlations. The developed ANN-based 
equation predicted the ROP with average absolute percentage errors (AAPE) of 0.3% and 1.0% for the testing and valida-
tion data, respectively. The new empirical equation and the optimized fuzzy logic and functional neural network models 
outperformed the available correlations in assessing the ROP. The support vector regression accuracy performance showed 
AAPE of 26.5%, and the correlation coefficient for the estimated ROP was 0.50 for the validation phase. The outcomes of 
this work could help in modeling the ROP prediction in real time during the drilling process.
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Abbreviations
AAPE  Average absolute percentage error
ANN  Artificial neural network
COA  Cuckoo optimization algorithm
FIS-SC  Fuzzy inference system with subtractive 

clustering
FNN  Functional neural network
FS  Forward selection
GRNN  General regression neural network
MPNN  Multilayer perceptron neural network
PSA  Particle swarm optimization algorithm
QA  Quality assurance
QC  Quality control
R  Correlation coefficient
RMSE  Root-mean-square error

ROPregression  Regression-based rate of penetration
SVR  Support vector regression

List of symbols
A  Area of drilled hole,  in2

a  Constant
a1 to a8  The constants for Bourgoyne and Young’s 

correlation
aa1 to  aa11  The constants for Osgouei’s correlation
aB and cB  The exponents for Bingham’s correlation
aW and cW  The constants for Warren’s correlation
b1 and b2  Biases
bW  The exponent for Warren’s correlation
D  Well depth, ft
DSR  Drillstring rotation speed, rpm
kB  Bingham’s correlation constant
kM  Maurer’s correlation constant
M  Number of neurons
MSE  Mechanical specific energy, psi
MW  Mud weight, ppg
N  Number of input parameters
PV  Drilling fluid plastic viscosity, cP
Q  Drilling fluid flow rate, gpm
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ROP  Rate of penetration, ft/hr
SPP  Standpipe pressure, psi
T  Torque, kft  lbf
UCS  Unconfined compressive strength
w1 and w2  Weights of the ANN neurons
WOB  Weight on bit, klbs
x  The input parameters
x2 to x8  The drilling parameters for Bourgoyne and 

Young’s correlation
xx2 to  xx11  The drilling parameters for Osgouei’s 

correlation
y  The output parameter
p  Thickness of rock layer, in

Introduction

The rate of penetration (ROP) is a critical drilling parameter 
indicating how fast the drill bit is penetrating the forma-
tions (Bourgoyne et al. 1991). Although it is necessary to 
decrease the drilling time by increasing the ROP and, hence, 
decreasing the drilling cost, the speed at which the drillbit is 
penetrating the downhole formations (i.e., ROP) is limited 
by the cuttings lifting capacity of the drilling fluid which 
is required to maintain the wellbore clean of the cutting 
(Mahmoud et al. 2020a; b, c, d). The use of high ROP could 

also lead to other problems during the drilling process such 
as drillstring vibration which is accounted in many situations 
to the wellbore instability or loss of bottom hole assembly 
(Akgun 2002).

ROP is affected by many other drilling parameters, the 
drillstring composition, drilling fluid properties, well trajec-
tory, and others as indicated in Fig. 1, as the figure shows the 
statics and dynamic drilling parameters that greatly affect 
the ROP. Most of these parameters are affecting each other, 
in other words, changing one of these parameters in many 
cases affects the other parameters contributing to the ROP, 
this fact makes the possibility of predicting the ROP more 
complicated, and it also complicated the possibility of evalu-
ating the impact of only a single factor on the ROP (Mhos-
sain and Al-Majed 2015; Osgouei 2007).

Nowadays, many ROP models and empirical correlations 
are available, each of these models was developed after set-
ting specific assumptions and it is also using specific input 
parameters to assess the ROP. Because of the variety of 
assumptions and inputs, these ROP models are considerably 
different in terms of their accuracy (Lyons and Plisga 2004; 
Mitchell and Miska 2011; Rabia 2001). Table 1 summarizes 
the available ROP correlations.

The most commonly used empirical correlation in the 
last decade was the one developed by Bourgoyne and Young 
(1974); this correlation defined the ROP as based on eight 

Fig. 1  The parameters affecting ROP optimization
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functions as indicated in Table 1. Any of these functions 
is based on specific drilling parameters. Although the 
relationship between the ROP and these eight functions is 
very complex and not linear, Bourgoyne and Young (1974) 
simply considered the ROP as the multiplication and addi-
tion of these functions, which limits the accuracy of ROP 
prediction.

Recently, different machine learning models were suc-
cessfully applied to different aspects of science and engi-
neering (Najafzadeh 2019; Saberi-Movahed et al. 2020; 
Thanh et al. 2020; Elzain et al. 2021; Thanh et al. 2022a; 
Thanh and Lee 2022; Thanh et al. 2022b), and petroleum 
engineering is not an exception (Barbosa et al. 2019; Elka-
tatny et al. 2019; Mahmoud et al. 2020b; Mahmoud et al. 
2020d; Alsaihati et al. 2021; Siddig et al. 2021). Recent 
research was performed to enhance ROP prediction using 
machine learning capabilities, and in these studies, different 
machine learning techniques, input parameters, and other 
technical aspects related to the drilling operations and well 
planning were considered for ROP prediction while drill-
ing carbonate formation (Mahmoud et al. 2020a; Osman 
et al. 2021), natural gas-bearing sandstone formation (Al-
AbdulJabbar et al. 2022a), and complex lithology formations 
(Gamal et al. 2020).

In 2011, Bahari et al. (2011) hierarchically employed 
the general regression neural network (GRNN) to uncover 
the complex and nonlinear relationship between the ROP 
and the eight functions defined by Bourgoyne and Young 
(1974) to improve ROP prediction. The results indicated that 
the GRNN was powerful to define the relationship between 
the ROP and these eight functions, and it improved ROP 
prediction.

Anemangely et al. (2018) utilized two hybrid models for 
ROP prediction based on mud log data and petrophysical 

logs. The hybrid models are composed of a multilayer per-
ceptron neural network (MPNN) coupled with the particle 
swarm optimization algorithm (PSA) in the first model and 
with a Cuckoo optimization algorithm (COA) in the sec-
ond model. The authors found that the optimized models 
were superior in ROP estimation. The results also indicated 
that although increasing the number of inputs is important 
to enhance ROP prediction, the use of five or more inputs 
did not significantly improve ROP predictability using their 
optimized models.

Recently, Al-AbdulJabbar et al. (2022b) suggested an arti-
ficial neural network (ANN)-based empirical correlation for 
estimating the ROP during horizontal drilling of carbon-
ate formation. To generalize their correlation, the authors 
optimized the ANN model using data collected from five 
different wells, the inputs used are real-time available drill-
ing parameters of Q, SPP, WOB, torque, and DSR, which 
enabled real-time prediction while drilling another three 
wells in the same reservoir, and the empirical correlation 
accurately predicted the ROP.

In another study, Al-AbdulJabbar et al. (2022a) proposed 
an estimation of the ROP into sandstone formation using 
the ANN model based on the same inputs considered by 
Al-AbdulJabbar et al. (2022b). The results also indicated 
the high precision of the ANN in evaluating the ROP for this 
sandstone formation. A summary of some available data-
driven-based ROP models is presented in Table 2.

In this study, machine learning models of ANN, fuzzy 
inference system with subtractive clustering (FIS-SC), 
SVR, and functional neural network (FNN) were opti-
mized for ROP estimation while drilling through sandstone 
formations in a horizontal model. The four machine learn-
ing models were optimized to estimate the ROP from the 
DSR, standpipe pressure (SPP), WOB, and torque, as well 

Table 1  The list of some of the available ROP correlations

Authors Inputs Formula

Maurer (1962) Drillstring rotation speed (DSR), weight on bit (WOB), unconfined compres-
sive strength (UCS), the drillbit diameter (db), and the drillability constant 
for Maurer correlation (kM)

ROP = kM
DSR×WOB2

(db)
2
UCS2

Bingham (1965) Drillstring rotation speed, weight on bit, the drillbit diameter, the drillability 
constant for Bingham’s correlation (kB), and the exponents aB and cB

ROP = kB

(

WOB

db

)aB

DSRc
B

Bourgoyne and Young (1974) Well depth (D), Pore pressure, mud weight, WOB, mud flowrate, DSR, and 
bit wear dD

dt
= e

�

a1+
8
∑

i=2

a
i
×x

i

�

Warren (1987) DSR, UCS, WOB, and the db
ROP =

[

aw UCS2×d2
b

DSRbw×WOB2 +
cw

DSR×db

]−1

Osgouei (2007) Well depth, pore pressure, mud weight, weight on bit, mud flowrate, drill-
string rotation speed, bit type, and wear, and the wellbore inclination dD

dt
= e

�

aa1+
11
∑

i=2

aa
i
×xx

i

�

Al-AbdulJabbar, (2017) Drillstring rotation speed, UCS, WOB, drilling fluid plastic viscosity (PV), 
the drillbit diameter, standpipe pressure (SPP), torque, drilling fluid flow-
rate (Q), and the drilling fluid weight (MW)

ROP =
WOBa×DSR×Torque×SPP×Q

d
2
b
×MW×PV×UCSb
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as a new regression-based rate of penetration parameter 
or  ROPregression which was calculated from the DSR and 
WOB. Based on the trained ANN model, a correlation for 
assessment of the ROP was derived in this work.

The current study provides novel contributions over 
the published work by presenting the full approach for 
developing four machine learning developed models for 
predicting the penetration rate during the drilling opera-
tion from the surface drilling parameters that are available 
during the drilling operation through horizontal drilling 
sandstone formations. In addition, this study presented a 
new method for enhancing the machine learning capability 
for ROP prediction by presenting a new calculated param-
eter  ROPregression based on mathematical derivation for 
the mechanical specific energy (MSE) equation to relate 
the MSE and the DSR to the ROP. Besides, the current 
research proposed a newly developed empirical equation 
for ROP estimation which is based on the ANN model. All 
these novel contributions will enhance the ROP estimation 
and provide real-time guidance for the drilling engineers 
to optimize the controllable drilling parameters for the 
best penetration rate for cost savings during the drilling 
operation.

Methodology

Four different machine learning techniques were used to 
develop various real-time ROP models from only the sur-
face measurable drilling parameters and the  ROPregression 
parameter. Before training the models, the data collected 
for this work were studied to eliminate the non-real values 
and outliers. Based on linear regression, the expression for 
the  ROPregression was determined to account for the ROP as 
a function of the drilled hole area, the drillpipe diameter, 
WOB, and DSR.

Training data preparation and preprocessing

In this study, two wells were selected (Well-X and Well-Y). 
It is worth mentioning that the two wells penetrated the same 
geology scheme, so drilling the same formations during the 
drilling phase. The drilling data of WOB, SPP, DSR, and 
the torque recorded on a real-time base by the surface sen-
sors were obtained from the two wells under consideration; 
both wells were drilled using the conventional bottom hole 
assembly. These data were obtained while drilling sandstone 
formations; both wells were drilled using a top drive rotary 
system. Originally, 3082 datasets from Well-X were col-
lected to learn the machine learning models and test the 
learned models, while 4662 datasets from Well-Y were used 
to validate the learned models. Different processes of data 
quality control (QC) and quality assurance (QA) such as 
non-real values and outlier removal were performed; these 
processes were considered to ensure that only the valid data 
was considered to optimize the models.

During the QA/QC stage, the MSE term developed by 
Teale (1965) to describe the applied energy by the drill bit 
to penetrate the formation (Dupriest and Koederitz 2005) 
was considered for non-real values determination. The 
MSE should be optimized to have values similar to the UCS 
(Teale 1965).

The sandstone formation considered to obtain the data 
needed in this work has UCS between 25,000 and 45,000 
psi. Figure 2 shows the plot of MSE versus ROP for all Well-
X data. As shown in Fig. 2, several MSE values are consid-
erably lower or greater than the range of the UCS, this huge 
difference confirms that at all these points the collected data 
are unrealistic and the data corresponding to these points 
must be removed since they represent inefficient drilling. 
The MSE values for the data used in this work are between 
15,000 and 75,000 psi, which was determined based on the 
formation UCS ± a margin; all points with MSE out of this 
range were removed from the training data.

Table 2  Some of the machine learning-based ROP models

Authors Method Inputs

Bahari et al. (2011) GRNN The eight functions defined by Bourgoyne and Young (1974)
Anemangely et al. (2018) MPNN-PSA 

and MPNN-
COA

Mud log data and petrophysical logs

Elkatatny (2018) ANN Drilling fluid flowrate, PV, and MW, standpipe pressure, DSR, WOB, and the torque
Ahmed et al. (2018) Support vector 

regression 
(SVR)

The drilling fluid flowrate, MW, PV, yield point, and solids percentage, in addition to the 
standpipe pressure, DSR WOB, march funnel viscosity, and the drilling torque

Al-AbdulJabbar et al. (2018) ANN DSR, WOB, standpipe pressure, torque, and the drilling fluid flowrate
Al-AbdulJabbar et al. (2020) ANN DSR, WOB, torque, gamma-ray, formation deep resistivity, and the formation bulk density
Al-AbdulJabbar et al. (2022b) ANN DSR, WOB, standpipe pressure, torque, and the drilling fluid flowrate
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1031 of the datasets gathered from Well-X represent loca-
tions of inefficient drilling (from Fig. 2), these datasets were 
eliminated from the inputs at this stage. Then, 2051 of the 
data collected from Well-X are considered realistic.

Before considering the data for training the machine 
learning models, the outliers in the inputs were also 
removed. For this purpose, only the input values within ± 3.0 
standard deviation are considered non-outliers, while the 
other values were removed from the training data. After this 
process, 1748 datasets of Well-X data were considered to 
validate the machine learning models.

Developing an expression for the regression‑based 
ROP

To improve ROP predictability using the machine learn-
ing models, a new input parameter was developed based 
on regression analysis and it was called regression-based 
ROP  (ROPregression); the expression for this parameter was 
developed based on Teale (1965) equation for the MSE, 
by neglecting the torque in Teale (1965) equation for the 
MSE, this will lead to express MSE as presented in (1), 
and this expression was used to develop the expression for 
 ROPregression.

where T is the required torque to remove a layer of rock with 
thickness p in a single revolution. The first step in this deri-
vation is to relate the MSE and DSR to the ROP. The MSE 
and ROP values of the training data of Well-X are plotted 
in Fig. 3 that shows the MSE-ROP plots for different levels 
of DSR [60, 80, and 100 rpm], as indicated in this figure, 
the MSE and ROP values at every single DSR value fitted 

(1)MSE =
WOB

A
+

2� × T

A × p

to a single curve of a power function. The governing equa-
tions for the three curves in Fig. 3 have the same exponent 
of  − 1.0 and various constants (a) of 82,209, 108,525, and 
136,380 for DSRs of 60, 80, and 100 rpm, respectively.

The three functions that relate the MSE and ROP to DSR 
as indicated in Fig. 3 could be represented generally as in 
(2).

Now if the three values of ‘a’ (extracted from Fig. 3) and 
their corresponding DSR are plotted as in Fig. 4 as the plot 
shows the relationship between ‘a’ and DSR is representable 
by a straight line which could be represented by (3).

Now by calling the MSE from (2), after substitution 
into (1) and replacement of T and p with DSR and ROP as 

(2)MSE = a ROP−1.0 =
a

ROP

(3)a = 1354 DSR + 696

Fig. 2  The MSE versus ROP for all Well-X data

Fig. 3  MSE and ROP plots for training data corresponding to DSRs 
of 60, 80, and 100 rpm
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suggested by (Al-Abduljabbar et al. 2021), this leads to the 
expression in (4).

Rearranging (4) we will get:

where the  ROPregression parameter derived in (6) is the new 
expression for the ROP which we call the regression-based 
ROP or  ROPregression. (6) is defining the  ROPregression based on 
DSR and WOB only. Figure 5 shows the cross-plot of actual 
ROP versus  ROPregression that is calculated from (6). The 
good correlation coefficient between ROP and  ROPregression 
of 0.835 is enough to guide the machine learning models 

(4)
a

ROP
=

1354 DSR + 696

ROP
=

WOB

A
+

2� × DSR

A × ROP

(5)ROP =

−

(

2�
DSR

A
− a

)

A

WOB
= ROPregression

(6)ROPregression =

−

(

2�
DSR

A
− (1354 DSR + 696)

)

A

WOB

toward better ROP prediction. As discussed previously, 
 ROPregression was considered as an input to learn the machine 
learning models in addition to the four surface measurable 
drilling parameters.

Optimizing the machine learning models

The machine learning models were optimized to assess the 
ROP based on five parameters; four surface measurable 
parameters of the WOB, torque, DSR, and SPP, and the 
fifth parameter is the  ROPregression calculated using (6). The 
machine learning models were learned using 1224 datapoints 
of the surface measurable parameters and the  ROPregression to 
estimate the real ROP; the training data are 70% of Well-X’s. 
Figure 6 shows the plot of the input parameters considered 
for learning the machine learning techniques. Table 3 lists 
the applicability range for the optimized models and the sta-
tistical properties of the learning data.

The design parameters of the four models considered in 
this work were optimized using sensitivity analysis. The first 
model considered in this study is the ANN. The effect of the 
training function, transferring function, the number of hid-
den (training) layers, and the number of neurons were stud-
ied during this stage of sensitivity analysis. For the FIS-SC, 
the cluster radius was optimized between 0.2 and 0.9 and the 
number of iterations between  102 and 3 ×  103 was studied.

The third machine learning model considered is the func-
tional neural network (FNN). For this technique, the effect of 
the training method and function type on estimating the ROP 
was evaluated. Different training methods such as the for-
ward selection (FS), forward–backward selection, backward-
forward selection, and backward elimination methods were 
evaluated. Different training function types were studied in 
this work such as the linear function without iteration term, 
nonlinear function without iteration term, and nonlinear 
function with iteration term (NLFIT).

The effect of different design parameters of the SVR 
model such as the kernel, kernel options, lambda, epsilon, 
and C was studied. The effect of different kernels such as 
the Gaussian and multi-quadratic, various kernel options 
from 1 to 10, lambda between  10–7 and  10–5, epsilon from 
 10–5 to  10–1, and C between  102 and 3 ×  103 was evaluated. 
A summary of the optimum design parameters is provided 
in Table 4.

Extracting the new ROP correlation

The ROP empirical correlation developed in this work is 
based on the weights and biases of the different neurons of 
the ANN model after optimization. As summarized earlier 

Fig. 4  The plot of the constant ‘a’ values and the corresponding DSR

Fig. 5  The cross-plot of the  ROPregression and ROP for Well-X data 
(1748 data points)
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in Table 4, the optimized ANN model has one training layer 
with 15 neurons with Bayesian regularization backpropa-
gation training function and one output layer with the tan-
gential sigmoid transferring function. The expression that 
represents this model could be presented as in (7).

where y represents the output or ROP in this case, w denotes 
the different weights, x denotes the input parameters, and 
b represents the biases. Table 5 lists the values of w and b.

(7)y =

[

M
∑

j=1

wj1tansig

(

N
∑

i=1

wijxi + bj

)]

+ b2

Fig. 6  The training input parameters

Table 3  The statistical 
characteristic of the training 
datasets

DSR (rpm) SPP (psi) Torque (kft  lbf) WOB  (klbf) ROP (ft/hr)

Minimum 59.0 2401 4.32 5.07 1.20
Maximum 106 3746 10.6 20.7 9.85
Range 47.0 1345 6.29 15.7 8.65
Standard Deviation 13.4 229 0.93 1.93 2.09
Sample Variance 179 52,531 0.86 3.73 4.38



1648 Journal of Petroleum Exploration and Production Technology (2023) 13:1641–1653

1 3

(7) could be written for the ANN model optimized for 
ROP estimation which has 15 neurons, 5 inputs, and b2 of 
5.44 as in (8).

After expanding (8), the ROP could be expressed by (9).

It is important to mention here that the parameters used to 
predict the ROP using (9) should be normalized between  − 1 
a 1, and the value of ROP calculated using this equation is 
in normalized state, which should be denormalized to have 
the actual ROP value. More information about normalization 
could be found in our previous publication Al-Abduljabbar 
et al. (2020).

Testing and validating the optimized machine 
learning models and the new ROP correlation

The developed empirical Eq. (9) and the optimized FIS-
SC, SVR, and FNN models were tested using 524 data 
points (Well-X) and then validated using 2213 data points 

(8)ROP =

[

15
∑

j=1

wj1tansig

(

5
∑

i=1

wijxi + bj

)]

+ 5.44

(9)ROP =

⎡

⎢

⎢

⎢

⎢

⎣

15
�

j=1

wj1

⎛

⎜

⎜

⎜

⎜

⎝

1
�

1 + e
−2∗

�

w1i,1
(DSR)+w1i,2

(SPP)+w1i,3
(Torque)+w1i,4

(WOB)+w1i,5
(ROPregression)+b1i

�
�

⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎦

+ 5.44

(Well-Y). The predictability of the developed equation and 
models Well-Y was compared with that of the available cor-
relations to investigate the enhancement in the assessment of 
the rate of penetration using (9) and the models developed 
in this study.

Results and discussion

Training the machine learning models

All machine learning models were firstly trained on 1224 
datasets of Well-X data (70% of Well-X data). Figure 7 
shows the actual versus the predicted ROP from different 
models for the 1224 training dataset. Comparing the actual 
ROP (blue diamonds in Fig. 7) and the ROP estimated with 
the different models (the continuous line in Fig. 7) confirms 
the perfect matching between these values, which confirms 
the superior accuracy of the considered machine learn-
ing models. As shown in Fig. 7, the ROP for the training 
data set was assessed accurately with AAPEs of only 0.4%, 
2.3%, 2.6%, and 3.6% using the ANN, SVR, FIS-SC, and 
FNN models, respectively. The ROP predicted with ANN, 
SVR, FIS-SC, and FNN models have Rs of 0.999, 0.998, 
0.998, and 0.997 with the real ROP, respectively, as shown 
in Fig. 7. The previously discussed results proved the high 
precision of the ANN, FIS-SC, FNN, and SVR models in 
assessing the ROP.

Testing the developed equation and the optimized 
machine learning models

The optimized FIS-SC, SVR, and FNN models and (9), 
which was based on the ANN model, were tested on 524 
unseen datasets from Well-X (30% of Well-X data). Figure 8 
displays the actual versus the predicted ROP from different 
models for the 524 testing datasets. As indicated in Fig. 8, 
although all models predicted the ROP accurately, (9) was 
the most precious in estimating the ROP for this dataset of 
Well-X. From Fig. 8, (9), SVR, FIS-SC, and FNN models 
assessed the ROP with very low AAPE’s of 0.3%, 2.7%, 
3.4%, and 3.6% and R’s of 0.999, 0.998, 0.997, and 0.992, 
respectively. Visual comparison of the actual and predicted 

Table 4  The optimized parameters of the machine learning tech-
niques
ANN

Training function Bayesian regularization back-
propagation

Transferring function Tangential sigmoid
Training layers (neurons) One layer (15 neurons)

FIS-SC

Cluster radius 0.5
Ep-size 2 ×  103

FNN

Training method NLFIT
Training function type FS method

SVR

Kernel Gaussian
Kernel options 10
Lambda 10–5

Epsilon 10–5

C 102
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Table 5  The extract weights and 
biases of the optimized ANN 
model

No. of neurons Training layer Output layer

Weight (w1) Biases (b1) Weights (w2) Bias (b2)

i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 0.404  − 0.097 0.069  − 0.992 2.754  − 1.067  − 2.110 5.440
j = 2 0.223  − 0.017 0.015  − 0.419 1.493  − 1.029 2.747
j = 3 3.739  − 0.591 0.251  − 1.249  − 1.979  − 6.795  − 6.783
j = 4 4.616  − 2.481 2.058  − 11.627  − 20.612  − 8.933 6.162
j = 5  − 1.389  − 0.047 0.045 5.152  − 4.477 5.949  − 3.319
j = 6 0.137 0.003  − 0.002  − 0.635  − 0.702  − 0.915 5.360
j = 7  − 0.026  − 0.010 0.006 0.372 1.420 0.484 3.061
j = 8 0.882 0.379  − 0.249  − 0.481 25.971 4.193  − 19.708
j = 9 2.481  − 0.040 0.005  − 4.377 9.721  − 10.653 5.680
j = 10 5.475  − 2.728 2.438  − 13.179  − 20.507  − 9.883  − 4.821
j = 11  − 2.531  − 0.243 0.041  − 2.214 3.814  − 2.243  − 0.012
j = 12  − 1.369  − 0.249 0.179 1.723  − 28.500  − 4.102  − 11.859
j = 13 0.450  − 0.153 0.103  − 1.164 3.308  − 1.201 1.048
j = 14  − 0.106 0.750  − 0.446 2.241 22.746 4.679 9.207
j = 15 0.991 0.186  − 0.067  − 1.754 13.393 0.733 0.107

Fig. 7  The actual and evalu-
ated ROP for the 1224 training 
datasets



1650 Journal of Petroleum Exploration and Production Technology (2023) 13:1641–1653

1 3

ROP as indicated in Fig. 8 confirms the high reliability of 
(9) and the optimized FIS-SC, SVR, and FNN models in 
estimating the ROP.

Validating the developed equation 
and the optimized machine learning models

The predictability of (9) and the other optimized machine 
learning models was also evaluated on the 2213 data points 
of Well-Y. At this stage, the predictability of (9) and the opti-
mized machine learning models were also compared with 
four of the available ROP empirical correlations; these are 
Bingham, Maurer, and Bourgoyne and Young’s correlation. 
Table 6 lists the calculated constants needed to be used with 
the different ROP empirical models.

Figure 9 represents the results comparison of the ROP 
estimation in Well-Y (2213 data points) using Eq. (9) with 
various available models. As shown in Fig. 9, (9), FIS-SC, 
and FNN models are most accurate in contrast with the SVR 
model and the correlations developed earlier for ROP esti-
mation as indicated by the perfect agreement between the 
real and assessed ROP when (9), FIS-SC, and FNN models 
are used. All previous empirical correlations assessed the 
ROP with a very low R of less than 0.24, and the R between 
the actual ROP and these evaluated with the SVR was 0.50, 

while (9), FIS-SC, and FNN models assessed the ROP with 
R’s of 0.99, 0.99, and 0.97 as shown in Fig. 9.

Figure 10 demonstrates the ROP accuracy comparison 
for Well-Y data using with various available models. As 
indicated in Fig. 10, the SVR model and all previous cor-
relations assessed the ROP with very high AAPE and low 
root-mean-square error (RMSE). The AAPE and RMSE for 
the rate of penetration predicted using the SVR model were 

Fig. 8  The actual and evaluated 
ROP for the 524 testing datasets

Table 6  The constants associated with the ROP correlations

Correlation Constants

Maurer’s correlation kM = 10,146,000
Bingham’s correlation kB = 0.339

aB =  − 0.269
cB = 0.636

Bourgoyne and Young’s correlation a1 = 6.534
a2 = 0.0032
a3 =  − 0.0022
a4 = 0.0002
a5 =  − 0.4789
a6 = 0.9349
a7 = 0
a8 = 0.3314
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26.5% and 1.1 ft/hr, respectively. While the AAPEs for the 
ROP predicted with the Bingham, Maurer, and Bourgoyne 
and Young correlation are 51.0%, 47.6%, and 36.6%, while 
the RMSEs are 1.7, 2.0, and 1.3 ft/hr, respectively. On the 
other hand, the rate of penetration was predicted with very 
low AAPEs of 1.0%, 3.4%, and 8.2% and RMSEs of only 
0.1, 0.2, and 0.4 ft/hr using (9), FIS-SC, and FNN models, 
respectively. These results confirmed the high accuracy of 
(9) and both FIS-SC and FNN models in evaluating the ROP 
while horizontally drilling sandstone formations.

Summary and conclusions

In this study, the predictability of the oil well drillability 
while horizontally drilling sandstone formations using four 
artificial intelligence tools was evaluated. The following 
conclusions can be withdrawn:

1. The machine learning models were learned to assess 
the rate of penetration from only the surface measur-
able drilling parameters.

Fig. 9  Comparison of the ROP estimation in Well-Y (2213 data points) with various available models

Fig. 10  ROP accuracy compari-
son for Well-Y data using with 
various available models
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2. All machine learning models were firstly learned using 
1224 datasets from Well-X. The learned artificial neural 
network model was then used to develop a correlation 
for the rate of penetration assessment.

3. The developed empirical correlation and the optimized 
models’ models were tested on 524 datasets from Well-
X and validated on 2213 datasets from Well-Y.

4. This research presented high accurate new correlation 
for ROP prediction that is machine learning-based that 
showed high degree of match with the actual ROP dur-
ing the model training, testing, and validation phases.

5. The new correlation and the optimized fuzzy inference 
system with subtractive clustering and functional neu-
ral network model do a great prediction over the other 
techniques based on the results obtained in this study.

Based on the research findings, the new correlation will 
add a great contribution regarding the rock drillability pre-
diction and optimization for drilling oil and gas wells. The 
machine learning models will help for enhancing the drill-
ing operation automation for cost savings and safe drilling 
operations.
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