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Abstract
Carbonate reservoirs in Iran are the most important and main sources of oil and gas production. Hydrocarbon flow rates from 
carbonate reservoirs heavily rely on the development of natural fractures. This study focuses on the role of natural fractures 
on reservoir quality considering the Sarvak carbonate reservoir (southwest Iran) as the second most important oil reservoir 
of Iran. To identify small-scale fractures around the borehole walls, cores description and image logs were utilized. Due to 
high cost of coring, lack of orientation and low core recovery in fractured zones indirect methods based on image logs and 
conventional well logs were exploited for fracture characterizations. For this purpose, a complete set of well data including 
image logs (FMI), well-log-derived porosity and permeability data together with petrophysical logs were employed. Inter-
pretation of image logs allows different types of natural structures such as open, vuggy, partly-filled and filled fractures, 
bedding planes and stylolites to be identified. Comparisons between the petrophysical-log and image-log interpretations 
provide useful relationships with reservoir characteristics. Neutron and sonic logs show a direct relationship with fracture 
porosity, while the density log displays an inverse correlation with fracture porosity. Neutron-density and neutron-sonic 
cross-plots show that the dominant lithology of the studied well is limestone with minor fractions of dolomite and shale. 
Total porosity ranges from 2 to 30%, while the contribution of secondary porosity, on average, is below 3%. Relationships 
between fracture-frequency diagrams and reservoir permeability show that high permeability zones are well correlated 
with the high frequencies of open and vuggy fractures and zones that have flowed oil and associated gas in production tests. 
Natural fracture characterization based on systematic and integrated interpretations of image logs and petrophysical data can 
play an important role in optimizing field development, resource recovery and production from the Sarvak reservoir. Once 
calibrated, this method also offers potential as an exploration tool.
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Introduction

Carbonate reservoirs contain a large amount of oil and gas-
in-place. It is estimated that 60% of the world’s oil reserves 
and 40% of the world’s gas reserves are present in these 

reservoirs (Sadeq and Yusoff 2015; Lee et al. 2015; Dou 
et al. 2011; Esrafili-Dizaji et al. 2015; Kosari et al. 2017; 
Ezati et al. 2018; Gupta 2019; Wang et al. 2020). The natu-
rally fractured reservoirs (NFR) are a challenge for the oil 
industry due to their importance in hydrocarbon production 
and the technical complexity they represent. Well productiv-
ity in carbonated formations is influenced by fracture sys-
tems that govern the fluids flow within reservoirs (Alcantara 
et al. 2019; Zaremoayedi et al. 2022). The quality of this 
type of reservoir is defined by two factors: “hydrocarbon 
storage” and “production capability.” The hydrocarbon stor-
age capacity is defined by the effective porosity and con-
nected pore types located within the confines of a hydro-
carbon trap (Peters et al. 2012; Anees et al. 2022). One of 
the most effective types of porosity is fracture porosity. A 
slight increase in fracture porosity can cause substantial 
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changes in a formation permeability in directions parallel 
to the fractures. Hence, natural fractures can make signifi-
cant contributions to permeability and/or porosity, reservoir 
behavior and field production performance, particularly in 
carbonate reservoirs (Nelson 2001; Ameen and Hailwood 
2008; lai et al. 2017).

It is effective to detect and characterize fracture patterns 
and their subsurface distributions to better explore and iden-
tify potential productive/non-productive zones in oil and 
gas fields (Jiang et al. 2022; Ashraf et al. 2020; Ullah et al. 
2022). Fractures play an important role in many reservoirs 
in creating possible pathways for hydrocarbon flow and 
migration by enhancing the overall formation’s permeabil-
ity (Prioul and Jocker 2009; Khoshbakht et al. 2012; Prioul 
and Jocker 2009; Tokhmchi et al. 2010; Ameen et al. 2012; 
Khoshbakht et al. 2012; Lyu et al. 2016; Lai et al 2017; 
Zahmatkesh et al. 1994; Serra and Serra 2004; Serra 1989; 
Milad and Slatt 2018; Laongsakul and Dürrast 2010; Saedi 
et al. 2017). Usually, the behavior of a fractured reservoir 
is very different from a non-fractured reservoir, due to the 
higher permeability of fractures compared to the matrix 
permeability. In this regard, the investigation of fractured 
reservoirs to quantify their effective porosity and permeabil-
ity tends to be a lengthy process and more challenging than 
matrix-controlled reservoirs (Nie et al. 2013; Nelson 2001; 
Kosari et al 2017). The heterogeneities of fracture networks 
often significantly affect the flow performance of fractured 
reservoirs (Gong and Rossen 2017). If natural fractures are 
not characterized in early stages of field production, future 
field development plans can be blurred (Bratton et al. 2006; 
Alvarez et al. 2020). Unfortunately, natural fractures in oil 
reservoirs are often ignored or evaluated with oversimplified 
techniques, leading to the wrong decision being made in 
exploration and production programs incurring high costs 
(Voorn et al. 2015). As such a large proportion of known 
global oil and gas resources is located in naturally fractures 
reservoirs (NFCRs), the fractures in these reservoirs war-
rant more detailed and systematic evaluation as fractures 
are an integral part of petroleum production (Dusseault and 
Shafiei 2011; Shafiei et al. 2013, 2018). Iran, as one of the 
largest oil producers in the Middle East and the world, has 
many fractured carbonate reservoirs. The majority of them 
are located in the southwest of Iran. It is essential to rec-
ognize the fracture patterns and their distributions in these 
reservoirs, as it paves the way for an exploration, production 
and development of potential oil and gas fields (Badakh-
shan et al. 1998; Khoshbakht et al. 2012). This study reports 
new quantified findings on the impact of in situ fractures 
(open, vuggy, partly filled and filled), bedding planes and 
stylolites delineated by the Full-bore Formation Micro-
Imager (FMI) wellbore log, coupled with information from 
other petrophysical well logs, on the reservoir quality and 
potential productivity of the Sarvak Formation. Integration 

of FMI, petrophysical logs and core analysis data (poros-
ity and permeability) establish useful relationships between 
fracture types and densities within the most permeable zones 
of the Sarvak. The research into systematic tectonic-related 
fractures provides a better understanding of fracture pattern 
distributions. Such information can be utilized to improve 
fracture network modeling. The current study makes efforts 
to distinguish the relationship between fracture type and 
fracture density and linking them to interpreted porosity 
and permeability as an effective tool for improving oil and 
gas fields development offers. The described indirect frac-
ture analysis method is less expensive than other fracture 
identification methods and offers the additional advantage of 
determining the impact of fracture on porosity and reservoir 
permeability.

Geological setting

The field under study is located in the structural zone 
referred to as the Abadan Plain, forming part of the Zagros 
basin (SW Iran). The studied field is situated within the 
Mesopotamian Foredeep sub-basin that is surrounded by the 
Arabian Plate and the Dezful Embayment (Saadatinejad and 
Sarkarinejad 2011). Due to the alluvial overburden, geologi-
cal knowledge of that sub-basin is limited to wellbore data 
including drill cuttings, cores, logs and other geophysical 
data (Assadi et al. 2018). The available data suggest that the 
Quaternary alluvium along with the subsurface sedimentary 
layers has been folded in the north–south direction (Motiei 
1996, 1993). The Abadan Plain structurally belongs to the 
Arabian Platform and follows the Arabian-type (N-S) struc-
tural trend, which is in contradiction to the typical Zagros-
type structural trend (NW–SE) (Shakeri and Parham 2013).

The Dezful Embayment and Abadan Plain (SW Iran, 
Fig. 1) host a substantial portion of the Iran’s oil resources 
(Abdollahie Fard et al. 2006; Tabatabaei et al. 2015). The 
Sarvak Formation (Middle Cretaceous), which is the main 
producing reservoir unit in the studied oilfield, comprises the 
most prolific carbonate oil reservoir of the Abadan Plain, and 
the second most important reservoir, in terms of oil and gas 
production in the entire Zagros Basin (Assadi et al. 2016; 
Malekzadeh et al. 2020). The Bangestan Group includes the 
Sarvak and Ilam Formations, which account for approxi-
mately 37% of Iran’s oil reserves. It is ranked second after 
the giant Oligo-Miocene Asmari Formation (45%) (Gholami 
Zadeh 2019; Esrafili-Dizaji and Rahimpour-Bonab 2019).

The Sarvak Formation is a thick carbonate unit deposited 
in the Neotethys Southern Margin of Zagros Basin (Pakpar-
var et al. 2017; Bordenave and Hegre 2010; Ezati et al. 2018; 
Soleimani et al. 2013). In terms of stratigraphy, the Sarvak 
Formation comprises three types of limestone units reaching 
a maximum thickness of 821 m. The lower boundary of the 
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Sarvak Formation overlies the Kazhdomi Formation, while 
the upper boundary, defined by the Turonian unconformity, 
varies from place to place. The lower limestone unit of the 
Sarvak Formation (254.5 m thick) consists of argillaceous 
micritic limestone with lenticular bedding and thin-layered 
marl interbeds. The middle Sarvak unit (524.5 m thick) con-
tains massive chalky limestones with iron-rich siliceous car-
bonates. The top 42 m of the formation includes a massive 
limestone (unit 3) layer with its uppermost strata consisting 
of a weathered brecciated ferruginous limestone (Leturmy 
and Robin 2010). The top of Sarvak Formation is comprised 
of the Lafan shales (Fig. 1). There are different methods 
available for detecting the lithology from well-log data. The 
lithological components of Sarvak Formation were identified 
in the studied well by applying the density-neutron cross-
plot. The density-neutron cross-plot is widely used for distin-
guishing limestone, dolomite, sandstone, shale and anhydrite 
(Diana Morton-Thompson 1993). As shown in Fig. 2, the 
major lithologies present in the studied well are limestone 
and dolomite. The total porosity of the Sarvak Formation 
ranges from 2 to 30% and effective porosity ranges from 2 
to 27%. The secondary porosity contribution is less than 3%. 
In this study, the neutron-derived porosity is considered to 

Fig. 1  Zagros structural divisions and stratigraphy column of Abadan Plane

Fig. 2  Corrected neutron-density cross-plot
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reflect total porosity, and the sonic-derived porosity is con-
sidered to reflect effective porosity. The difference between 
total and effective porosity is, therefore, considered to be a 
measure of secondary porosity.

The studied field is associated with a north–south trend-
ing anticline. The Sarvak Formation has been completely 
penetrated by the studied wellbore and image logs, together 
with a suite of standard petrophysical logs which has been 
recorded across the formation.

Material and methods

The study is implemented in three stages (Fig. 3): (1) pro-
cessing and interpretation of image log and petrophysical 
well logs; (2) classification and data analysis and (3) link-
ing interpreted results to productive/non-productive zones 
within the Sarvak formation. Initially, raw Full-bore Forma-
tion Micro-Imager (FMI) images and petrophysical logs data 
were corrected for environmental effects. Using the corrected 
data, sedimentary features such as bedding planes and stylo-
lites, together with tectonic features such as fracture types 
(continuous open, isolated open, partly filled and filled), 
were identified and classified. For each identified feature, 
rose diagrams and density charts were generated to quantify 

their characteristics and distributions. Dip analysis software 
(Dips) was employed to draw contour diagrams of the identi-
fied image-log features. DT vs. fracture porosity, NPHI vs. 
fracture porosity and RHOB vs. fracture porosity cross-plots 
were generated to investigate the relationship between frac-
tures and petrophysical data. Fracture porosity is obtained 
using image logs, and matrix porosity is obtained from 
petrophysical logs. Since fractures are considered as part of 
effective porosity. Fracture porosity is obtained from the dif-
ference between the matrix porosity and the total porosity.

Compared to the Formation Micro-Scanner (FMS) tools, 
FMI tools are better able to image all parts (360°) of the 
wellbore wall (Serra 1989), whereas the resistivity image 
(FMS) represents only about 80% of the borehole coverage 
in an 8.0-inch diameter borehole (Rider 2002; Brown et al. 
2015; Moreau and Joubert 2016; Folkestad et al. 2012). The 
FMI-oriented image has a vertical resolution of 5 mm (0.2 in.) 
(Rider 2002; Folkestad et al. 2012; Schlumberger Educational 
Service 2004; Wilson et al. 2013; Brekke et al. 2017; Lai et al. 
2018). To obtain a better model for the relationship between 
permeability and fracture porosity, image-log-derived frac-
ture density needs to be correlated with other petrophysical 
log data. Fractures are considered as a planar feature within 
the formation and after unwrapping the cylindrical borehole, 
the fractures are seen as a sinusoidal wave on the unwrapped 

Fig. 3  Flowchart of methodology used in this study for fracture characterization
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image logs (Fig. 4). Relatively high and sudden changes in 
electrical resistance are features of fractures that can be dif-
ferentiated by their changing color and with trends that extend 
through substantial sections of the FMI images. Fractures may 
be filled with a variety of materials, each of which is associ-
ated with a different resistivity. Resistivity values recorded 
by the image log are less than the background rock when the 
fractures are filled with conductive materials.

Results

According to the drilling and petrophysical data, Sarvak For-
mation in the studied well includes 15 zones, 11 of which are 
recognized as oil zones (Fig. 5). Natural fractures identified 
in this study were be divided into four categories includ-
ing open fractures, vuggy fractures, partly-filled fractures 
and filled fractures. Open fractures are the most widespread 
types of fractures in the well (Fig. 6). Usually, the presence 
of open fractures controls the permeability in the carbon-
ate reservoirs (Ngwenya et al. 2003; Boro et al. 2014; Li 
et al. 2018; Shafiei et al. 2018; Bagheri and Falahat 2022). 
In other words, one of the most important factors controlling 
the fluid transmissibility in the reservoir is the presence of 
natural open fractures. Accordingly, petroleum engineers can 
pay more attention to open and vuggy fractures compared 
to the other types of fractures, as they are more likely to be 
associated with the fluid flow and productivity. Each fracture 
set can be investigated in terms of the orientation of indi-
vidual features (Figs. 6 and 7). In addition, the density of 
occurrence can be compared for each feature versus depth to 
determine the frequency distribution of each type of feature 
and relationships between those frequency distributions.

Natural fractures interpretation

A total of 117 natural fractures were detected that could 
be divided into four categories including open fractures, 

vuggy fractures, partly-filled fractures and filled fractures. 
The number of open fractures is 55, which are divided into 
three main sets with average dips and dip azimuths about 
43°/336°, 47°/92° and 45°/228°, respectively. The number of 
vuggy fractures is 35, and they consist of two main catego-
ries with an average dip and dip azimuth about 44°/253° and 
42°/045°, respectively. It seems that partly-filled and filled 

Fig. 4  Sketch showing the appearance of a fracture intersecting a wellbore at an inclined angle, and how it displays on an unwrapped image log 
as a sinusoidal pattern
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Fig. 5  Abundance of fractures: A in Sarvak Formation of studied 
well (2791–3415  m) and B in oil-producing zone of studied well 
(3791–3000 m)
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fractures have the same origin because their dispersions are 
centered at about the same depth. Also, these two features 
have the same orientation according to contour diagrams. 
There are 14 partly-filled fractures, with an average dip and 
dip azimuth of about 46°/350°. The number of filled frac-
tures is 13, with an average dip and dip azimuth of about 
42°/003° (Figs. 6, 7 and 8). The results show that as the 
magnitude of fracture porosity increases, the DT and NPHI 
log values increase but density readings decrease.

Bedding plane control on fracture density

According to the drilling and petrophysical data, the studied 
well has 11 oil-producing zones; the highest numbers of 
fractures were found in these zones. The fracture density 
log (Fig. 8) shows that the highest fracture density is in the 
upper part of the Sarvak Formation. The maximum den-
sity is from the depth of 2791 to 3000. According to the 

frequency diagram, the upper parts of well display more 
massive layering, while thinner layers characterize the lower 
parts of the Sarvak Formation (Fig. 9).

In the studied well, 384 bedding planes were identified 
according to variations in color and/or lithology. The aver-
age dip of the bedding planes is 2° (i.e., almost horizontal), 
and the mean azimuth is 81°. Comparison made between 
fracture density and bedding revealed that fracture density 
in thick-bedded intervals is greater than in the thin-bedded 
zones (Fig. 9). A total of 14 stylolites were identified in the 
studied well. Stylolites are seen in image logs in the form of 
conductive, often flat or wave-like lines with near-vertical, 
short components oscillating unevenly through the forma-
tion. The average dip of stylolites in the well is 2 degrees 
(i.e., almost horizontal), and the mean azimuth is 89°. Styl-
olites in this well are primarily parallel with the bedding 
planes, suggesting that they have a sedimentary origin. They 
are common in cemented and compact carbonate intervals 
around the world (Fig. 10).

Fig. 6  Rose diagram of open fractures (a) and vuggy fractures (b)
Fig. 7  Rose diagram of filled fractures (a) and partly-filled fractures 
(b)
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Fracture density relationships with permeability 
and production flow rates

According to the fracture density diagram, the Sarvak res-
ervoir in the studied well can be divided into two parts: an 
upper part with high fracture density between 2791 and 
3070 m and a lower part with very low fracture frequency 
between 3070 and 3415 m. The Sarvak Formation has thick, 
massive layers in the upper part and thin layering in the 
lower part. By constructing fracture density and porosity 
diagrams and matching them with the reservoir permeability 
logs (Fig. 11), it is apparent that in the upper parts of the 

well, the fracture density is high. This high fracture density 
contributes substantial fracture porosity to certain zones of 
in the upper part of the Sarvak Formation and increases the 
permeability in those zones. Of the 15 zones in the studied 
well, 11 of them can be considered as potentially produc-
tive zones. Some 93% of the continuous open fracture, and 
isolated open fractures are located in these 11 zones. These 
11 zones extend between depths of 2791 and 3070 m. In 
this study, two types of continuous open fracture and iso-
lated open fracture are considered as fractures with a posi-
tive effect on porosity and permeability in the Sarvak res-
ervoir. Figure 12 shows the cross-plot of fracture density 

Fig. 8  Lower-hemisphere pole 
projection for all fractures, 
stylolites and bedding planes
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versus permeability. The permeability clearly increases with 
increasing frequency of fractures (Fig. 13).

In the zones where the fracture density is greatest 
(Fig. 11), it can be seen that fracture porosity contributes a 
much larger portion to the total porosity. By considering the 
permeability log, calculated porosity and frequency of frac-
tures together, it is generally apparent that fracture poros-
ity correlates positively with permeability. The results of 

production tests show that for the depth interval 2791–3070, 
oil production rate was 1996 bbl/d, and the gas production 
was 0.6 mmcf/d. Figures 14, 15, 16, 17 and 18 display com-
posite logs related to specific zones within the Sarvak For-
mation of the studied well.

In the lower part of the studied well (3070–3415), there 
is no oil production. This could be an indication of that 
depth interval being outside of structural closure, or that 

Fig. 9  Density (fractures per 
1/M) logs of bedding planes 
(track 2), stylolites (track 3), 
open fractures (track 4), vuggy 
fractures (track 5), partly-
filled fractures (track 6), filled 
fractures (track 7) and total 
fractures (track 8)



1255Journal of Petroleum Exploration and Production Technology (2023) 13:1247–1263 

1 3

Fig. 10  An image-log example of a stylolite in the studied well (2878 m)

Fig. 11  Permeability variations across the fractured zones
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not enough volume of charged hydrocarbons was available 
to fill the structural trap resulting in high water saturation, 
or the absence of sufficient fractures in this lower reser-
voir zone. The latter factor is likely to result in ineffective 
porosity in that lower portion of the reservoir. In fact, that 
lower zone produced between 2.4 and 84 bbl/d of salty 
water (300,000 ppm salinity). The water saturation in the 
lower Sarvak reservoir zone is high reaching 100% in places 
(Fig. 18). Despite sufficient porosity and permeability exist-
ing to sustain production from the depth interval 3070 to 
3415 m, that zone was only able to produce modest amount 
of water. Consequently, it is more likely that this lower res-
ervoir zone is both deprived of sufficient hydrocarbon charge 
and its low density of open fractures limits its flow potential.

Discussion

Fractures play a vital role in production and migration of oil 
in the majority of Iranian hydrocarbon reservoirs, particu-
larly those with carbonate lithologies. Therefore, detailed 
fracture evaluation and detection is essential for maximizing 
production from fractured intervals. Fractures in carbonate 
reservoirs are important due to their high influence on reser-
voir rock properties, particularly porosity and permeability 
(Nelson 2001; Rajabi et al. 2010; Aghli et al. 2016; Zaree 
et al. 2015).

There are some direct and indirect methods that can be 
used for fracture characterization in carbonate reservoirs. 
For this purpose, geoscientists and petroleum engineers have 
used various data such as geophysical data, log data, drill-
ing cores and surface outcrops to describe the fractures and 
their characteristics (Fang et al. 2017; Dong et al. 2020; Li 
et al. 2018; Bagheri and Falahat 2022; Ashraf et al. 2021; 
Anees et al. 2022). However, all of these methods encounter 
serious constraints and limitations. For example, seismic can 
only show large-scale fractures and faults, and also, cores 
have vital limitations such as low recovery factor in frac-
tured zones, orientation issues and the high cost of coring. 
Using petrophysical logs and FMI (or other image log) data 
provides a useful and rapid method to determine fractures 
present in a wellbore (Aghli et al. 2016). Compared with 
other types of borehole image-log tools, the FMI tool is 
capable of covering a substantial part of borehole wall (Serra 
1989), and the resistivity image represents about 80% of the 
borehole walls, in an 8.0-inch diameter borehole (Moreau 
and Joubert 2016; Folkestad et al. 2012). The oriented FMI 
image has a vertical resolution capable of recording details 
as small as 5 mm (0.2 inch) (Folkestad et al. 2012; Schlum-
berger Educational Services 2004; Wilson, et al. 2013). The 
high-definition FMI (FMI-HD) tool is an improved imaging 
tool (Schlumberger) (Lai et al. 2018). For these reasons, 
the FMI data have been selected for fracture analysis in the 
studied wellbore.

Finding a quick method for identification of fractured 
zones using petrophysical logs and FMI data, which are 
available in most wells is a vitally important challenge in 
production and exploration of oil and gas reservoir. Among 
many of the presented methods, acoustic logs have espe-
cial and practical applications in the carbonate reservoirs, 
because they show primarily matrix porosity, and they are 
affected by fractures. Acoustic waves, including compres-
sional, shear and Stoneley waves, are sensitive to reservoir 
properties such as fractures and permeability. Tokhmchi 
et al. (2010) proposed a method for fracture density estima-
tion in the fractured zones using the energy responses of 
petrophysical logs. They calculated the energy of the petro-
physical logs in the fractured zones, and then, linear and 
nonlinear regressions were applied to determine fracture 
density. More generally, results have shown that there is a 
strong correlation between the energy of caliper, sonic (DT), 
density (RHOB) and photoelectric absorption factor (PEF) 
logs with fracture density in many wells (Taherdangkoo and 
Abdideh 2016; Yang et al. 2017; Azizi and Reza 2021).

The novel method developed in this study to distin-
guish fracture type and fracture density, and link that 
information to log-interpreted porosity and permeability 
data, offers substantial potential to improve oil and gas 
field development. The indirect fracture analysis method 
described is less expensive than other methods of fracture 

Fig. 12  Cross-plot of fracture density versus permeability
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identification and provides the additional benefit of deter-
mining fracture porosity and its effects on reservoir per-
meability. The potential exists to correlate reservoir zones 
with specific fracture types and densities from one well 
to another across a reservoir. This could facilitate map-
ping prospective zones within a reservoir with volumes 
that do not necessary lie within specific bedding planes or 
stratigraphically-defined intervals. In cases where other 
information is available such as core information (with 

high recovery) and/or specialist petrophysical logs, frac-
ture type using the proposed method could be usefully 
correlated with other rock properties. This method can be 
extremely beneficial in assisting with field development 
decisions by providing highly accurate and detailed frac-
ture analysis at low cost. In particular, it can help to design 
specific trajectories for planned deviated production wells, 
ensuring that they encounter the most productive fractured 
reservoir zones at the optimum orientation.

Fig. 13  Permeability variation wit fracture density in fractured zones
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Fig. 14  Composite well log for 
production zones within depth 
interval 2790–2825 m

Fig. 15  Composite well log for 
production zones within depth 
interval 2830–2860 m
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Fig. 16  Composite well log for 
production zones within depth 
interval 2870–2900 m

Fig. 17  Composite well log for 
production zones within depth 
interval 2910–2950 m
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Conclusion

Considering the results obtained from image logs of this 
study, the followings are concluded. 

• Bedding planes are determined to be oriented predomi-
nantly in N–S directions with an average dip and dip 
azimuth about 2 degrees and 79 degrees, respectively. 
A total of 117 natural fractures were detected that could 
be divided into four categories including open frac-
tures, vuggy fractures, partly-filled fractures and filled 
fractures. A total of 55 open fractures were detected, 

and these are divided into three main sets. Average dip 
and dip azimuth of the three sets of open fracture are 
about 43°/336°, 47°/92° and 45°/228°, respectively. The 
number of vuggy fractures detected was 35. This type 
of fracture consists of two main categories with average 
dip and dip azimuth of about 44°/253° and 42°/045°, 
respectively. It seems that these two categories of vuggy 
fractures have the same origin as their dispersion is about 
the same depth. Also, these two sets have the same ori-
entations according to contour diagrams. The number of 
partly-filled fractures detected was 14, with an average 
dip and dip azimuth about 46°/350°, respectively. The 

Fig. 18  Composite well log 
for the non-productive zone of 
the studied well which flowed 
saline water from depth interval 
3070–3140 m
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number of filled fractures detected was 13, with an aver-
age dip and dip azimuth of about 42°/003°.

• The porosity volume experiences some changes 
throughout the Sarvak Formation. Total porosity 
changes were measured in the formation from 2 to 30%. 
Matrix porosity varied from 2 to 27%, indicating that 
secondary (fracture) porosity has less than 3% contri-
bution to total porosity. Although the amount of frac-
ture porosity is very low, it seems to have contributed 
substantially to permeability in the well sections where 
the density of open and vuggy fractures is high.

• Change in the permeability diagram combined with 
change in fracture density in formation zones, where 
permeability has increased, is likely to be caused by the 
density and type of the fractures present.

• By comparing the petrophysical and density diagrams, 
we find that the upper part of the Sarvak reservoir 
(2791–3000 m) has good reservoir potential for exploi-
tation and enhanced oil recovery (EOR).

• Matrix porosity in this section shows a substan-
tial increase, suggesting that it has good potential to 
become a productive oil and gas reservoir.

• Future development of the studied field would benefit 
from drilling vertical wells in the upper Sarvak Forma-
tion where open fractures exist. Most of the fractures 
which were detected in the studied well were open.

• Typically, in the studied well, high permeability is 
located in specific zones of the Sarvak Formation corre-
sponding to those zones displaying a high density of open 
fractures. Four high-density fracture zones were iden-
tified in the Sarvak Formation based on the integrated 
image log and other available petrophysical data.
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