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Abstract
Applications of nanotechnology in several fields of petroleum industry, e.g., refinery, drilling and enhanced oil recovery 
(EOR), have attracted a lot of attention, recently. This research investigates the applications of nanoparticles in EOR process. 
The potential of various nanoparticles, in hybrid and bare forms for altering the state of wettability, reducing the interfacial 
tension (IFT), changing the viscosity and activation of other EOR mechanisms are studied based on recent findings. Focus-
ing on EOR, hybrid applications of nanoparticles with surfactants, polymers, low-salinity phases and foams are discussed 
and their synergistic effects are evaluated. Also, activated EOR mechanisms are defined and specified. Since the stabiliza-
tion of nanofluids in harsh conditions of reservoir is vital for EOR applications, different methods for stabilizing nanofluids 
through EOR procedures are reviewed. Besides, a discussion on different functional groups of NPs is represented. Later, an 
economic model for evaluation of EOR process is examined and “Hotelling” method as an appropriate model for investiga-
tion of economic aspects of EOR process is introduced in detail. The findings of this study can lead to better understanding 
of fundamental basis about efficiency of nanoparticles in EOR process, activated EOR mechanisms during application of 
nanoparticles, selection of appropriate nanoparticles, the methods of stabilizing and economic evaluation for EOR process 
with respect to costs and outcomes.
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List of symbols
A  Hamaker constant (J)
C  Volumetric concentration (weight/vol)
Cs  Cost of extraction at time s (currency)
Ct  Cost of extraction (currency)
C0  Cost of extraction at time 0 (currency)
E  Adhesion energy (KBT)
E0  Strength of electrical field (V/m)
Ft  The difference between average and marginal 

cost (currency)
K0  Solvation constant (dimensionless)
Μ  Electrophoretic mobility (μm Cm/v s)

N  Abandonment time for exhaustible resources 
(day, month, year)

P0  Market price at time 0 (currency)
Pt  Market price at time t (currency)
Qt  Cumulative amount of production (Bbl)
Qs  Cumulative amount of production at time s 

(Bbl)
qs  Amount of produced oil at various time s 

(Bbl)
qt  Amount of extraction at time t (Bbl or ft3)
r  Prevailing interest rate (currency)
Rel. perm  Relative permeability (dimensionless)
R0  Total reserves (Bbl)
R.F  Recovery factor (%)
S  Saturation (dimensionless)
t  Time (S, h, day)
V  Shape factor of dispersed particle 

(Dimensionless)
V0  Net value (currency)
Θ  Contact angle (°)
�  Lagrange multiplier (dimensionless)
�r  The ratio of dispersion viscosity to bulk phase 

viscosity (dimensionless)

 * Ali Khalilnezhad 
 A_Khalilnezhad@sut.ac.ir; Khalilnezhad_ali@yahoo.com; 

akhalilnezhad@unal.edu.co

1 Faculty of Petroleum and Natural Gas Engineering, Sahand 
University of Technology, Tabriz 51335-1996, Iran

2 Department of Economics, Shiraz University, Shiraz, Iran
3 Grupo de Investigación en Fenómenos de Superficie−

Michael Polanyi, Facultad de Minas, Universidad Nacional 
de Colombia, Sede Medellín, 050034 Medellín, Colombia

http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-022-01606-x&domain=pdf
http://orcid.org/0000-0003-2076-9784


960 Journal of Petroleum Exploration and Production Technology (2023) 13:959–994

1 3

v  Velocity of particles (m/s)
�12  Interfacial tension (mN/m)
Φ  Porosity (dimensionless)

Abbreviation
AFM  Atomic force microscopy
AOS  Alpha olefin sulfonate
CFD  Computational fluid dynamics
CMC  Critical micelle concentration
CTAB  Hexadecyltrimethylammonium bromide
D  Darcy
DLS  Dynamic light scattering
DLVO  Theory of Derjaguin, Landau, Verwey and 

Overbeek
EDX  Energy-dispersive X-ray
E-GO  Edge graphene oxide
EOR  Enhance oil recovery
FESEM  Field emission scanning electron microscopy
FTIR  Fourier transform infrared
GLYMO  (3-Glycidyloxypropyl) trimethoxysilane
GO  Graphene oxide
HPAM  Hydrolyzed polyacrylamide
IEP  Isoelectric point
IFT  Interfacial tension
IS  Ionic strength
kHz  Kilohertz
MoS2  Molybdenum disulfide
NPs  Nanoparticles
PAM  Polyacrylamide
PGN  Polymer grafted nanoparticles
pH  Potential of hydrogen
PNS  Hybrid of polymer nanofluid suspension
ppm  Part per million
Psi  Pound force per square inch
SBS  (Dimethyl(3-(trimethoxysilyl) propyl)-ammo-

nio) propane-1-sulfonate
SDS  Sodium dodecyl sulfate
SEM  Scanning electron microscope
SurfaSil  C8H24Cl2O3Si4
S-GO  Surface graphene oxide
TEM  Transmission electron microscopes
TOC  Total organic carbon
UV  Ultraviolet
Wt%  Weight percent
XRD  X-ray diffraction

Introduction

Nanotechnology as a pioneering field of knowledge has 
prevailed various branches of science. High surface area-
to-mass ratio, small size of nanoparticles, special chemi-
cal and physical properties and various morphology of 

particles are some positive points about nanotechnology 
(Sabet et  al. 2016). Petroleum engineering like other 
fields of industry should become updated with respect to 
advances of science and technology. Capability of nano-
particles for EOR intends is an interesting topic for EOR 
researchers and experts. On average, 30–50% of original 
oil reserve is producible by natural mechanisms in res-
ervoirs. High amount of remaining oil illustrates the key 
role of EOR procedures for gaining the maximum pos-
sible income from an oil reservoir. Pressure maintenance, 
improving mobility of reservoir fluids and producing the 
trapped oil are known as the main goals of EOR proce-
dures. Usually, water and gas injection are initial EOR 
process. These operations are named secondary meth-
ods and performed to maintain the pressure of reservoirs 
(Sheng 2010). Considering the condition of reservoir 
and amount of trapped oil after water or gas injection, 
chemical agents or low-salinity water could be injected 
into reservoirs. Since these methods are used after water 
or gas injection, they are named as tertiary methods or 
chemical EOR methods (cEOR) (Sheng 2010). Chemical 
EOR methods are mostly used to reduce interfacial ten-
sion, alter the state of wettability and improve sweep effi-
ciency by mobility control (Gbadamosi et al. 2019b). IFT 
is an important factor for obtaining miscible displacement. 
Lower values of IFT is desired for miscible displacement. 
On the other hand, natural wettability of reservoir rocks 
is usually oil wet. To achieve more amount of oil, water-
wet and neutral wet conditions are preferred. In addition, 
early breakthrough due to viscous fingering is a restriction 
for EOR methods (Khalilnezhad et al. 2021). Some cEOR 
methods are used to prevent this phenomenon by mobil-
ity control. Polymer flooding, surfactant flooding, foam 
flooding and injection of low-salinity phase are the most 
common cEOR methods.

Polymers are used to avoid viscous fingering and 
improve sweep efficiency (Sorbie 2013). Due to high vis-
cosity, they are capable to control the mobility of fluids 
(Xiangguo et al. 2021). Several studies and field applica-
tions confirmed the efficiency of polymers for the enhance-
ment of oil recovery (De-Min et al. 2005; Han et al. 2006; 
Mishra et al. 2014; Wang et al. 2009).

As mentioned before, low IFT values are desirable for 
EOR process. Surfactants by taking advantage of their 
nonpolar heads and polar tails are appropriate agents for 
reducing IFT (Belhaj et al. 2020). Besides, utilization of 
surfactants along with high gas contents results in foam 
generation. Foams have higher viscosity than gas and can 
improve sweep efficiency compared to gases (Hosseini-
Nasab and Zitha 2017).

Injection of low-salinity water into reservoirs is proved 
as an efficient EOR method (Lyu et al. 2022; Sheng 2014). 
Wettability alteration is the main activated mechanism by 
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this method (Liu and Wang 2020). Figure 1 presents the 
mentioned cEOR methods and reported mechanisms for 
them.

There is some special conditions and limitations in 
EOR process which could be mitigated by nanotechnology. 
Although application of nanoparticles for the enhancement 
of oil recovery is faced with some uncertainties, several pilot 
tests and field applications are reported all around the world 
(Franco et al. 2021; Huang et al. 2010; Kaito et al. 2022; 
Kanj et al. 2011). Maintaining the stability of nanofluids 
during injection into reservoirs and selecting the proper 
size for nanoparticles to avoid pore blockage, economic 
feasibility and compatibility of selected NPs with produc-
tion severities are the main challenges for the application 
of nanoparticles in EOR process which are discussed in the 
following sections. Tolerating harsh condition of reservoirs, 
catalytic effects, tendency of wettability alteration, locating 
at the interface of immiscible fluids, etc. made nanoparti-
cles appropriate candidates for application in reservoirs. 
Recently, hybrid application of nanoparticles with chemical 
agents used in EOR process is widely investigated. Taking 

the advantages of nanofluids and other chemical agents like 
polymers and surfactants is the main goal of these studies. 
Most of the obtained results reported fair capability for NPs 
to empower EOR mechanisms.

Studying EOR mechanisms and synergistic effects of 
applications of nanoparticles for EOR intends, this review 
includes numerous recent researches on nanotechnology. 
Focusing on applications of nanoparticles and activated 
EOR mechanisms, critical parameters, functional groups of 
nanoparticles and methods of stabilizing nanofluids, repre-
senting an economic model for determination of incomes 
and costs and categorizing the studies due to applied nano-
particles are important points which distinguishes this article 
from others with the same subjects. Although synthesizing 
nanoparticles and environmental challenges are not covered 
because of specified capacity of this work, these subjects 
could be evaluated in further investigations. In this research, 
first the activated EOR mechanisms by bare nanoparticles 
are discussed. Then the importance of the size of nanoparti-
cles and its related advantages and disadvantages are inves-
tigated. Numerous researches based on performed analysis, 

Fig. 1  Schematic view of different cEOR methods and their main mechanism
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applied nanoparticles and reported EOR mechanisms are 
tabulated in this section. Then the functional groups of some 
nanoparticles which are frequently used for EOR process 
are introduced. Thereafter, methods of stabilizing nanofluids 
are investigated. Sequentially, hybrid applications of nano-
particles and surfactants, polymers, low-salinity phases and 
foams are evaluated based on literature reviews. Finally, 
“Hotelling” method is introduced for economic evaluation 
of EOR process.

Nanoparticle mechanisms for EOR purposes

NPs could be used in petroleum industry for different goals 
such as enhancement of oil recovery, improved drilling and 
exploration (tracers). In this section, the effects of NPs on 
the enhancement of oil recovery is investigated. Besides, the 
introduced mechanisms of NPs and some of the last obtained 
experimental results are presented.

Effects of NPs on rock and fluid system

Several studies have introduced NPs as an effective agent 
for changing properties of rock and fluid system. Many 
researchers reported achievement of greater amounts of oil 
during application of NPs (Sun et al. 2017). To seek the 
effects of nanoparticles concentration on wettability altera-
tion, Huibers et al. dispersed different amounts of silica 
nanoparticles in brine and checked their efficiency in 2 dif-
ferent sandstones (Berea and Boise). They concluded that 
the presence of silica nanoparticles in the brine causes wet-
tability alteration. Also, they observed a linear correlation 
between the concentration of nanoparticles and wettability 
alteration (Huibers et al. 2017).

Since the oil film which has covered the surface of rock 
might contain palmitic acid, Hou et al. examined the per-
formance of silica nanoparticles in the presence of sodium. 
They reported that the hydrophilic silica NPs are capable 
of altering the wettability of carbonate rocks by adsorp-
tion to calcite surfaces. Moreover, they found that there is 
a synergistic effect for  Na+ ions and silica nanoparticles 

in wettability alteration. As a matter of fact, since sodium 
cation is able to compress electric double layer and neu-
tralize the negatively charged surfaces of rock, it raises the 
chance of silica NPs to being adsorbed by the rock surface 
in competition with palmitic acid content of oil (Hou et al. 
2019). Usually, the efficiency of NPs on wettability altera-
tion is evaluated at ambient conditions. It is obvious that 
the reservoir condition differs from ambient condition. Al-
Anssari et al. investigated the efficiency of silica nanoparti-
cles at reservoir condition in the presence of sodium dodecyl 
sulfate (SDS) surfactant. They realized that the wettability 
of carbonate rock could be altered from strongly oil wet to 
water wet using surfactant–NPs suspensions (at 70 °C and 
20 MPa) (Al-Anssari et al. 2017).

Khalilnezhad et al. investigated the effects of titania NPs 
on wettability alteration. They observed that 1000 ppm con-
centration of titania induces the greatest wettability altera-
tion to their carbonate rock. They reported precipitation 
and adsorption of NPs on the surface of rock as the main 
mechanism of wettability alteration (Khalilnezhad et al. 
2019). Rezvani et al. compared wettability alteration of a 
carbonate rock by MgO,  SiO2,  Fe3O4 and ZnO nanoparti-
cles. They introduced silica as the best wettability modifier 
among others. In addition,  Fe3O4 NPs reflected the weakest 
response for wettability alteration (Rezvani et al. 2018a, b, 
c). Adsorption of NPs on the surface of rocks takes place by 
several mechanisms. NPs could be adsorbed to the surface 
of rock due to surface charges. Calcite content of carbonate 
rocks has positive charge in the presence of water. NPs with 
negative charge will be adsorbed to the surface of rock with 
respect to electrostatic attraction. Besides, agglomeration of 
NPs results in precipitation on the surface of rock by gravity 
force. As Dehghan Monfared et al. claimed, gradual release 
of carboxylate group from surface of rock and substitution 
by NPs is a governing mechanism for wettability alteration 
in oil-wet rocks (Dehghan Monfared et al. 2016). In addi-
tion, smaller size of particles results in high disjoining pres-
sure due to great repulsion between NPs. Therefore, adsorp-
tion and precipitation will be intensified for smaller size of 
particles. Figure 2 presents alteration of wettability due to 

Fig. 2  Wettability alteration due to adsorption of nanoparticles on the surface of rock
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application of NPs schematically. As it could be observed, 
adsorption of NPs on the surface of rock creates a new sur-
face and reduces the contact angle of water significantly.

Efficiency of NPs on fluid–fluid interaction and interfacial 
tension (IFT)

The reduction in the IFT is a vital mechanism for achieve-
ment of miscibility and increases the efficacy of water flood-
ing process. IFT is usually affected by some parameters like 
salinity, pH, asphaltene content of crude oil, etc. (Behrang 
et al. 2021). There are numerous evident that prove NPs are 
capable of reducing the interfacial tension (IFT) of oil and 
water. Hydrophobicity and hydrophilicity of NPs play key 
roles in attachment of NPs to the interface of immiscible flu-
ids. Equation 1 describes the dependence of adhesion energy 
on contact angle. This equation could be used to investigate 
the behavior of NPs at the interface of fluids (Ngai and Bon 
2014).

where E represents adhesion energy  (KBT), R is the radius 
of particle (nm), �12 defines the interfacial tension between 
2 fluid phases  (mNm−1) and � is the contact angle of parti-
cle at the surface of fluids. In fact, the required energy for 
detachment of NPs from interface could be calculated by 
this equation. Obviously, the magnitude of adhesion energy 
for smaller particles is lower than greater ones. Therefore, 
the interfacial attachment of smaller particles is less than 
larger ones.

Hosseini et al. examined the effects of NPs concen-
tration in the range of 0.01–5 wt% on IFT. Finally, they 
concluded that increasing the concentration of nanopar-
ticles decreases IFT. Also they expressed that NPs could 
decrease the value of IFT about 50%. However, this value 
is not as high to the extent that be considered as a signifi-
cant EOR mechanism (Hosseini et al. 2019). Rezvani et al. 
checked out the potential of  ZrO2 NPs for application in 
EOR process at reservoir conditions. They observed that 
the addition of zirconium oxide NPs to the diluted forma-
tion water reduces IFT. Also, by observing the behavior of 
various concentrations they claimed that there is an opti-
mum concentration for zirconium oxide NPs. Further addi-
tion of NPs for obtaining nanofluids above the optimum 
concentration causes an inverse trend, and IFT increases 
directly with any increase in concentration (Rezvani et al. 
2018a).

Some studies assessed the synergic effects of NPs with 
other chemicals used for EOR procedures. Betancur et al. 
designed a core shell system for iron NPs. They obtained 
the lowest amount of IFT (1 ×  10–4  mNm–1) with the addi-
tion of NPs to the surfactant mixture. This ultralow value 

(1)ΔE = �R2�12
(

1 ± Cos�12
)2

achieved as a result of reduced adsorption of surfactant 
mixture on the surface of porous media. Coated NPs 
diminished the adsorption by a rate of approximately 33% 
(Betancur et al. 2019). In another study, Al-Anssari et al. 
used hydrophilic and hydrophobic silica NPs to investigate 
their influence on IFT in  CO2/brine systems. Their obser-
vations proved that the pressure and the concentration of 
NPs have positive effects on IFT reduction, but tempera-
ture and salinity have negative effects. The results indi-
cated the potentials of using NPs with carbonated water for 
the enhancement of oil recovery (Al-Anssari et al. 2018b). 
It could be concluded same as surfactants (Alabdulbari 
et al. 2022), NPs are also capable of reducing IFT of  CO2/
brine system. Surfactants have some restricting factors like 
salinity, ion types (monovalent, divalent, etc.), tempera-
ture and surfactant type (anionic, cationic and nonionic) 
(Golabi et al. 2012).

IFT as a thermodynamic property changes by time. Vari-
ation of IFT is governed by mass transfer between oil and 
water. The more mass transfer between oil and water leads 
to lower IFT values. Same as surfactants, some NPs have 
both hydrophilic and hydrophobic parts simultaneously 
which facilitates the movement of NPs in the bulk phase 
and their attachment onto the interface of fluids. The ten-
dency of NPs for attachment to the interface of fluids, on the 
one hand, and their catalytic effect in asphaltene adsorption, 
on the other hand, are the main reasons for forming a layer 
between oil and water. Due to their tendency for adsorption 
of asphaltenes, mass transfer between fluids increases in the 
presence of NPs and sequentially IFT decreases.

Other effective mechanisms

Not only NPs are capable of altering the state of wettabil-
ity and reducing the value of IFT, but also they can acti-
vate some other EOR mechanisms in different situations. 
Some NPs have the tendency to reduce the viscosity of oil 
by preventing asphaltene precipitation and cracking the 
long chains. Patel et al. examined the effects of 3 metal 
oxide NPs on reducing the viscosity of a sample of heavy 
oil. They observed that all tested concentrations of NiO, 
CuO and  Fe3O4 can reduce the viscosity of heavy oil more 
than 50% (Patel et al. 2018). Elshawaf et al. investigated the 
effects of different types of NPs on lowering the viscosity of 
a heavy asphaltic oil. They observed the highest reduction 
(20–65%) during application of graphene oxide. Moreover, 
they reported that graphene oxide is more valuable from 
economic point of view (Elshawaf 2018). Taborda et al. 
also studied the effects of  Fe3O4,  SiO2 and  Al2O3 NPs on 
reducing viscosity of heavy and extra heavy crudes. They 
observed  SiO2 at concentration of 1000 mg/l reduces the vis-
cosity around 52% which is the best result among all. Finally 
they matched their experimental results with Pal and Rhodes 



964 Journal of Petroleum Exploration and Production Technology (2023) 13:959–994

1 3

model (Eq. 2) (Pal and Rhodes 1989). This model correlated 
the viscosity with the concentration of NPs.

where �r is the ratio of dispersion viscosity to bulk phase 
viscosity; K0 represents the solvation constant; C defines 
volumetric concentration of NPs (W/Vol); and V is the shape 
factor of dispersed particle. The model covered their experi-
mental results as well (Taborda et al. 2017).

In another study, Ghaffari et al. synthesized a colloidal 
gel by silica NPs. They reported high concentrations of silica 
NPs (in the range of 3–6 wt%) at high-salinity conditions 
facilitate the formation of a viscous gel which could be used 
in both EOR and water shutoff projects. The reason of form-
ing this gel is entrapment of water clusters between silica 
NPs. In fact, the presence of salt leads to agglomeration of 
silica NPs and agglomerated NPs entrap the water ganglia 
(Ghaffari et al. 2022). The main mechanism for reducing 
viscosity of heavy oil by NPs is adsorption and cracking of 
heavy compounds and consequently diminishing the size of 
aggregations. Therefore, NPs are capable of reducing the 
viscosity of heavy oils.

Size as a critical parameter for selection of NPs

The existence of tight and tortuous paths in porous media 
is a challenging factor for application of the nanoparticles. 
Mean free path and pore size distribution are two vital prop-
erties which should be considered before selection of any 
nanoparticles for EOR procedure (Collins 1976; Dullien 
2012). If the radius of nanoparticles be greater than the pore 
throats, pore plugging or log jamming will be inevitable. 
Both mentioned phenomena are mechanistically similar, but 
they differ in results. Both of them refer to plugging the 
pores by nanoparticles, but when log jamming takes place 
nanoparticles will plug the paths of swept zones and the flow 
will be diverted to the upswept areas of reservoir. Therefore, 
log jamming is a positive mechanism for the enhancement 
of oil recovery (El-Diasty and Aly 2015). In contrast, when 

(2)�r =
(

1 + K0C
)V

pore plugging phenomenon occurs, aggregation of nanopar-
ticles in the entrance of upswept paths makes them unreach-
able and consequently lowers the expected oil recovery (Ju 
et al. 2006) which is a common phenomenon in the cases 
of tight reservoirs. Nanoparticles should be injected in very 
low concentrations in this type of reservoirs (Lu et al. 2017). 
Figure 3 illustrates the differences between log jamming and 
pore plugging.

By analyzing 20 core plugs with a mixture of surfactant 
and silica nanoparticles, Rezaei et al. introduced pore size 
distribution as one of the most important parameters for 
nanofluid injection (Rezaei et al. 2020). Jiang et al. inves-
tigated the effects of size of bare silica NPs on wettability 
alteration and oil recovery of carbonate rocks. They checked 
different sizes (10, 40, 90 and 150 nm) of silica NPs. They 
concluded that the smaller NPs intensify the alteration of 
wettability. Hence, the amount of oil recovery was greater 
through application of smaller NPs (Jiang et al. 2017). Some 
important studies (since 2017) on application of bare nano-
particles and nanocomposites for enhancing oil recovery are 
tabulated in Table 1.

Functional groups of NPs

Some groups of atoms which are responsible for main char-
acteristics and activities of a structure are known as func-
tional groups (Bader et al. 1994). Each nanoparticle has 
unique functional groups which affect their performance and 
applications. Hydrophilicity or hydrophobicity, adsorption 
or desorption on the surface of rock and ability to reduce 
the IFT are some of the properties which could be deter-
mined by their functional groups (Salvador-Morales et al. 
2009). Table 2 presents the functional groups and properties 
of some commonly used nanoparticles for EOR purposes.

The existence of carbon included functional groups in 
some NPs relates to the synthesizing procedure. Stability of 
 TiO2 NPs is a challenge for their application in oil reservoirs. 
The attraction force between carbonyl functional groups of 
 TiO2 is responsible for agglomeration of these NPs (Kumar 
et al. 2014).

Fig. 3  Schematic illustration of log jamming (a) and pore plugging (b)
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However, to change the properties of nanoparticles, they 
could be modified, functionalized or coated with different 
materials. Due to the properties and functional groups of 
coating materials, the properties of NPs will be changed. 
Functionalization of NPs and selection of coating materi-
als depend on the condition of reservoirs (Al-Shatty 2022).

Wu et al. observed a great reduction in IFT of oil and 
water by functionalized silica NPs with 3-minopropyltrieth-
oxysilane and lauric acid. This observation was because of 
amphiphilic structure of silica NPs and consequently their 
appropriate location at the interface of oil and water. Exist-
ence of aliphatic amines induces water solubility to the NPs 
(Wu et al. 2020). In contrast, hydrophobic alkyl parts reduce 
water solubility. Simultaneous existence of these functional 
groups makes the consisting materials hydrophobic (Nasr 
et al. 2021). In another study, Gholinezhad et al. used silica 
NPs functionalized by ethylene glycol functional groups to 
investigate wettability alteration. They observed the wetta-
bility of a SurfaSil-treated glass alters from oil wet toward 
water wet. Seating of carbon chains on the siloxane group 
(which is adsorbed to the surface of glass by SurfaSil) results 
a new surface with OH group of ethylene glycol and modi-
fies the surface to water-wet condition (Gholinezhad et al. 
2022).

Janus NPs are functionalized NPs which have two or 
more physical properties in surface. Surfactants are widely 
used for production of Janus NPs (Tohidi et al. 2022). Lou 
et al. modified graphene oxide NPs to attach alkyl chains 
on the surface of NPs. Graphene oxide NPs already have 
carbonyl and carboxyl functional groups. They reported 
15.2% enhancement in oil recovery through core flooding 
experiments. In comparison with non-functionalized NPs, 
oil recovery was 3 times greater by application of functional-
ized NPs (Luo et al. 2016).

Stability of nanofluids

Stability of nanofluids is dependent on various parameters 
such as existence of ions, size of nanoparticles, pH of fluid 
and temperature. Achievement of stable dispersions could 
be a destructive factor in water treatment process. The meth-
ods of stabilizing nanoparticles are subdivided into two 
main categories: physical and chemical methods (Wu et al. 
2011). Any stabilizing process that suspend nanoparticles 
by application of mechanical force is considered as a physi-
cal method while chemical methods include the addition of 
some chemical agents like acid, surfactants, etc. (Wu et al. 
2011).

Based on DLVO theory, attraction or repulsion between 
each pair of particles depends on electrical attractive and 
repulsive forces. Therefore, electrokinetic properties are of 
importance for stability of nanofluids (Dahirel and Jardat 
2010). Electrokinetic properties could be governed by con-
trolling pH of the media. Many of nanofluids are not stable 
in acidic pH ranges. But this could not be assumed as a 
general rule for all of the nanofluids. For example, graph-
ite nanofluids reflect fair stability at pH values around 2 
(Mukherjee and Paria 2013). Huang et al. achieved stability 
for dispersions contained  Al2O3 and Cu nanoparticles at pH 
values between 8.5 and 10. They stabilized 1000 ppm of 
nanoparticles in deionized water using pH control method 
(Huang et al. 2009). Zhang et al. introduced procedure of 
synthesis and storage conditions as two effective factors for 
stabilization of nanofluids. After dispersion of nanoparticles 
in base phase, aggregates could be formed over time. They 
evaluated disaggregation of metal oxide nanoparticles by 
sonication and addition of HCl and  MgCl2 to nanofluids. It 
was observed that synthesizing procedure may result in the 
formation of chemical bonds between nanoparticles and any 
effort would not disaggregate nanoparticles below a speci-
fied size. Also they stated that the storage of nanoparticles 
for more than 1 month can lead to aggregation (Zhang et al. 

Table 2  Functional groups and properties of some commonly used NPs for EOR purposes

Nanoparticle Functional group Properties

SiO2 (Montes et al. 2020) Silanol (O–Si–H) Acidic, strongly hydrophilic, forming strong hydrogen bonds with halide and acetate ions
Graphene (Chen 2019) Hydroxyl Polarity, forming strong hydrogen bonds, hydrophilic, amphoteric

Carboxyl Hydrophilicity, high melting and boiling point, forming hydrogen bonds
Carbonyl Polarity, high reactivity, attraction between molecules and high boiling and melting point
Oxirane Participating in addition reaction, water soluble

�-Al2O3 (Amirsalari and 
Shayesteh 2015)

Oxy (Al-O) Formation of strong hydrogen bond, high reactivity
Hydroxy (Al–OH) Solubility in water, hydrophilicity

TiO2 (Kumar et al. 2014) Hydroxyl Polarity, forming strong hydrogen bonds, hydrophilicity, amphoteric
Carboxyl Hydrophilicity, high melting and boiling point, forming hydrogen bonds
Carbonyl Polarity, high reactivity, attraction between molecules and high boiling and melting point
Secondary Amine Formation of hydrogen bonds
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2008). In another study, addition of  TiO2 NPs to  SiO2 nano-
fluid (PAM + deionized water +  SiO2) increased the stability 
of nanofluid. Addition of 0.05 wt% and 0.1 wt% of  TiO2 NPs 
to the dispersions resulted in more 14 and 19 days of stabil-
ity, respectively (Kumar and Sharma 2018).

Keller et al. examined the stability of  TiO2, ZnO and 
CeO nanoparticles in various types of waters. To find out 
the appropriate condition for stability, they measured elec-
trophoretic mobility of nanoparticles in each fluid. Electro-
phoretic mobility is defined as the velocity of suspended 
particles induced by an electrical field, divided by strength 
of electrical field. It is clear that the greater values of electro-
phoretic mobility show better stability. Equation 3 represents 
electrophoretic mobility.

 where μ represents the electrophoretic mobility  (m2/s), v 
describes the velocity of particles (m/s) and E0 is the strength 
of electrical field (V/m). They observed that increasing the 
value of total organic carbon (which was considered as a rep-
resentative for amount of organic compounds in water) leads 
to higher electrophoretic mobility and consequently more 
stability. In contrast to their predictions, they observed that 
increasing the ionic strength of water reduces the electropho-
retic mobility and stability. They reported that the aggrega-
tion of all nanoparticles at low total organic carbon and high 
ionic strength was very high, but by increasing TOC1 and 
reducing the value of IS,2 the aggregation ceased. It was 
also observed that controlling the value of pH for achieving 
stability is an effective solution for deionized, distilled and 
neutralized water. But there is not a clear trend between pH 
and stability of nanoparticles in saline waters (Keller et al. 
2010). According to importance of nanoparticles stability 
in water treatment process, many researchers investigated 

(3)� =
v

E0

the stability of different nanoparticles in the presence of 
divalent ions and natural organic matters. As Zhang et al. 
expressed, adding low amounts of salts to nanofluids results 
in aggregation of nanoparticles while the existence of natu-
ral organic material induces a negative charge on the surface 
of particles and stabilizes the nanofluid. They observed a 
unique behavior for  SiO2 nanoparticles. Due to low adsorp-
tion of natural organic material by  SiO2 and small Hamaker 
constant, the presence of divalent ions and natural organic 
material does not affect the stability of  SiO2 nanoparticles 
(Zhang et al. 2009).

Polymers also have the tendency to stabilize nanofluids 
by altering the surface. Surface modification of hydrogen-
terminated silicon nanoparticles by an amphiphilic polymer 
resulted in a stable nanofluid (Zhang et al. 2007).

Hwang et al. tested different physical methods for sta-
bilizing carbon black and silver nanoparticles. They exam-
ined the stability of nanofluids prepared by stirrer, ultrasonic 
disrupter, ultrasonic bath, high-pressure homogenizer and 
magnetron sputtering. The nanofluids which prepared by 
stirrer were mixed at 1500 rpm for 2 h. The ones which pre-
pared by ultrasonic bath and ultrasonic disrupter were mixed 
with frequency at 40 kHz and 20 kHz, respectively. Both 
sonicating apparatuses have operated for 1 h. High-pressure 
homogenizer operated at 18000psi and each nanofluids 
passed 3 times through the system entirely. They reported 
that high-pressure homogenizer produces the most stable 
nanofluids among other physical methods. In this manner, 
ultrasonic disrupter, ultrasonic bath and stirrer were intro-
duced as next effective devices, respectively. In addition, 
the nanofluids stabilized by magnetron sputtering method 
reflected the best stability among all methods. It could be 
concluded that chemical stabilizing methods are more effec-
tive than physical methods (Hwang et al. 2008). Figure 4 
presents the performance of a high-pressure homogenizer 
schematically. It could be observed exerted pressure forces 
the nanofluid to leave the chamber through narrow tubes. 
The torque which is applied to the particles through this 

Fig. 4  Operation of a high-
pressure homogenizer

1 Total organic carbon.
2 Ionic strength.
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movement results in disaggregation of agglomerated nano-
particles (Anandharamakrishnan 2014).

One of the most effective parameters for stabilizing nano-
particles is pH. Aggregation of nanoparticles increases at 
zero-point charge. Therefore, pH should be considered dur-
ing stabilization of nanofluids (Umh and Kim 2014).

Tso et al. argued that the agglomeration of nanoparti-
cles starts from the first moments of mixing. The aggre-
gates could form up to microscale size. They used a stir-
rer at 15000 rpm to break the aggregates. The researchers 
observed that stirring can only break down the aggregates to 
micron sizes. To achieve a better disaggregation, ultrasonic 
instrument was tested. They found out ultrasonic is a more 
efficient way for breaking the aggregates. The broken aggre-
gates were still much larger than the original size of nano-
particles. Also, they proved the existence of nanoorganic 
matter in water simplifies the procedure of stabilizing nano-
particles. Therefore, stabilizing nanoparticles in distilled and 
deionized water will be a harder task than in natural water 
(Tso et al. 2010). Keykhosravi and Simjoo investigated the 
effects of monovalent and divalent ions on stability by using 
NaCl and  MgCl2. Measuring zeta potential, they found out 
that the presence of divalent ions in brine lowers the stability 
of silica nanoparticles and monovalent ions result in more 
stability in contrast. Results showed that more stability of 
silica nanoparticles is a positive effect to achieve more wet-
tability alteration toward more water-wet state (Keykhosravi 
and Simjoo 2019). Xu et al. reached a stable nanofluid of 
iron oxide nanoparticles by using surfactant. They intro-
duced coating process and surfactant-to-nanoparticle ratio as 
the main governing parameters for stability (Xu et al. 2011).

In another study, Abbood et al. stabilized CuO nanofluids 
by dodecyl-3-methylimidazolium chloride ([C12mim][Cl]) 
surfactant. Their nanofluids were stable for 1 month. Not 
only the stability condition improved, but also they observed 
the presence of 1000 ppm of surfactant boosted wettabil-
ity alteration and synergistic effect of NPs and surfactant 
increases ultimate oil recovery up to 21.2% (Abbood and 
Hosseini 2022).

Application of surfactant and nanoparticles

Significant reduction in IFT is the main purpose of using 
surfactants. They have a low potential to alter the state of 
wettability (Golabi et al. 2009). In addition, some hybrid 
methods proved the addition of some divalent ions to sur-
factant solutions can empower wettability alteration mecha-
nism (Hosseini et al. 2020). Application of nanoparticles 
with surfactant is known as a hybrid EOR method for 
achievement of more oil recovery. As it was aforementioned, 
surfactants are capable of increasing the stability of nanoflu-
ids. The more the stability of nanofluids, the more efficiency 
they might have. The main possible mechanism for stability 
is adsorption and desorption of surfactant by nanoparticles. 
Adsorption and gradual desorption of surfactants by nano-
particles could be a valuable point to improve the opera-
tion of surfactants (Olayiwola and Dejam 2019). Figure 5 
illustrates the procedure of adsorption and desorption of 
surfactants by nanoparticles schematically.

Betancur et al. studied the adsorption of different sur-
factants on  SiO2 nanoparticles. They also compared the 
performance of the mixture of nanoparticles and surfactant 

Fig. 5  Schematic description of adsorption/desorption of surfactants by nanoparticles
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with surfactant alone. They observed that the critical micelle 
concentration (CMC) increases at higher temperature. They 
legitimated this phenomenon with disorganization of non-
polar groups in water molecules at high temperatures. Based 
on their reports, the adsorption of surfactant micelles on 
nanoparticles reduces at higher temperatures. This is due 
to exothermic nature of adsorption interaction. The authors 
designed two interesting procedures for preparation of nano-
particle and surfactant dispersion. At first procedure brine, 
surfactant and nanoparticles were mixed simultaneously. 
The second one included the addition of nanoparticles after 
preparing solution of surfactant and brine. They observed 
greater adsorption of surfactant on surface of nanoparticles 
using the latter one. The lower adsorption of surfactants 
during first procedure is related to a competition between 
surfactant molecules for either adsorption on nanoparticles 
or formation of micelles. This is a fair justification for lower 
size of formed micelles in the dispersions which was pre-
pared by the first method. Finally, no impressive change on 
the reduction of IFT reported in the presence or absence 
of nanoparticles. However, recovery factor increased about 
240% (comparing with application of surfactant solely) in 
the presence of  SiO2 nanoparticles due to adsorption of 
micelles by NPs (Betancur et al. 2018).

Zhao et al. made an experimental research on potentials 
of nanofluids composed of deionized water,  SiO2 nanoparti-
cles and TX-100 surfactant for EOR applications. They com-
pared the mechanisms of surfactant solutions and nanofluid-
based surfactant solutions. They concluded that the addition 
of nanoparticles to the surfactant solutions does not change 
the value of IFT significantly. 16% increase in oil recov-
ery during spontaneous imbibition tests by nanofluids is 
reported. This amount is twice of recovery achieved by sur-
factant solution. The dominant mechanism for the enhance-
ment of oil recovery is attributed to higher wettability alter-
ation. They checked the stability of nanofluids at various 
temperatures and salinities. Obtained results did not show 
any great change in stability by increasing temperature up to 
70 °C (Zhao et al. 2018). Adsorption of surfactant on rock 
surface is known as a limitation parameter for efficiency of 
surfactant flooding (Belhaj et al. 2020). Nanoparticles could 
be used as an inhibitor for surfactant adsorption. Wu et al. 
evaluated static and dynamic adsorption of SDS surfactant 
on rock surface. The authors obtained dynamic adsorp-
tion by comparing the concentration of surfactant content 
between injected and effluent fluids. The results indicated a 
significant reduction in adsorption of surfactant on rock sur-
face in the presence of nanoparticles. The ultimate recovery 
factor reported for injection of nanoparticle and surfactant 
dispersion is 7% greater than injection of surfactant solu-
tion solely (Wu et al. 2017). In another study, Abbood et al. 
investigated the addition of 1-dodecyl-3-methyl imidazolium 
chloride surfactant to  SiO2 nanofluids. They pointed out NPs 

do not have significant effects on the reduction of IFT, but 
their synergistic effects with surfactant have great effects on 
wettability alteration. Finally, they found that application of 
NPs with surfactants results in production of extra 15.6% of 
synthetic oil (Abbood et al. 2022).

From all mentioned above, it could be concluded that 
although both NPs and surfactants are capable of reducing 
the IFT, but their mixture is not so effective in the reduction 
of IFT. Surfactants have the ability to stabilize NPs disper-
sions by inducing surface charge on NPs. Besides gradual 
desorption of surfactants by NPs can prevent retention of 
surfactants on surface of porous media and enhance the 
performance of surfactants. On the other hand, intensified 
wettability alteration could be considered as one of the main 
mechanisms for enhancing oil recovery by hybrid applica-
tion of NPs and surfactant.

Hybrid of polymer and nanoparticles

Polymer flooding is a promising EOR method which 
improves oil recovery mainly by mobility control. Mobility 
ratio is an important factor for governing macroscopic sweep 
efficiency. This method is used more than 50 years and it has 
proved that polymers can increase oil recovery up to 10–20% 
on average (Han and Lee 2014; Sheng et al. 2015). Like 
other EOR methods, polymer flooding has some limitations, 
e.g., viscosity loss due to shear rate and shear stress, reten-
tion in porous media and degradation under reservoir con-
dition. Thus, the efficiency of the method is highly affected 
by reservoir conditions and fluid chemistry. To enhance the 
performance for application in harsh conditions research-
ers designed and investigated some NPs–polymer systems 
(Jan Bock Donald et al. 1987; Nourafkan et al. 2019; Tang 
et al. 2022; Ye et al. 2013; Zahiri et al. 2022). The syner-
gistic effects of NPs and polymers reflected some promis-
ing results. In this manner, various types of NPs like silica 
(Hu et al. 2017a; Zeyghami et al. 2014; Zhu et al. 2014a, 
2014b), titania (Cheraghian 2016), alumina (Cheraghian 
2016; Minagawa and White 1976), iron (Kmetz et al. 2016; 
Tarek and El-Banbi 2015), zirconia, graphene and its deriva-
tives (Haruna et al. 2019; Haruna and Wen 2019; Liu et al. 
2012) and clay nanoparticles (Cheraghian 2015; Cheraghian 
et al. 2015; Cheraghian and Khalilinezhad 2015; Nezhad and 
Cheraghian 2016; Rezaei et al. 2016) are used. Combination 
of polymer and NPs could be done in two ways: (1) poly-
mer grafted nanoparticles (PGN) and (2) hybrid of polymer 
nanofluid suspension (PNS). PGNs are chemical agents syn-
thesized by attachment of polymer onto nanoparticle surface 
(Gbadamosi and Junin 2018). PGNs are created using two 
methods: “grafting to” and “grafting from.” Using “graft-
ing to” method, the end-functionalized polymers react with 
an appropriate surface of NPs and “grafting from” method 
tries to grow polymer chains from an initiator-terminated 
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self-assembled monolayer (Kango et al. 2013). Figure 6 
shows the schematic description of PGNs synthesis using 
“grafting to” and “grafting from” methods. PNS is simply 
prepared by mixing or blending nanoparticles and polymer 
solutions (Gbadamosi and Junin 2018). In addition, sol–gel 
method could be used to synthesize polymer–NPs nanocom-
posites. Rezvani et al. synthesized chitosan @  Fe3O4 nano-
composites by this method. They mixed 0.5 ml of acetic acid 
with deionized water in a 50-ml volumetric flask. Then they 
added 0.125 g of chitosan powder to the mixture and stirred 
with a mechanical stirrer. In the next step, they added 1 g 
of  Fe3O4 NPs to the mixture and stirred for 30 min. Finally, 
25 ml of a solution contained deionized water and 1 g of 
NaOH added to the solution and stirred for 1 min. The solu-
tion filtered with paper and remained particles frozen at 
− 20 °C for 24 h (Rezvani et al. 2018b). Studies indicated 
that different NPs have different effects on polymer flood-
ing performance and adding NPs to polymer solutions can 
improve chemical and thermal resistance, rheological behav-
ior and also rock–fluid interactions (Cheraghian et al. 2014; 
Khalilinezhad et al. 2017; Li et al. 2010; Paul and Robeson 
2008; Pavlidou and Papaspyrides 2008).

Saha et al. studied the synergistic effects of silica–xan-
than composite on enhancing oil recovery from sandstone 
cores at low (30 °C) and high (90 °C) temperatures. They 
reported that silica NP-assisted polymer flooding enhances 
oil recovery about 20.82% and 18.44% at 30 °C and 90 °C, 
respectively. Wettability alteration, IFT reduction, higher 
viscosity and more stable emulsions were responsible for 
enhancing the amount of recovered oil. They also observed 
that in contrast to formation water, silica NPs were stable in 
the polymer solutions (Characteristics et al. 2018). Alaminia 
and Khalilinezhad investigated the effects of hydrophilic 

silica nanoparticles and their size on  polyacrylamide (PAM) 
solutions. They reported using silica with PAM increases the 
viscosity of polymer solution. Besides, larger size of silica 
NPs reflected greater efficiency in this manner (AlamiNia 
and Khalilinezhad 2017). Khalilinezhad et al. used experi-
mental tests and numerical simulation to examine the effects 
of silica and clay on flow behavior of polymer solutions. The 
results showed that using silica and clay not only increases 
the viscosity, but also reduces the retention of polymer in 
porous media. Clay reflected less efficiency on adsorption 
and viscosity in comparison with silica (Khalilinezhad et al. 
2017, 2016).

Rellegadla et al. studied the effects of adding nickel NPs 
to xanthan gum solution on oil recovery. They observed that 
NPs can increase the intrinsic viscosity of polymer solution 
and also enhance oil recovery compared with application 
of NPs and polymer individually. The achieved additional 
oil recovery by using xanthan gum solution and nickel NPs 
is equal to 5.98%. The additional oil recovery obtained by 
using xanthan solution and nickel NPs dispersion individu-
ally was 4.48% and 4.58%, respectively (Rellegadla et al. 
2018). Khan et al. studied the rheological behavior of dif-
ferent mixtures of polymer and  SiO2,  TiO2 and  Fe2O3 NPs 
at 50 °C, separately. Different concentrations of NPs in the 
range of 0–1 wt% were used with 1 wt% of HPAM. The 
results showed that the highest concentration of each NPs 
has the most effect on increasing viscosity.  SiO2,  TiO2 
and  Fe2O3 enhanced the viscosity of polymer solution (at 
shear rate of 100 1/s) from 0.002 cp to 0.005 cp, 0.3 cp 
and 0.016 cp, respectively. The authors claimed using NPs 
increases storage module of polymer solutions. NPs–poly-
mer core flooding was also performed and comparing to con-
ventional polymer flooding improved recovery is reported 

Fig. 6  Schematic description of "grafting to" (a) and "grafting from" (b) methods
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(Khan et al. 2018). Corredor et al. synthesized polyacryla-
mide-grafted  SiO2,  TiO2 and  Al2O3. Their analysis proved 
NPs grafted polymers enhance the viscosity, lower the IFT 
and alter the wettability in the presence of NaCl at 25 °C. 
(Corredor et al. 2019a). They also investigated the rheologi-
cal behavior of mixtures of xanthan and  SiO2,  TiO2,  Al2O3 
and Fe(OH)3 NPs at 25 °C and different salinities. They 
concluded that the addition of  TiO2,  Al2O3 and Fe(OH)3 
reduces the viscosity of xanthan solution. Contrarily,  SiO2 
enhances the viscosity of polymer solution (Corredor et al. 
2018, 2019b).

Maghzi et al. conducted a series of experiments to inves-
tigate the effects of silica NPs on performance of polymer 
(PAM) solution for enhancing oil recovery. They examined 
the rheological behavior of polymer solution at various 
shear rates (0.001–3.486 1/s). It was concluded that adding 
silica NPs results in higher viscosity of solution. By flood-
ing in micromodel, they observed 25% more oil recovery 
for NPs–polymer solution (Maghzi et al. 2013). They also 
assessed the synergistic effects of silica NPs and HPAM on 
wettability alteration of a glass micromodel. The authors 
found out the dispersions alter the wettability of micromodel 
toward strongly water-wet state (Maghzi et al. 2011).

Haruna et al. evaluated the potentials of using  SiO2 and 
modified  SiO2 with PAM to enhance oil recovery. They 
stated that using  SiO2-PAM mixture have some limitations 
like agglomeration in harsh conditions. Chemical agent 
(3-aminopropyl) triethoxysilane was used to modify the 
surface of  SiO2 for optimization of the interactions between 
functional groups of PAM and  SiO2 in order to improve 
dispersion stability. The surface-modified  SiO2  (M_SiO2) 
interacts with PAM and creates a protective shield on PAM 
micelles. So, they are capable of stabilizing the solution. 
Thermal stability also increased by using  M_SiO2. Viscosity 
loss of  M_SiO2-PAM solution after 70 days was just 10% 
while for  SiO2-PAM and PAM system it was about 45% and 
78%, respectively (Haruna et al. 2020).

Using  ZrO2 NPs with polymer (PAM) solution at different 
temperatures and salinities has also studied by Al-Anssari 
et al. They studied the stability and viscosity of NPs–poly-
mer systems. They have claimed that using zirconia NPs 
in small quantities (< 0.03 wt%) could improve solutions 
viscosity at high temperatures and high salinities. It is note-
worthy that the adsorption of the NPs on polymer micelles 
occurred at low concentrations and the addition of extra 
amounts of zirconia NPs makes no significant effect (Al-
Anssari et al. 2021). Table 3 summarizes some studies on 
hybrid application of NPs–polymer.

Hybrid of low‑salinity water and nanoparticles

Addition of nanoparticles to low-salinity phase is an inter-
esting topic for researchers. Numerous criteria including 

existence of ions, compatibility of NPs with composition 
of water and appropriate concentration of NPs should be 
considered for simultaneous application of nanoparticles and 
low-salinity phase. Existence of ions in bulk phase of nano-
fluids affects the stability of nanoparticles strongly. There 
are some methods recommended for stabilization of NPs in 
various ranges of salinity. Jafari et al. stabilized hydrophilic 
silica in seawater by using  H+ protection. This method refers 
to add some amounts of HCl to nanofluid. The generated  H+ 
ions protect the NPs from free ions in the bulk and increase 
the stability of nanofluids (Sofla et al. 2018). Addition of 
surfactant to the nanofluids is another method to stabilize 
NPs in saline solutions. Surface modification of NPs caused 
by adsorption of surfactant enhances the stability of NPs, 
especially in saline solutions (Olayiwola and Dejam 2019).

Wettability alteration is known as the main EOR mecha-
nism of both low-salinity flooding (Hosseini et al. 2015) 
and nanoparticles injection. Numerous studies examined the 
application of various nanoparticles with low-salinity phase 
for different intentions. Taleb et al. investigated the optimum 
conditions for injection of low-salinity phase and nanofluid 
(composed of their synthesized Faujasitr-Based silica NPs) 
by static analyses. The low-salinity phase of their study was 
composed of 2 wt% NaCl and 0.2 wt% KCl. It was observed 
that increasing the concentration of synthesized NPs (up to 
200 ppm) reduces the value of IFT. Contact angle measure-
ments illustrated that the use of low-salinity phase contain-
ing nanoparticles makes the surface of the rock more water 
wet. Finally core flood tests showed 5% greater oil recovery 
by injection of low-salinity phase solely and 10% higher 
recovery factor by application of low-salinity-based nanoflu-
ids (Taleb et al. 2020). In another study, Sadatshojaei et al. 
evaluated the synergistic effects of using nanoparticles and 
low-salinity phase in a carbonate rock. Low-salinity phase 
(dilutions of seawater with TDS3 of 47,681.3 ppm) was com-
posed of  Na+,  K+,  Mg2+,  Ca2+,  SO4

2−,  Cl− and  HCO3
− ions. 

They categorized the existed ions into active and inactive 
ions. As they reported category of inactive ions includes 
 Na+,  K+ and  Cl− and active ions category consists of  Mg2+, 
 Ca2+,  SO4

2−. IFT and contact angle measurements proved 
that at lower concentrations of inactive ions, the actives 
would be capable of moving freely through the bulk phase 
and decrease the value of IFT. Also they concluded that 
increasing the salinity makes the nanofluid instable (Sadat-
shojaei et al. 2019).

Shakiba et al. added some amounts of silica nanoparti-
cles to low-salinity water to stabilize instable sands during 
production from unconsolidated rocks. Since sands could be 
mobilized by injection of low-salinity water, precipitation of 
silica nanoparticles stabilizes unconsolidated sands. They 

3 Total dissolved solids.
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reported that flooding the cores by low salinity and silica 
NPs enhances the strength of rock up to 46% more than the 
rocks which flooded by low-salinity phase solely (Shakiba 
et al. 2020).

To seek EOR potentials of low-salinity NPs system in 
heavy oil reservoirs, Ding et al. evaluated the performance of 
 Al2O3 and  SiO2 nanoparticles when dispersed in low-salinity 
phase. They selected a 1/10 dilution of brine containing  Na+, 
 Ca2+,  Mg2+,  Cl−,  OH−,  HCO3−,  CO3

2− and  SO4
2− as the low-

salinity phase for their study. The addition of  SiO2 nanopar-
ticles to low-salinity phase at low temperature (25 °C) had 
no effect on oil recovery (before and after breakthrough), 
while injection of  SiO2 nanofluid after low-salinity phase (as 
the second slug after low-salinity water injection) showed 
more than 2% increase in oil recovery. Despite  SiO2, addi-
tion of  Al2O3 NPs to the low-salinity phase resulted in much 
better sweep efficiency before breakthrough. But they real-
ized that the amount of enhanced oil recovery after break-
through of low-salinity containing  Al2O3 nanoparticles is the 
same as what they observed for  SiO2 nanoparticles. Since 
heavy oil is used in this study, increasing the temperature of 
injected phase resulted in higher recovery factor. At temper-
ature of 45 °C, the low-salinity phase contained  SiO2 showed 
a greater recovery factor than the one composed of  Al2O3 
nanoparticles. This trend is reported to change inversely at 
70 °C (Ding et al. 2019).

By dispersing different concentrations of silica nano-
particles into dilutions of Persian Gulf seawater, Saeedi 
Dehghani and Daneshfar investigated the synergistic con-
tribution for application of silica nanoparticles and low-
salinity phase. They measured contact angle and performed 
some micromodel analyses in the presence of synthetic oil. 
They found out injection of silica nanoparticles dispersed in 
deionized water has lower efficiency than injection of low-
salinity phase alone. Also, they observed a synergistic effect 

for injection of dispersed nanoparticles in the low-salinity 
phase. Since the addition of nanoparticles increased the vis-
cosity of injected phase, better mobility control could be 
obtained using this method. The improved mobility control 
is capable of postponing breakthrough time (Dehaghani and 
Daneshfar 2019).

In another study, Sagala et al. functionalized silica nano-
particles and evaluated the capability of increasing oil recov-
ery by injection of nanofluid-based low-salinity water. Their 
chosen low-salinity phase composed of 0.1 wt% of NaCl. 
Application of low-salinity water with surface-modified 
nanoparticles caused wettability alteration in oil-wet sand-
stones. Addition of nanoparticles to low-salinity phase also 
increased the value of recovery factor by 15% in compari-
son with injection of low-salinity phase alone. Their report 
also indicated a right shift of relative permeability curve 
after injection of low-salinity phase, while the movements 
of curves are greater in the presence of nanoparticles, which 
shows intensified wettability alteration (Sagala et al. 2020). 
The shift of relative permeability curve after injection of 
low-salinity phase and low-salinity-based nanofluids is illus-
trated schematically in Fig. 7.

Abhishek et al. investigated the adsorption of silica nano-
particles to the calcite and chalk surfaces under static and 
dynamic conditions and at different ranges of salinities. They 
measured the amounts of calcite and magnesium contents at 
inlet and effluent phases during core flooding by low-salinity 
phase included nanoparticles. They observed a reduction in 
calcite content in the effluent after addition of 0.1 wt% nano-
particles to the low-salinity phase. This could be a good sign 
to conclude calcite dissolution during low-salinity phase 
injection will be avoided by the addition of nanoparticles 
(Abhishek et al. 2018).

Kiani et  al. examined using  Al2O3 nanoparticles for 
injection into sandstone reservoirs at various salinity and 

Fig. 7  a Relative permeability curves in an oil-wet rock b and after the addition of NPs which results in wettability alteration
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temperature conditions. They obtained the most recovery 
factor at elevated temperatures up to 80 °C. Clay could be 
detached from the surface of sandstone and wettability alter-
ation can take place during injection of low-salinity phase. 
High temperature is a positive factors for more adsorption of 
 Al2O3 on the surface of rocks. Therefore, due to the occur-
rence of wettability alteration and stabilization of clay par-
ticles, the most recovery factor is reported at highest tem-
perature (Kiani et al. 2016).

Divandari et al. analyzed the effects of salt type (NaCl, 
 MgCl2 and  CaCl2) on IFT in the presence of 3 different 
nanoparticles  (Fe3O4,  Fe2O3,  SiO2). Nanoparticles were 
coated by citric acid. They introduced  MgCl2 as the best 
IFT reducer among others when saline water is injected. 
This could be justified with respect to lower radius of  Mg2+ 
in comparison with other ions. The shorter the radius of 
ions, the more effectiveness in the reduction in the IFT will 
take place. They reported that the minimum IFT values for 
all salts belongs to the concentration of 40000 ppm. Higher 
concentrations of salts resulted in accumulation of cations 
at the interface and restrict the tendency of asphaltenes for 
move toward interface. They introduced  Fe3O4 as the most 
efficient nanoparticles for the reduction in the IFT. Also, 
they reported  Fe2O3 as the less effective nanoparticle for the 
reduction in the IFT. The trend of IFT reduction (the most 
reduction was for  MgCl2,  CaCl2 and NaCl, respectively) was 
not changed by the addition of NPs or surfactant (Divandari 
et al. 2020). In fact, asphaltenes and resins are natural sur-
factants in crude oil. The addition of salts and nanoparticles 
can enhance or restrict their performance in the reduction in 
the IFT (Pejmannia et al. 2022).

Rezvani et al. made an extensive study on stability and 
efficiency of  Al2O3 nanoparticles at porous media con-
ditions. They measured the values of IFT and interfacial 
shear viscosity4 between synthetic oil (composed of toluene, 
n-heptane and asphaltene) and nanofluid at different tem-
perature conditions and in the presence of  MgSO4 and NaCl 
salts. Due to their results, increasing temperature decreases 
IFT. They reported that the rate of IFT reduction empow-
ered in the presence of nanoparticles at some concentrations 
(Rezvani et al. 2019). Increasing temperature activates two 
mechanisms for decreasing IFT: (1) displacement of nano-
particles to the interface of oil and water and consequently 
increasing the surface (Ngai and Bon 2014), and (2) catalytic 
behavior of nanoparticles at elevated temperatures for crack-
ing the heavier molecules of oil.

There are several points which should be considered for 
application of nanoparticles and low-salinity phase. Due to 

what mentioned above, researchers and operators should 
consider the following parameters:

1. Low-salinity phase decreases the IFT between oil and 
water with respect to repulsion of charges.

2. Density of ions charge plays a key role for activation of 
EOR mechanisms.

3. Increasing temperatures intensifies Brownian motion of 
nanoparticles. This is the reason for more efficiency of 
nanoparticles at elevated temperatures.

4. Active ions are composed of divalent ions and inactive 
ions include monovalent ions. Active ions are effective 
for the reduction in the IFT. Also, the performance of 
active ions improves at lower concentrations of inactive 
ions.

5. Instability of nanofluid accelerates in the presence of 
active ions. Stability of nanoparticles decreases at low 
concentrations of  Mg2+.

6. There is an optimum concentration for nanoparticles to 
prevent formation of scale.

7. Sand production could be avoided by injection of some 
amount of nanoparticle with low-salinity water.

8. Better sweep efficiency is expected with addition of 
nanoparticles to the injected low-salinity water.

9. There is a synergistic effect for application of nanopar-
ticles with low-salinity water. This effect empowers the 
mechanisms of each agent.

Hybrid of nanoparticles and foam

Gas injection is faced with challenges like channeling, gas 
override, low sweep efficiency, fingering and unfavorable 
mobility ratio (Andrianov et al. 2012; Yang et al. 2019). 
About 70 years ago, foam injection became popular as a 
method that eliminates most of the aforementioned chal-
lenges (Sun et al. 2014) and now is a common EOR method 
(Hu et al. 2020; Jin et al. 2020; Zhou et al. 2020). Due to 
higher viscosity, it is also reported that the foam could have 
a viscosity up to 1000 times greater than gas (Liu et al. 
2005). Observations showed that using foam, can be use-
ful in heterogeneous porous media and divert the fluid to 
un-swept zones (Blaker et al. 2002; Hou et al. 2018; Skauge 
et  al. 2002; Sun et  al. 2019). Foam in porous media is 
defined as a gas dispersion within the liquid phase where 
continuous phase is a liquid and the discontinuous phase is 
a gas. The phases are separated by lamella (the thin film of 
liquid) (Almajid and Kovscek 2016; AlYousef et al. 2020; 
Falls et al. 1988). Stability is a key parameter which must 
be considered for application of foams (Bai et al. 2010; Guo 
and Aryana 2016; Ibrahim et al. 2017; Risal et al. 2019; 
Yang et al. 2017). Some factors like reservoir condition 
(e.g., reservoir temperature, pressure, oil saturation and 
composition, brine saturation and composition), foaming 

4 Interfacial shear viscosity is defined as the ratio between the shear 
stress and the shear rate in the plane of the interface.
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agent and its concentration and type of gas affect foam 
stability(Almubarak et al. 2020; Grigg et al. 2004). Thus, 
for EOR purposes, the longer the lifetime of the lamella, 
the greater the stability of the foam will be achieved (Zhu 
et al. 2004). Some surfactants and polymers could be used 
as foam stabilizers (Yekeen et al. 2018). Due to sensitivity 
of surfactants and polymers to high salinity and tempera-
ture (Babamahmoudi and Riahi 2018; Farzaneh and Sohrabi 
2015; Ko and Huh 2019; Kutay and Schramm 2004; Lee 
et al. 2015; Singh and Mohanty 2017; Yekeen et al. 2017), 
recently novel methods such as combination of foams and 
nanoparticles (Almubarak et al. 2020) have been suggested 
as a solution to improve the stability of foams during flood-
ing. Studies have shown that the use of nanoparticles as 
foam stabilizer leads to beneficial effects (X. Li et al. 2022a, 
b). The effects of  TiO2 on foam stability and efficiency of 
oil production in glass micromodel were examined by Pan-
ahpoori et al. They observed that the mixture of  TiO2 and 
hexadecyltrimethylammonium bromide (CTAB) improved 
foam stability. Results showed that adsorption of CTAB 
molecules on the surface of  TiO2 NPs is the main reason for 
improvement in the stabilization of foam. They reported the 
most adsorption belongs to 0.03 wt% of CTAB and 0.03 wt% 
of  TiO2 NPs. Also, micromodel flooding tests showed that 
nano-CTAB foam resulted more sweep efficiency (54%) and 
recovery factor than nano-CTAB flooding (Panahpoori et al. 
2019).

In order to design a suitable foaming agent, Kumar et al. 
used carbon dioxide gas, Sodium dodecyl sulfate as anionic, 
CTAB as cationic and polysorbate 80 (Tween 80) as non-
ionic surfactants, silica, alumina, zirconium oxide, calcium 
carbonate and boron nitride nanoparticles and polymer, 
alcohol and alkali as additives. They observed that ionic 
surfactant can result in more stable foam in comparison with 
nonionic surfactant. Also adding nanoparticles improved 
foam stability. Specially using boron nitride reflected the 
best response among other nanoparticles (Kumar and Man-
dal 2017).

Almubarak et al. evaluated the role of nanoparticles on 
stabilization of foam. They combined a cationic surfactant 
and a surface-modified silica nanoparticle and conducted 
some glass micromodel tests to measure foam stability. They 
observed that using nanoparticle with surfactant decreases 
the mobility, improves sweep efficiency and enhances foam 
stability due to forming smaller bubbles (Almubarak et al. 
2020).

Harati et al. investigated the effects of different gas types 
including nitrogen, methane and carbon dioxide on foams 
which stabilized by  SiO2 nanoparticles and SDS. Results 
showed that the half time and oil recovery of methane, nitro-
gen and carbon dioxide foams at optimum nanoparticle con-
centrations are 1054 min with 25% R.F, 1720 min with 31% 

R.F and 62 min with 19% R.F, respectively (Harati et al. 
2020).

The synergistic effects of alpha olefin sulfonate (AOS5) 
and molybdenum disulfide  (MoS2

6) nanosheets on foama-
bility and recovery improvement are assessed by Raj et al. 
Their results illustrated that the synergy of AOS-MoS2 
improves foam stability in the presence of calcium and 
sodium ions because the  MoS2 nanosheets forms a layer 
around the lamella and protects it. They also reported that 
flooding by foams including AOS-MoS2 increases oil recov-
ery by 12.1% in comparison with surfactant flooding alone 
(Raj et al. 2020).

Sakthivel and Kanj studied the effects of adding carbon 
nanodots to surfactant in order to enhance foam stability. 
They reported using carbon nanodots can improve foam sta-
bility in high-salinity condition (up to 70%) by increasing 
the lamella thickness and also can cause improvements in 
mobility control. Moreover, static tests showed that air and 
nitrogen foams are more stable than carbon dioxide (Sak-
thivel and Kanj 2021).

To discuss the effects of nanoparticle on foam system, Li 
et al. investigated the effects of nanoparticles on foam per-
formance and wettability of carbonate rock. They observed 
that by increasing Silica nanoparticle concentration, foaming 
volume7 decreases while the generated foam is more stable. 
They also reported that increasing the concentration of nano-
particle alteres the state of wettability to more water-wet. 
Secondary surfactant foam and nanoparticle–foam flooding 
tests were conducted after water flooding and resulted in 
28.6% and 37.5% oil recovery improvement (Li et al. 2020).

Liu et al. studied the effects of hydrophobicity of nano-
particles in nanoparticle–foam system. They used  Fe3O4 
with four different contact angles (12.7°, 20.6°, 57.5° and 
94.3°). Results showed that nanoparticle modification can 
affect foam stability where the foam included nanoparticle 
with contact angle of 94.3° were 2.36 times more stable than 
non-modified one. Also a higher oil recovery than others 
achieved for mentioned nanoparticle–foam system (Liu et al. 
2020). Zhao et al. synthetized and used amphiphilic surface-
modified silica nanoparticles to improve foam stability and 
oil recovery. Their results demonstrated that the half-life of 
modified silica foam increased about 5 min at 60 °C in com-
parison with unmodified silica foam and flooding test also 
showed that modified silica foam system can increase oil 
recovery factor by 19.8% (Zhao et al. 2021).

Considering recent studies, between various nanopar-
ticle types, silica is the most used nanoparticle for foam 

5 Alpha olefin sulfonate.
6 Molybdenum disulfide.
7 Foam volume generated at the end of stirring stage where foam is 
generated.
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stabilization (Yekeen et al. 2018). Also, nanoparticles not 
only improve the foam stability, but also enhance foam per-
formance in porous media by diverting injection foam to 
low-permeability zones and improving sweep efficiency.

Advantages, disadvantages and limitations

As discussed before applications of nanoparticles for EOR 
intends have great potentials. On the other hand, the synergy 
of using NPs with cEOR methods improves the performance 
of dominant contributing mechanisms. Figure 8 illustrates 
some main advantages of using NPs in EOR procedures 
based on the results of the literature reviewed above.

The usage of NPs in EOR process could not be consid-
ered as a complete, secure and perfect way. Compared to 
the other common EOR methods like water flooding, gas 
flooding and polymer flooding, hybrid nanoparticle EOR 
methods are too young and immature as they are only used in 
field scale in few and limited projects. Therefore, it is needed 
to investigate and study hybrid nanoparticle EOR methods 

comprehensively from different aspects to find the optimum 
way of using them. Based on several studies, Table 4 pre-
sents some of the main limitations and disadvantages for 
application of NPs in EOR procedures (Agista et al. 2018; 
Corredor et al. 2019c; Davoodi et al. 2022; Gbadamosi et al. 
2019c; Kumar et al. 2022).

Considering aforementioned advantages, disadvantages 
and limitations, the following suggestions could be taken 
into account for future related studies:

• Some important factors like reservoir condition, the main 
contributing mechanism and rock and fluid interactions 
are not fundamentally investigated.

• Environmental issues should be considered as one of the 
screening criteria factors for application of nanoparticles 
in EOR methods. Therefore, studies on the environmen-
tal effects of various nanoparticles used in EOR process 
would be interesting and helpful to select the best nano-
particle.

Fig. 8  Schematic illustration of the main advantages of using NPs in EOR procedures
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• Simulation and modeling studies make a great view of 
the performance of EOR methods and there is still lack of 
appropriate simulation and modeling studies, especially 
for large-scale application of NPs.

• Shape, size and aspect ratio are important intrinsic prop-
erties of nanoparticles which should be studied and tested 
comprehensively. The number of existing studies is not 
sufficient and no certain conclusion could be derived on 
the obtained results.

• Functional groups of nanoparticles determine their usage 
and play a key role in their performance. Therefore, 
investigating the type and variety of functional groups of 
nanoparticles, especially newer ones (like carbon-based 
nanoparticles), seems necessary.

Economic evaluation of EOR process

It is forecasted that COVID-19 pandemic would have a 
great effect on energy consumption. Smith et al. assessed 
the impact of COVID-19 pandemic on fossil fuel consump-
tion and they anticipated that despite the reduction in the 
consumption during the pandemic, there will be a robust 
growth in energy consumption after pandemic, especially 
for emerging countries (Smith et al. 2021). Wang and Zhang 
indicated that China’s economic growth has a significant 
impact on energy consumption of high-income countries 
(Wang and Zhang 2021). Their results are given in Table 5:

Industrialization, urbanization and economic growth of 
developing or least developed countries leads to a peak of 
energy demand in the world (Jiang and Lin 2012). The use 
of fossil fuels got increased up to 98% of total demand of 
energy in some countries (Perea-Moreno et al. 2016). The 
increasing demand of hydrocarbon energy and its usage 
restriction lead oil-producing countries to use of their poten-
tial to produce more oil and get more shares in oil mar-
ket.  In the other words, the significance of EOR operations 
is increasing in recent years.

In a comprehensive evaluation, economic assessment in 
oil industry results in determining whether extraction and 
EOR operations are commercially efficient to develop an 
oilfield. The EOR processes are the efforts of energy indus-
try beyond the conventional exploration and production 
strategies which are more dependent to technology than 
geography or geology.  There are limited studies which 
investigated economics of EOR projects. Bondor examined 
how economic analysis can be used to determine the most 

Table 4  Disadvantage/limitations of using hybrid of NPs and EOR methods

Disadvantage/Limitation Description

Immaturity Considering the lifespan of hybrid nanoparticle EOR methods in comparison with common 
EOR methods like water flooding, gas flooding and polymer flooding, they could be classi-
fied as immature method

Large-scale uncertainties Using hybrid nanoparticle EOR methods in field scale has rarely been used and have been 
studied mostly in laboratory scale

Performance uncertainty in reservoir conditions Salinity and temperature are two very effective and important factor in screening EOR meth-
ods. Unlike silicate nanoparticle and considering numerous nanoparticles used in petroleum 
industry, there are still limited investigations that study these important factors on the method 
performance. Also, most of the current articles which have studied the effect of harsh condi-
tion still have not capture the real status of reservoir condition in terms of salinity, hardness, 
ionic compounds, temperature and pressure

Economic studies and econometrics In last recent years numerous nanoparticles have been proposed for enhancing oil recovery 
which have shown very good performance. But still a very important point has been missed 
out: economic aspects. Many synthetized nanoparticles have been produced and used on 
laboratory scale and have not reached mass production yet and there are open questions about 
the profit and expenses of their usage which should be noticed

Environmental effects Most of the petroleum engineering studies related to nanoparticles have dealt with oil recovery, 
contributing mechanisms in enhancing oil recovery and rarely economic studies. Also, in last 
two decades legislation of environmental issues has been accelerated. Therefore, considering 
numerous types of nanoparticles used, the environmental effects of nanoparticles should be 
investigated and modeled in larger scale

Amount of nanoparticles used In most studies using hybrid EOR methods of nanoparticles the amount of nanoparticle to base 
components is too high (twice to ten times higher) which raises the question that whether the 
performance of the basic component has been improved by nanoparticles or vice versa

Table 5  Energy consumption with respect to income of countries

Category of 
investigated 
countries

High income Upper middle 
income

Lower middle 
income

Grow in energy 
consumption 
(%)

0.11–0.45 0.08–0.33 0.02–0.05
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effective direction for research. He found that economic 
analysis determines the fundamental limitation process 
which preclude the practical process (Bondor 1993). Flan-
ders  and investigated the economic feasibility of performing 
 CO2 EOR operation in small- and medium-size fields. They 
found that the EOR tax incentives reduces the risk of under-
taken  CO2 project and the economic feasibility of  CO2 EOR 
is very field-specific (Flanders and McGinnis 1993). Zekri 
and Jebri applied economic sensitivity analysis on key vari-
ables such as oil prices, the price of injection solvent, capital 
expenditures, operating expenses and oil recovery to develop 
sensitivity graphs for each variable to assess future engineer-
ing EOR planning. They applied this empirical analysis for 
Libyan oil reserves. Their preliminary investigation indicate 
that the techniques of chemical EOR process are not cost-
effective due to the logistics of supplying large volume of 
chemicals (Zekri and Jerbi 2002).

According to regular production function, the rate of 
production (marginal production) from oil reservoirs var-
ies along the stage of production, as shown in Fig. 9. In the 
beginning of production, the output rises in an increasing 
rate, then the rate of production constant for a long dura-
tion. Subsequently, the rate of production decreases and the 
producer has to decide among: (1) continuing the production 
to reach the zero rate of production, (2) abandoning the field 
or (3) starting the EOR operation. As illustrated in Fig. 9, 
by applying EOR operations the rate of production would 
increase. Then the production increases in a constant rate 
that is lower than the latter constant rate of conventional pro-
duction period. Finally, the production would crash sharply.

Figure 9 indicates the output corresponding to production 
function in Fig. 10. The conventional stages of production 
function are illustrated in Fig. 10. In the first region of pro-
duction, the ratio of change in output to the variation of input 
is greater than 1 (increasing return to scale). In the second 
region which called economic region, the ratio is positive 
and less than 1 (constant and diminishing return to scale). 
The economic region continues to the maximum point of 
accumulative production. Then the third region begins where 
the ratio is negative (decreasing return to scale). Conven-
tionally, the producer may decide to cease the production 

in third region, though beginning the EOR operation can 
be an option. The mentioned ratio (change of output to the 
variation of input) for EOR operation is lower than economic 
region in conventional production. In the following an eco-
nomic model is introduced to find out the optimum point of 
third region for beginning the EOR operations. The optimal 
amount of production is the other parameter which could be 
determined by the  aforementioned model.

Hotelling evaluation principle

Swierzbinski argue that Hotelling evaluation principle is an 
economic approach to consider the choice of extraction of 
exhaustible resource as an investment decision (Swierzbin-
ski, 2013). Jamal and Crain applied Hotelling evaluation 
principle to calculate the net value of an exhaustible natural 
resource (Jamal and Crain 1997). The cost increases at the 
prevailing interest rate. This expectation is due to intertem-
poral maximization by the owner of resource. Miller and 
Upton used Hotelling evaluation principle conducted some 
analysis on optimal patterns of economic assessment for an 
exhaustible resource. They applied Eq. 4 to optimize the 
net value:

Fig. 9  Oil production rate from 
a petroleum reservoir versus 
time for production under 
natural mechanisms and EOR 
process

Fig. 10  Oil production during different economic regions
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where Pt denotes market price, which is determined in a  
competitive market. qt represents the amount of extraction 
at time t, and r denotes prevailing interest rate. N is the aban-
donment time for exhaustible resources, and R0 denotes total 
reserves. It is assumed that there is no uncertainty in prevail-
ing interest rate during the time of investment. Ct is the cost 
of extraction, which is a function of qt and accumulative 
amount of production at a specified time interval ( Qt ). The 
accumulative amount of production is calculated by Eq. 5.

where qs is the amount of produced oil at time s (Miller 
and Upton 1985). With respect to economic fundamentals, 
the cost of production increases trivially by enhancing the 
production. Therefore, the amount of partial derivative 
(

�Ct

)

∕
(

�qt
)

 should be positive during lifetime of oil reser-
voir. The derivative of 

(

�Ct

)

∕
(

�Qt

)

 is nonnegative and its 
magnitude will increase by EOR process. The first-order 
condition for profit optimization in each period is:

where � represent Lagrange multiplier. For simplicity, it is 
assumed that �Cs∕�Qs = 0 ; therefore,

By solving the system of difference equation, we obtain 
familiar Hotelling evaluation principle:

Based on Eq. 8, the efficient intertemporal production of 
an exhaustible resource is a function of net value of prod-
uct, which grows over time at the real rate of interest. Note 
that Reynolds argues that Hotelling evaluation principle is 
an appropriate model to investigate the economic limits for 
production from oil and gas fields. Hotelling principle is pro-
gressed and developed by several researchers in recent years 
(Reynolds 2013). Slade and Thille developed the model by 
considering the role of oil as a risky asset in financial market 
(Slade and Thille 1997). In the following, we abandon sev-
eral assumptions which are accounted in model of Miller and 
Upton. Hotelling evaluation principle could be simplified by 
assuming constant return to scale,8 which yield:

(4)MaxV0 =

N
∑

t=0

Ptqt − Ct

(

qt,Qt

)

(1 + r)t
Subject to qt ≤ R0

(5)Qt =

t
∑

s=0

qs,

(6)

(

pt − ct
)

(

1

1 + r

)t

−

N
∑

s=t

(

�Cs

�Qs

)

(

1

1 + r

)s

= �, t = 0,… ,N

(7)
(

pt − ct
)

(

1

1 + r

)t

= �

(8)
(

pt − ct
)

=
(

p0 − c0
)

(1 + r)t

Equation 9 reveals that the value of total reserve ( R0) 
depends on net value of each produced oil barrel. At the start 
of EOR procedures, diminishing return to scale9 is inevita-
ble. Therefore, the derivative �C_t∕�q_t and �2Ct∕�qt

2 is 
positive for secondary and tertiary (EOR) production. To 
investigate production under diminishing return to scale con-
dition, Eq. 8 is transformed to:

where Ft is the difference between average and marginal 
cost. In general form:

The simplification assumption of �Cs∕�Qs = 0 is aban-
doned due to inflationary conditions that most major devel-
oping oil-producing countries are encountered. The addi-
tional term is a constant. By substituting the first-order 
conditions in Eq. 11:

where

by substituting � in 12, Eq. 14 will be achieved:

The last two expressions are constant and both of them 
are nonnegative. To determine the proper enhancement oil 
recovery operation, these two expressions should be consid-
ered for each well by its engineering parameters. Empirically 
while the EOR operation is based on application of nanopar-
ticles, the revenues (outputs) and costs (inputs) for the model 
are tabulated in Table 6:

(9)V0 =
(

p0 − c0
)

N
∑

t=0

qt =
(

p0 − c0
)

R0,

(10)V0 =

N
∑

t=0

(

p0 − c0
)

qt

(

1

1 + r

)t

−

N
∑

t=0

Ft

(

1

1 + r

)t

,

(11)V0 =
(

p0 − c0
)

R0 −

N
∑

t=0

Ft

(

1

1 + r

)t

,

(12)

V0 = �

N
∑

t=0

qt +

N
∑

t=0

N
∑

s=t

(

�Cs

�Qs

)

qt

(

1

1 + r

)s

−

N
∑

t=0

Ft

(

1

1 + r

)t

,

(13)� =
(

p0 − c0
)

−

N
∑

s=0

(

�Cs

�Qs

)

(

1

1 + r

)s

.

(14)

V0 =
(

p0 − c0
)

R0 −

N
∑

t=1

t−1
∑

s=0

(

�Cs

�Qs

)

qt

(

1

1 + r

)s

−

N
∑

t=0

Ft

(

1

1 + r

)t

.

8 Constant return to scale: proportional equality between changes of 
input and output ( �Ct∕�qt=constant and �2Ct∕�qt

2= 0).
9 Diminishing return to scale: increasing the input enhances the out-
put by less ratio ( �Ct∕�qt and �2Ct∕�qt

2 are positive).
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Consequently, after the peak of production of the well, 
two choices are to conserve remaining reserves or doing 
enhancement oil recovery operation. For both, there is 
uncertainty about technology and less resource lose social 
value which is irreversible sunk cost (related to uncertainty). 
In this regard, applying the engineering parameters consist-
ent with each well properties removes uncertainties and 
reduce sunk cost that make Hotelling evaluation principle 
available and more precisely to use.

Conclusions

This review represented an insight into application of nano-
technology for EOR intends from the prospective view of a 
petroleum engineer. Based on valuable results achieved by 
various researchers and scientific theories, some important 
points could be concluded. The conclusion could be sum-
marized as below:

• Although stability of nanofluids in reservoir condition is 
a challenge, there is numerous benefits for application of 
NPs through EOR process.

• Nanoparticles have the potential to alter the state of wet-
tability of formation rock by creating a new surface. They 
could be adsorbed to the surface of rock by precipitation 
(due to gravity) and electrostatic force (due to difference 
charge of NPs and rock surface).

• NPs usually have tendency to move forward to the inter-
face of oil and water. This tendency and their activity at 
the interface lead to IFT reduction.

• Catalytic effect of NPs and adsorption of asphaltene con-
tent, prevents asphaltene deposition and, respectively, 
reduces the viscosity of heavy oils.

• Application of high-pressure homogenizer is the most 
effective physical method for stabilizing nanofluids. 
However, chemical methods reflect better response in 
comparison with physical method.

• Application of surfactants and polymers and pH control 
is the most common chemical stabilization processes.

• Hybrid application of NPs and surfactant enhances the 
efficiency of NPs by adsorption of surfactant micelles 
and gradual desorption. In addition, lowering the 
retention of surfactants in porous media alongside 
with improved stability of NPs enhances the amount 
of recovered oil.

• Hybrid application of NPs with foams increases foam 
stability and amend sweep efficiency.

• Hybrid application of NPs with polymers is an effective 
method for increasing the strength of polymer solu-
tions.

• Hybrid application of NPs with low-salinity water 
empowers wettability alteration under two main mecha-
nisms. Low-salinity water creates a new surface on the 
rock by dissolution and hydration of minerals. Besides, 
subsidence of NPs on the surface of rock with gravity 
precipitation and electrostatic adsorption covers the 
surface.

• Hotelling method represents an appropriate model for 
economic evaluation of EOR process.
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Table 6  Revenues (outputs) 
and costs (inputs) which should 
added to the model

Inputs Output

Drilling and completion of injection wells (if needed) Crude oil due to application of nanoparticles
Study, evaluation and simulation costs
Supplement of nanoparticles
Cost of stabilization process
Cost of water treatment for preparing nanofluid
Cost of injection equipment (pumping, pipelines, etc.)
Cost of human resources (wages)
Providing separation equipment to separate nanoparticles 

from produced oil
Drilling and completion of new production wells (if needed)
Other costs of production under new conditions
Maintenance of wellhead equipment
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provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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