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Abstract

Applications of nanotechnology in several fields of petroleum industry, e.g., refinery, drilling and enhanced oil recovery
(EOR), have attracted a lot of attention, recently. This research investigates the applications of nanoparticles in EOR process.
The potential of various nanoparticles, in hybrid and bare forms for altering the state of wettability, reducing the interfacial
tension (IFT), changing the viscosity and activation of other EOR mechanisms are studied based on recent findings. Focus-
ing on EOR, hybrid applications of nanoparticles with surfactants, polymers, low-salinity phases and foams are discussed
and their synergistic effects are evaluated. Also, activated EOR mechanisms are defined and specified. Since the stabiliza-
tion of nanofluids in harsh conditions of reservoir is vital for EOR applications, different methods for stabilizing nanofluids
through EOR procedures are reviewed. Besides, a discussion on different functional groups of NPs is represented. Later, an
economic model for evaluation of EOR process is examined and “Hotelling” method as an appropriate model for investiga-
tion of economic aspects of EOR process is introduced in detail. The findings of this study can lead to better understanding
of fundamental basis about efficiency of nanoparticles in EOR process, activated EOR mechanisms during application of
nanoparticles, selection of appropriate nanoparticles, the methods of stabilizing and economic evaluation for EOR process
with respect to costs and outcomes.

Keywords Nanoparticles - EOR - Low salinity - Polymer - Economy
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C, Cost of extraction (currency) 0, Cumulative amount of production (Bbl)
Co Cost of extraction at time 0 (currency) 0, Cumulative amount of production at time s
E Adhesion energy (KBT) (Bbl)
E, Strength of electrical field (V/m) q, Amount of produced oil at various time s
F, The difference between average and marginal (Bbl)
cost (currency) q; Amount of extraction at time ¢ (Bbl or ft3)
K, Solvation constant (dimensionless) r Prevailing interest rate (currency)
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v Velocity of particles (m/s)
o) Interfacial tension (mN/m)
D Porosity (dimensionless)

Abbreviation

AFM Atomic force microscopy

AOS Alpha olefin sulfonate

CFD Computational fluid dynamics

CMC Critical micelle concentration

CTAB Hexadecyltrimethylammonium bromide

D Darcy

DLS Dynamic light scattering

DLVO Theory of Derjaguin, Landau, Verwey and
Overbeek

EDX Energy-dispersive X-ray

E-GO Edge graphene oxide

EOR Enhance oil recovery

FESEM Field emission scanning electron microscopy

FTIR Fourier transform infrared

GLYMO  (3-Glycidyloxypropyl) trimethoxysilane

GO Graphene oxide

HPAM Hydrolyzed polyacrylamide

IEP Isoelectric point

IFT Interfacial tension

IS Ionic strength

kHz Kilohertz

MoS, Molybdenum disulfide

NPs Nanoparticles

PAM Polyacrylamide

PGN Polymer grafted nanoparticles

pH Potential of hydrogen

PNS Hybrid of polymer nanofluid suspension

ppm Part per million

Psi Pound force per square inch

SBS (Dimethyl(3-(trimethoxysilyl) propyl)-ammo-
nio) propane-1-sulfonate

SDS Sodium dodecyl sulfate

SEM Scanning electron microscope

SurfaSil  CgH,,Cl,05S1,

S-GO Surface graphene oxide

TEM Transmission electron microscopes

TOC Total organic carbon

uv Ultraviolet

Wt% Weight percent

XRD X-ray diffraction

Introduction

Nanotechnology as a pioneering field of knowledge has
prevailed various branches of science. High surface area-
to-mass ratio, small size of nanoparticles, special chemi-
cal and physical properties and various morphology of
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particles are some positive points about nanotechnology
(Sabet et al. 2016). Petroleum engineering like other
fields of industry should become updated with respect to
advances of science and technology. Capability of nano-
particles for EOR intends is an interesting topic for EOR
researchers and experts. On average, 30-50% of original
oil reserve is producible by natural mechanisms in res-
ervoirs. High amount of remaining oil illustrates the key
role of EOR procedures for gaining the maximum pos-
sible income from an oil reservoir. Pressure maintenance,
improving mobility of reservoir fluids and producing the
trapped oil are known as the main goals of EOR proce-
dures. Usually, water and gas injection are initial EOR
process. These operations are named secondary meth-
ods and performed to maintain the pressure of reservoirs
(Sheng 2010). Considering the condition of reservoir
and amount of trapped oil after water or gas injection,
chemical agents or low-salinity water could be injected
into reservoirs. Since these methods are used after water
or gas injection, they are named as tertiary methods or
chemical EOR methods (cEOR) (Sheng 2010). Chemical
EOR methods are mostly used to reduce interfacial ten-
sion, alter the state of wettability and improve sweep effi-
ciency by mobility control (Gbadamosi et al. 2019b). IFT
is an important factor for obtaining miscible displacement.
Lower values of IFT is desired for miscible displacement.
On the other hand, natural wettability of reservoir rocks
is usually oil wet. To achieve more amount of oil, water-
wet and neutral wet conditions are preferred. In addition,
early breakthrough due to viscous fingering is a restriction
for EOR methods (Khalilnezhad et al. 2021). Some cEOR
methods are used to prevent this phenomenon by mobil-
ity control. Polymer flooding, surfactant flooding, foam
flooding and injection of low-salinity phase are the most
common cEOR methods.

Polymers are used to avoid viscous fingering and
improve sweep efficiency (Sorbie 2013). Due to high vis-
cosity, they are capable to control the mobility of fluids
(Xiangguo et al. 2021). Several studies and field applica-
tions confirmed the efficiency of polymers for the enhance-
ment of oil recovery (De-Min et al. 2005; Han et al. 2006;
Mishra et al. 2014; Wang et al. 2009).

As mentioned before, low IFT values are desirable for
EOR process. Surfactants by taking advantage of their
nonpolar heads and polar tails are appropriate agents for
reducing IFT (Belhaj et al. 2020). Besides, utilization of
surfactants along with high gas contents results in foam
generation. Foams have higher viscosity than gas and can
improve sweep efficiency compared to gases (Hosseini-
Nasab and Zitha 2017).

Injection of low-salinity water into reservoirs is proved
as an efficient EOR method (Lyu et al. 2022; Sheng 2014).
Wettability alteration is the main activated mechanism by
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Fig.1 Schematic view of different cEOR methods and their main mechanism

this method (Liu and Wang 2020). Figure 1 presents the
mentioned cEOR methods and reported mechanisms for
them.

There is some special conditions and limitations in
EOR process which could be mitigated by nanotechnology.
Although application of nanoparticles for the enhancement
of oil recovery is faced with some uncertainties, several pilot
tests and field applications are reported all around the world
(Franco et al. 2021; Huang et al. 2010; Kaito et al. 2022;
Kanj et al. 2011). Maintaining the stability of nanofluids
during injection into reservoirs and selecting the proper
size for nanoparticles to avoid pore blockage, economic
feasibility and compatibility of selected NPs with produc-
tion severities are the main challenges for the application
of nanoparticles in EOR process which are discussed in the
following sections. Tolerating harsh condition of reservoirs,
catalytic effects, tendency of wettability alteration, locating
at the interface of immiscible fluids, etc. made nanoparti-
cles appropriate candidates for application in reservoirs.
Recently, hybrid application of nanoparticles with chemical
agents used in EOR process is widely investigated. Taking

the advantages of nanofluids and other chemical agents like
polymers and surfactants is the main goal of these studies.
Most of the obtained results reported fair capability for NPs
to empower EOR mechanisms.

Studying EOR mechanisms and synergistic effects of
applications of nanoparticles for EOR intends, this review
includes numerous recent researches on nanotechnology.
Focusing on applications of nanoparticles and activated
EOR mechanisms, critical parameters, functional groups of
nanoparticles and methods of stabilizing nanofluids, repre-
senting an economic model for determination of incomes
and costs and categorizing the studies due to applied nano-
particles are important points which distinguishes this article
from others with the same subjects. Although synthesizing
nanoparticles and environmental challenges are not covered
because of specified capacity of this work, these subjects
could be evaluated in further investigations. In this research,
first the activated EOR mechanisms by bare nanoparticles
are discussed. Then the importance of the size of nanoparti-
cles and its related advantages and disadvantages are inves-
tigated. Numerous researches based on performed analysis,
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Fig.2 Wettability alteration due to adsorption of nanoparticles on the surface of rock

applied nanoparticles and reported EOR mechanisms are
tabulated in this section. Then the functional groups of some
nanoparticles which are frequently used for EOR process
are introduced. Thereafter, methods of stabilizing nanofluids
are investigated. Sequentially, hybrid applications of nano-
particles and surfactants, polymers, low-salinity phases and
foams are evaluated based on literature reviews. Finally,
“Hotelling” method is introduced for economic evaluation
of EOR process.

Nanoparticle mechanisms for EOR purposes

NPs could be used in petroleum industry for different goals
such as enhancement of oil recovery, improved drilling and
exploration (tracers). In this section, the effects of NPs on
the enhancement of oil recovery is investigated. Besides, the
introduced mechanisms of NPs and some of the last obtained
experimental results are presented.

Effects of NPs on rock and fluid system

Several studies have introduced NPs as an effective agent
for changing properties of rock and fluid system. Many
researchers reported achievement of greater amounts of oil
during application of NPs (Sun et al. 2017). To seek the
effects of nanoparticles concentration on wettability altera-
tion, Huibers et al. dispersed different amounts of silica
nanoparticles in brine and checked their efficiency in 2 dif-
ferent sandstones (Berea and Boise). They concluded that
the presence of silica nanoparticles in the brine causes wet-
tability alteration. Also, they observed a linear correlation
between the concentration of nanoparticles and wettability
alteration (Huibers et al. 2017).

Since the oil film which has covered the surface of rock
might contain palmitic acid, Hou et al. examined the per-
formance of silica nanoparticles in the presence of sodium.
They reported that the hydrophilic silica NPs are capable
of altering the wettability of carbonate rocks by adsorp-
tion to calcite surfaces. Moreover, they found that there is
a synergistic effect for Na* ions and silica nanoparticles
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in wettability alteration. As a matter of fact, since sodium
cation is able to compress electric double layer and neu-
tralize the negatively charged surfaces of rock, it raises the
chance of silica NPs to being adsorbed by the rock surface
in competition with palmitic acid content of oil (Hou et al.
2019). Usually, the efficiency of NPs on wettability altera-
tion is evaluated at ambient conditions. It is obvious that
the reservoir condition differs from ambient condition. Al-
Anssari et al. investigated the efficiency of silica nanoparti-
cles at reservoir condition in the presence of sodium dodecyl
sulfate (SDS) surfactant. They realized that the wettability
of carbonate rock could be altered from strongly oil wet to
water wet using surfactant—NPs suspensions (at 70 °C and
20 MPa) (Al-Anssari et al. 2017).

Khalilnezhad et al. investigated the effects of titania NPs
on wettability alteration. They observed that 1000 ppm con-
centration of titania induces the greatest wettability altera-
tion to their carbonate rock. They reported precipitation
and adsorption of NPs on the surface of rock as the main
mechanism of wettability alteration (Khalilnezhad et al.
2019). Rezvani et al. compared wettability alteration of a
carbonate rock by MgO, SiO,, Fe;0, and ZnO nanoparti-
cles. They introduced silica as the best wettability modifier
among others. In addition, Fe;O, NPs reflected the weakest
response for wettability alteration (Rezvani et al. 2018a, b,
c). Adsorption of NPs on the surface of rocks takes place by
several mechanisms. NPs could be adsorbed to the surface
of rock due to surface charges. Calcite content of carbonate
rocks has positive charge in the presence of water. NPs with
negative charge will be adsorbed to the surface of rock with
respect to electrostatic attraction. Besides, agglomeration of
NPs results in precipitation on the surface of rock by gravity
force. As Dehghan Monfared et al. claimed, gradual release
of carboxylate group from surface of rock and substitution
by NPs is a governing mechanism for wettability alteration
in oil-wet rocks (Dehghan Monfared et al. 2016). In addi-
tion, smaller size of particles results in high disjoining pres-
sure due to great repulsion between NPs. Therefore, adsorp-
tion and precipitation will be intensified for smaller size of
particles. Figure 2 presents alteration of wettability due to
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application of NPs schematically. As it could be observed,
adsorption of NPs on the surface of rock creates a new sur-
face and reduces the contact angle of water significantly.

Efficiency of NPs on fluid-fluid interaction and interfacial
tension (IFT)

The reduction in the IFT is a vital mechanism for achieve-
ment of miscibility and increases the efficacy of water flood-
ing process. IFT is usually affected by some parameters like
salinity, pH, asphaltene content of crude oil, etc. (Behrang
et al. 2021). There are numerous evident that prove NPs are
capable of reducing the interfacial tension (IFT) of oil and
water. Hydrophobicity and hydrophilicity of NPs play key
roles in attachment of NPs to the interface of immiscible flu-
ids. Equation 1 describes the dependence of adhesion energy
on contact angle. This equation could be used to investigate
the behavior of NPs at the interface of fluids (Ngai and Bon
2014).

AE = 7R (1 + Cosf, ) (1)

where E represents adhesion energy (KgT), R is the radius
of particle (nm), o}, defines the interfacial tension between
2 fluid phases (mNm™!) and @ is the contact angle of parti-
cle at the surface of fluids. In fact, the required energy for
detachment of NPs from interface could be calculated by
this equation. Obviously, the magnitude of adhesion energy
for smaller particles is lower than greater ones. Therefore,
the interfacial attachment of smaller particles is less than
larger ones.

Hosseini et al. examined the effects of NPs concen-
tration in the range of 0.01-5 wt% on IFT. Finally, they
concluded that increasing the concentration of nanopar-
ticles decreases IFT. Also they expressed that NPs could
decrease the value of IFT about 50%. However, this value
is not as high to the extent that be considered as a signifi-
cant EOR mechanism (Hosseini et al. 2019). Rezvani et al.
checked out the potential of ZrO, NPs for application in
EOR process at reservoir conditions. They observed that
the addition of zirconium oxide NPs to the diluted forma-
tion water reduces IFT. Also, by observing the behavior of
various concentrations they claimed that there is an opti-
mum concentration for zirconium oxide NPs. Further addi-
tion of NPs for obtaining nanofluids above the optimum
concentration causes an inverse trend, and IFT increases
directly with any increase in concentration (Rezvani et al.
2018a).

Some studies assessed the synergic effects of NPs with
other chemicals used for EOR procedures. Betancur et al.
designed a core shell system for iron NPs. They obtained
the lowest amount of IFT (1 x 10~ mNm™") with the addi-
tion of NPs to the surfactant mixture. This ultralow value

achieved as a result of reduced adsorption of surfactant
mixture on the surface of porous media. Coated NPs
diminished the adsorption by a rate of approximately 33%
(Betancur et al. 2019). In another study, Al-Anssari et al.
used hydrophilic and hydrophobic silica NPs to investigate
their influence on IFT in CO,/brine systems. Their obser-
vations proved that the pressure and the concentration of
NPs have positive effects on IFT reduction, but tempera-
ture and salinity have negative effects. The results indi-
cated the potentials of using NPs with carbonated water for
the enhancement of oil recovery (Al-Anssari et al. 2018b).
It could be concluded same as surfactants (Alabdulbari
et al. 2022), NPs are also capable of reducing IFT of CO,/
brine system. Surfactants have some restricting factors like
salinity, ion types (monovalent, divalent, etc.), tempera-
ture and surfactant type (anionic, cationic and nonionic)
(Golabi et al. 2012).

IFT as a thermodynamic property changes by time. Vari-
ation of IFT is governed by mass transfer between oil and
water. The more mass transfer between oil and water leads
to lower IFT values. Same as surfactants, some NPs have
both hydrophilic and hydrophobic parts simultaneously
which facilitates the movement of NPs in the bulk phase
and their attachment onto the interface of fluids. The ten-
dency of NPs for attachment to the interface of fluids, on the
one hand, and their catalytic effect in asphaltene adsorption,
on the other hand, are the main reasons for forming a layer
between oil and water. Due to their tendency for adsorption
of asphaltenes, mass transfer between fluids increases in the
presence of NPs and sequentially IFT decreases.

Other effective mechanisms

Not only NPs are capable of altering the state of wettabil-
ity and reducing the value of IFT, but also they can acti-
vate some other EOR mechanisms in different situations.
Some NPs have the tendency to reduce the viscosity of oil
by preventing asphaltene precipitation and cracking the
long chains. Patel et al. examined the effects of 3 metal
oxide NPs on reducing the viscosity of a sample of heavy
oil. They observed that all tested concentrations of NiO,
CuO and Fe;0, can reduce the viscosity of heavy oil more
than 50% (Patel et al. 2018). Elshawaf et al. investigated the
effects of different types of NPs on lowering the viscosity of
a heavy asphaltic oil. They observed the highest reduction
(20-65%) during application of graphene oxide. Moreover,
they reported that graphene oxide is more valuable from
economic point of view (Elshawaf 2018). Taborda et al.
also studied the effects of Fe;O,4, SiO, and Al,O; NPs on
reducing viscosity of heavy and extra heavy crudes. They
observed SiO, at concentration of 1000 mg/1 reduces the vis-
cosity around 52% which is the best result among all. Finally
they matched their experimental results with Pal and Rhodes
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model (Eq. 2) (Pal and Rhodes 1989). This model correlated
the viscosity with the concentration of NPs.
14

py = (1+KC) 2
where p, is the ratio of dispersion viscosity to bulk phase
viscosity; K, represents the solvation constant; C defines
volumetric concentration of NPs (W/Vol); and Vis the shape
factor of dispersed particle. The model covered their experi-
mental results as well (Taborda et al. 2017).

In another study, Ghaffari et al. synthesized a colloidal
gel by silica NPs. They reported high concentrations of silica
NPs (in the range of 3—-6 wt%) at high-salinity conditions
facilitate the formation of a viscous gel which could be used
in both EOR and water shutoff projects. The reason of form-
ing this gel is entrapment of water clusters between silica
NPs. In fact, the presence of salt leads to agglomeration of
silica NPs and agglomerated NPs entrap the water ganglia
(Ghaffari et al. 2022). The main mechanism for reducing
viscosity of heavy oil by NPs is adsorption and cracking of
heavy compounds and consequently diminishing the size of
aggregations. Therefore, NPs are capable of reducing the
viscosity of heavy oils.

Size as a critical parameter for selection of NPs

The existence of tight and tortuous paths in porous media
is a challenging factor for application of the nanoparticles.
Mean free path and pore size distribution are two vital prop-
erties which should be considered before selection of any
nanoparticles for EOR procedure (Collins 1976; Dullien
2012). If the radius of nanoparticles be greater than the pore
throats, pore plugging or log jamming will be inevitable.
Both mentioned phenomena are mechanistically similar, but
they differ in results. Both of them refer to plugging the
pores by nanoparticles, but when log jamming takes place
nanoparticles will plug the paths of swept zones and the flow
will be diverted to the upswept areas of reservoir. Therefore,
log jamming is a positive mechanism for the enhancement
of oil recovery (El-Diasty and Aly 2015). In contrast, when
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pore plugging phenomenon occurs, aggregation of nanopar-
ticles in the entrance of upswept paths makes them unreach-
able and consequently lowers the expected oil recovery (Ju
et al. 2006) which is a common phenomenon in the cases
of tight reservoirs. Nanoparticles should be injected in very
low concentrations in this type of reservoirs (Lu et al. 2017).
Figure 3 illustrates the differences between log jamming and
pore plugging.

By analyzing 20 core plugs with a mixture of surfactant
and silica nanoparticles, Rezaei et al. introduced pore size
distribution as one of the most important parameters for
nanofluid injection (Rezaei et al. 2020). Jiang et al. inves-
tigated the effects of size of bare silica NPs on wettability
alteration and oil recovery of carbonate rocks. They checked
different sizes (10, 40, 90 and 150 nm) of silica NPs. They
concluded that the smaller NPs intensify the alteration of
wettability. Hence, the amount of oil recovery was greater
through application of smaller NPs (Jiang et al. 2017). Some
important studies (since 2017) on application of bare nano-
particles and nanocomposites for enhancing oil recovery are
tabulated in Table 1.

Functional groups of NPs

Some groups of atoms which are responsible for main char-
acteristics and activities of a structure are known as func-
tional groups (Bader et al. 1994). Each nanoparticle has
unique functional groups which affect their performance and
applications. Hydrophilicity or hydrophobicity, adsorption
or desorption on the surface of rock and ability to reduce
the IFT are some of the properties which could be deter-
mined by their functional groups (Salvador-Morales et al.
2009). Table 2 presents the functional groups and properties
of some commonly used nanoparticles for EOR purposes.

The existence of carbon included functional groups in
some NPs relates to the synthesizing procedure. Stability of
TiO, NPs is a challenge for their application in oil reservoirs.
The attraction force between carbonyl functional groups of
TiO, is responsible for agglomeration of these NPs (Kumar
et al. 2014).
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Table 2 Functional groups and properties of some commonly used NPs for EOR purposes

Nanoparticle Functional group Properties

SiO, (Montes et al. 2020)
Graphene (Chen 2019)

Silanol (O-Si-H)
Hydroxyl
Carboxyl
Carbonyl

Oxirane

Oxy (Al-O)
Hydroxy (Al1-OH)
Hydroxyl

7-Al,O3 (Amirsalari and
Shayesteh 2015)
TiO, (Kumar et al. 2014)
Carboxyl
Carbonyl

Secondary Amine

Acidic, strongly hydrophilic, forming strong hydrogen bonds with halide and acetate ions
Polarity, forming strong hydrogen bonds, hydrophilic, amphoteric

Hydrophilicity, high melting and boiling point, forming hydrogen bonds

Polarity, high reactivity, attraction between molecules and high boiling and melting point
Participating in addition reaction, water soluble

Formation of strong hydrogen bond, high reactivity

Solubility in water, hydrophilicity

Polarity, forming strong hydrogen bonds, hydrophilicity, amphoteric

Hydrophilicity, high melting and boiling point, forming hydrogen bonds

Polarity, high reactivity, attraction between molecules and high boiling and melting point

Formation of hydrogen bonds

However, to change the properties of nanoparticles, they
could be modified, functionalized or coated with different
materials. Due to the properties and functional groups of
coating materials, the properties of NPs will be changed.
Functionalization of NPs and selection of coating materi-
als depend on the condition of reservoirs (Al-Shatty 2022).

Wu et al. observed a great reduction in IFT of oil and
water by functionalized silica NPs with 3-minopropyltrieth-
oxysilane and lauric acid. This observation was because of
amphiphilic structure of silica NPs and consequently their
appropriate location at the interface of oil and water. Exist-
ence of aliphatic amines induces water solubility to the NPs
(Wu et al. 2020). In contrast, hydrophobic alkyl parts reduce
water solubility. Simultaneous existence of these functional
groups makes the consisting materials hydrophobic (Nasr
et al. 2021). In another study, Gholinezhad et al. used silica
NPs functionalized by ethylene glycol functional groups to
investigate wettability alteration. They observed the wetta-
bility of a SurfaSil-treated glass alters from oil wet toward
water wet. Seating of carbon chains on the siloxane group
(which is adsorbed to the surface of glass by SurfaSil) results
a new surface with OH group of ethylene glycol and modi-
fies the surface to water-wet condition (Gholinezhad et al.
2022).

Janus NPs are functionalized NPs which have two or
more physical properties in surface. Surfactants are widely
used for production of Janus NPs (Tohidi et al. 2022). Lou
et al. modified graphene oxide NPs to attach alkyl chains
on the surface of NPs. Graphene oxide NPs already have
carbonyl and carboxyl functional groups. They reported
15.2% enhancement in oil recovery through core flooding
experiments. In comparison with non-functionalized NPs,
oil recovery was 3 times greater by application of functional-
ized NPs (Luo et al. 2016).

Stability of nanofluids

Stability of nanofluids is dependent on various parameters
such as existence of ions, size of nanoparticles, pH of fluid
and temperature. Achievement of stable dispersions could
be a destructive factor in water treatment process. The meth-
ods of stabilizing nanoparticles are subdivided into two
main categories: physical and chemical methods (Wu et al.
2011). Any stabilizing process that suspend nanoparticles
by application of mechanical force is considered as a physi-
cal method while chemical methods include the addition of
some chemical agents like acid, surfactants, etc. (Wu et al.
2011).

Based on DLVO theory, attraction or repulsion between
each pair of particles depends on electrical attractive and
repulsive forces. Therefore, electrokinetic properties are of
importance for stability of nanofluids (Dahirel and Jardat
2010). Electrokinetic properties could be governed by con-
trolling pH of the media. Many of nanofluids are not stable
in acidic pH ranges. But this could not be assumed as a
general rule for all of the nanofluids. For example, graph-
ite nanofluids reflect fair stability at pH values around 2
(Mukherjee and Paria 2013). Huang et al. achieved stability
for dispersions contained Al,O; and Cu nanoparticles at pH
values between 8.5 and 10. They stabilized 1000 ppm of
nanoparticles in deionized water using pH control method
(Huang et al. 2009). Zhang et al. introduced procedure of
synthesis and storage conditions as two effective factors for
stabilization of nanofluids. After dispersion of nanoparticles
in base phase, aggregates could be formed over time. They
evaluated disaggregation of metal oxide nanoparticles by
sonication and addition of HCI and MgCl, to nanofluids. It
was observed that synthesizing procedure may result in the
formation of chemical bonds between nanoparticles and any
effort would not disaggregate nanoparticles below a speci-
fied size. Also they stated that the storage of nanoparticles
for more than 1 month can lead to aggregation (Zhang et al.

@ Springer
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Fig.4 Operation of a high-
pressure homogenizer

Sweeper Piston

2008). In another study, addition of TiO, NPs to SiO, nano-
fluid (PAM + deionized water + SiO,) increased the stability
of nanofluid. Addition of 0.05 wt% and 0.1 wt% of TiO, NPs
to the dispersions resulted in more 14 and 19 days of stabil-
ity, respectively (Kumar and Sharma 2018).

Keller et al. examined the stability of TiO,, ZnO and
CeO nanoparticles in various types of waters. To find out
the appropriate condition for stability, they measured elec-
trophoretic mobility of nanoparticles in each fluid. Electro-
phoretic mobility is defined as the velocity of suspended
particles induced by an electrical field, divided by strength
of electrical field. It is clear that the greater values of electro-
phoretic mobility show better stability. Equation 3 represents
electrophoretic mobility.

v
H=F (3)
0

where u represents the electrophoretic mobility (m?/s), v
describes the velocity of particles (m/s) and E is the strength
of electrical field (V/m). They observed that increasing the
value of total organic carbon (which was considered as a rep-
resentative for amount of organic compounds in water) leads
to higher electrophoretic mobility and consequently more
stability. In contrast to their predictions, they observed that
increasing the ionic strength of water reduces the electropho-
retic mobility and stability. They reported that the aggrega-
tion of all nanoparticles at low total organic carbon and high
ionic strength was very high, but by increasing TOC' and
reducing the value of IS,? the aggregation ceased. It was
also observed that controlling the value of pH for achieving
stability is an effective solution for deionized, distilled and
neutralized water. But there is not a clear trend between pH
and stability of nanoparticles in saline waters (Keller et al.
2010). According to importance of nanoparticles stability
in water treatment process, many researchers investigated

! Total organic carbon.

2 Tonic strength.

@ Springer

the stability of different nanoparticles in the presence of
divalent ions and natural organic matters. As Zhang et al.
expressed, adding low amounts of salts to nanofluids results
in aggregation of nanoparticles while the existence of natu-
ral organic material induces a negative charge on the surface
of particles and stabilizes the nanofluid. They observed a
unique behavior for SiO, nanoparticles. Due to low adsorp-
tion of natural organic material by SiO, and small Hamaker
constant, the presence of divalent ions and natural organic
material does not affect the stability of SiO, nanoparticles
(Zhang et al. 2009).

Polymers also have the tendency to stabilize nanofluids
by altering the surface. Surface modification of hydrogen-
terminated silicon nanoparticles by an amphiphilic polymer
resulted in a stable nanofluid (Zhang et al. 2007).

Hwang et al. tested different physical methods for sta-
bilizing carbon black and silver nanoparticles. They exam-
ined the stability of nanofluids prepared by stirrer, ultrasonic
disrupter, ultrasonic bath, high-pressure homogenizer and
magnetron sputtering. The nanofluids which prepared by
stirrer were mixed at 1500 rpm for 2 h. The ones which pre-
pared by ultrasonic bath and ultrasonic disrupter were mixed
with frequency at 40 kHz and 20 kHz, respectively. Both
sonicating apparatuses have operated for 1 h. High-pressure
homogenizer operated at 18000psi and each nanofluids
passed 3 times through the system entirely. They reported
that high-pressure homogenizer produces the most stable
nanofluids among other physical methods. In this manner,
ultrasonic disrupter, ultrasonic bath and stirrer were intro-
duced as next effective devices, respectively. In addition,
the nanofluids stabilized by magnetron sputtering method
reflected the best stability among all methods. It could be
concluded that chemical stabilizing methods are more effec-
tive than physical methods (Hwang et al. 2008). Figure 4
presents the performance of a high-pressure homogenizer
schematically. It could be observed exerted pressure forces
the nanofluid to leave the chamber through narrow tubes.
The torque which is applied to the particles through this
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Bare nanoparticles
dispersed in water

Addition of surfactants and adsorption
of surfactant micelles on nanoparticles

Gradual desorption of surfactant micelles
from nanoparticles during time

l I

ud ==
0 m Vi >
T S

O Nanoparticles

) Surfactant micelles

Fig.5 Schematic description of adsorption/desorption of surfactants by nanoparticles

movement results in disaggregation of agglomerated nano-
particles (Anandharamakrishnan 2014).

One of the most effective parameters for stabilizing nano-
particles is pH. Aggregation of nanoparticles increases at
zero-point charge. Therefore, pH should be considered dur-
ing stabilization of nanofluids (Umh and Kim 2014).

Tso et al. argued that the agglomeration of nanoparti-
cles starts from the first moments of mixing. The aggre-
gates could form up to microscale size. They used a stir-
rer at 15000 rpm to break the aggregates. The researchers
observed that stirring can only break down the aggregates to
micron sizes. To achieve a better disaggregation, ultrasonic
instrument was tested. They found out ultrasonic is a more
efficient way for breaking the aggregates. The broken aggre-
gates were still much larger than the original size of nano-
particles. Also, they proved the existence of nanoorganic
matter in water simplifies the procedure of stabilizing nano-
particles. Therefore, stabilizing nanoparticles in distilled and
deionized water will be a harder task than in natural water
(Tso et al. 2010). Keykhosravi and Simjoo investigated the
effects of monovalent and divalent ions on stability by using
NaCl and MgCl,. Measuring zeta potential, they found out
that the presence of divalent ions in brine lowers the stability
of silica nanoparticles and monovalent ions result in more
stability in contrast. Results showed that more stability of
silica nanoparticles is a positive effect to achieve more wet-
tability alteration toward more water-wet state (Keykhosravi
and Simjoo 2019). Xu et al. reached a stable nanofluid of
iron oxide nanoparticles by using surfactant. They intro-
duced coating process and surfactant-to-nanoparticle ratio as
the main governing parameters for stability (Xu et al. 2011).

In another study, Abbood et al. stabilized CuO nanofluids
by dodecyl-3-methylimidazolium chloride ([C12mim][Cl])
surfactant. Their nanofluids were stable for 1 month. Not
only the stability condition improved, but also they observed
the presence of 1000 ppm of surfactant boosted wettabil-
ity alteration and synergistic effect of NPs and surfactant
increases ultimate oil recovery up to 21.2% (Abbood and
Hosseini 2022).

Application of surfactant and nanoparticles

Significant reduction in IFT is the main purpose of using
surfactants. They have a low potential to alter the state of
wettability (Golabi et al. 2009). In addition, some hybrid
methods proved the addition of some divalent ions to sur-
factant solutions can empower wettability alteration mecha-
nism (Hosseini et al. 2020). Application of nanoparticles
with surfactant is known as a hybrid EOR method for
achievement of more oil recovery. As it was aforementioned,
surfactants are capable of increasing the stability of nanoflu-
ids. The more the stability of nanofluids, the more efficiency
they might have. The main possible mechanism for stability
is adsorption and desorption of surfactant by nanoparticles.
Adsorption and gradual desorption of surfactants by nano-
particles could be a valuable point to improve the opera-
tion of surfactants (Olayiwola and Dejam 2019). Figure 5
illustrates the procedure of adsorption and desorption of
surfactants by nanoparticles schematically.

Betancur et al. studied the adsorption of different sur-
factants on SiO, nanoparticles. They also compared the
performance of the mixture of nanoparticles and surfactant
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with surfactant alone. They observed that the critical micelle
concentration (CMC) increases at higher temperature. They
legitimated this phenomenon with disorganization of non-
polar groups in water molecules at high temperatures. Based
on their reports, the adsorption of surfactant micelles on
nanoparticles reduces at higher temperatures. This is due
to exothermic nature of adsorption interaction. The authors
designed two interesting procedures for preparation of nano-
particle and surfactant dispersion. At first procedure brine,
surfactant and nanoparticles were mixed simultaneously.
The second one included the addition of nanoparticles after
preparing solution of surfactant and brine. They observed
greater adsorption of surfactant on surface of nanoparticles
using the latter one. The lower adsorption of surfactants
during first procedure is related to a competition between
surfactant molecules for either adsorption on nanoparticles
or formation of micelles. This is a fair justification for lower
size of formed micelles in the dispersions which was pre-
pared by the first method. Finally, no impressive change on
the reduction of IFT reported in the presence or absence
of nanoparticles. However, recovery factor increased about
240% (comparing with application of surfactant solely) in
the presence of SiO, nanoparticles due to adsorption of
micelles by NPs (Betancur et al. 2018).

Zhao et al. made an experimental research on potentials
of nanofluids composed of deionized water, SiO, nanoparti-
cles and TX-100 surfactant for EOR applications. They com-
pared the mechanisms of surfactant solutions and nanofluid-
based surfactant solutions. They concluded that the addition
of nanoparticles to the surfactant solutions does not change
the value of IFT significantly. 16% increase in oil recov-
ery during spontaneous imbibition tests by nanofluids is
reported. This amount is twice of recovery achieved by sur-
factant solution. The dominant mechanism for the enhance-
ment of oil recovery is attributed to higher wettability alter-
ation. They checked the stability of nanofluids at various
temperatures and salinities. Obtained results did not show
any great change in stability by increasing temperature up to
70 °C (Zhao et al. 2018). Adsorption of surfactant on rock
surface is known as a limitation parameter for efficiency of
surfactant flooding (Belhaj et al. 2020). Nanoparticles could
be used as an inhibitor for surfactant adsorption. Wu et al.
evaluated static and dynamic adsorption of SDS surfactant
on rock surface. The authors obtained dynamic adsorp-
tion by comparing the concentration of surfactant content
between injected and effluent fluids. The results indicated a
significant reduction in adsorption of surfactant on rock sur-
face in the presence of nanoparticles. The ultimate recovery
factor reported for injection of nanoparticle and surfactant
dispersion is 7% greater than injection of surfactant solu-
tion solely (Wu et al. 2017). In another study, Abbood et al.
investigated the addition of 1-dodecyl-3-methyl imidazolium
chloride surfactant to SiO, nanofluids. They pointed out NPs
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do not have significant effects on the reduction of IFT, but
their synergistic effects with surfactant have great effects on
wettability alteration. Finally, they found that application of
NPs with surfactants results in production of extra 15.6% of
synthetic oil (Abbood et al. 2022).

From all mentioned above, it could be concluded that
although both NPs and surfactants are capable of reducing
the IFT, but their mixture is not so effective in the reduction
of IFT. Surfactants have the ability to stabilize NPs disper-
sions by inducing surface charge on NPs. Besides gradual
desorption of surfactants by NPs can prevent retention of
surfactants on surface of porous media and enhance the
performance of surfactants. On the other hand, intensified
wettability alteration could be considered as one of the main
mechanisms for enhancing oil recovery by hybrid applica-
tion of NPs and surfactant.

Hybrid of polymer and nanoparticles

Polymer flooding is a promising EOR method which
improves oil recovery mainly by mobility control. Mobility
ratio is an important factor for governing macroscopic sweep
efficiency. This method is used more than 50 years and it has
proved that polymers can increase oil recovery up to 10-20%
on average (Han and Lee 2014; Sheng et al. 2015). Like
other EOR methods, polymer flooding has some limitations,
e.g., viscosity loss due to shear rate and shear stress, reten-
tion in porous media and degradation under reservoir con-
dition. Thus, the efficiency of the method is highly affected
by reservoir conditions and fluid chemistry. To enhance the
performance for application in harsh conditions research-
ers designed and investigated some NPs—polymer systems
(Jan Bock Donald et al. 1987; Nourafkan et al. 2019; Tang
et al. 2022; Ye et al. 2013; Zahiri et al. 2022). The syner-
gistic effects of NPs and polymers reflected some promis-
ing results. In this manner, various types of NPs like silica
(Hu et al. 2017a; Zeyghami et al. 2014; Zhu et al. 2014a,
2014b), titania (Cheraghian 2016), alumina (Cheraghian
2016; Minagawa and White 1976), iron (Kmetz et al. 2016;
Tarek and El-Banbi 2015), zirconia, graphene and its deriva-
tives (Haruna et al. 2019; Haruna and Wen 2019; Liu et al.
2012) and clay nanoparticles (Cheraghian 2015; Cheraghian
et al. 2015; Cheraghian and Khalilinezhad 2015; Nezhad and
Cheraghian 2016; Rezaei et al. 2016) are used. Combination
of polymer and NPs could be done in two ways: (1) poly-
mer grafted nanoparticles (PGN) and (2) hybrid of polymer
nanofluid suspension (PNS). PGNs are chemical agents syn-
thesized by attachment of polymer onto nanoparticle surface
(Gbadamosi and Junin 2018). PGNs are created using two
methods: “grafting to” and “grafting from.” Using “graft-
ing to” method, the end-functionalized polymers react with
an appropriate surface of NPs and “grafting from” method
tries to grow polymer chains from an initiator-terminated
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self-assembled monolayer (Kango et al. 2013). Figure 6
shows the schematic description of PGNs synthesis using
“grafting to” and “grafting from” methods. PNS is simply
prepared by mixing or blending nanoparticles and polymer
solutions (Gbadamosi and Junin 2018). In addition, sol-gel
method could be used to synthesize polymer—NPs nanocom-
posites. Rezvani et al. synthesized chitosan @ Fe;0, nano-
composites by this method. They mixed 0.5 ml of acetic acid
with deionized water in a 50-ml volumetric flask. Then they
added 0.125 g of chitosan powder to the mixture and stirred
with a mechanical stirrer. In the next step, they added 1 g
of Fe;0, NPs to the mixture and stirred for 30 min. Finally,
25 ml of a solution contained deionized water and 1 g of
NaOH added to the solution and stirred for 1 min. The solu-
tion filtered with paper and remained particles frozen at
—20 °C for 24 h (Rezvani et al. 2018b). Studies indicated
that different NPs have different effects on polymer flood-
ing performance and adding NPs to polymer solutions can
improve chemical and thermal resistance, rheological behav-
ior and also rock—fluid interactions (Cheraghian et al. 2014;
Khalilinezhad et al. 2017; Li et al. 2010; Paul and Robeson
2008; Pavlidou and Papaspyrides 2008).

Saha et al. studied the synergistic effects of silica—xan-
than composite on enhancing oil recovery from sandstone
cores at low (30 °C) and high (90 °C) temperatures. They
reported that silica NP-assisted polymer flooding enhances
oil recovery about 20.82% and 18.44% at 30 °C and 90 °C,
respectively. Wettability alteration, IFT reduction, higher
viscosity and more stable emulsions were responsible for
enhancing the amount of recovered oil. They also observed
that in contrast to formation water, silica NPs were stable in
the polymer solutions (Characteristics et al. 2018). Alaminia
and Khalilinezhad investigated the effects of hydrophilic

silica nanoparticles and their size on polyacrylamide (PAM)
solutions. They reported using silica with PAM increases the
viscosity of polymer solution. Besides, larger size of silica
NPs reflected greater efficiency in this manner (AlamiNia
and Khalilinezhad 2017). Khalilinezhad et al. used experi-
mental tests and numerical simulation to examine the effects
of silica and clay on flow behavior of polymer solutions. The
results showed that using silica and clay not only increases
the viscosity, but also reduces the retention of polymer in
porous media. Clay reflected less efficiency on adsorption
and viscosity in comparison with silica (Khalilinezhad et al.
2017, 2016).

Rellegadla et al. studied the effects of adding nickel NPs
to xanthan gum solution on oil recovery. They observed that
NPs can increase the intrinsic viscosity of polymer solution
and also enhance oil recovery compared with application
of NPs and polymer individually. The achieved additional
oil recovery by using xanthan gum solution and nickel NPs
is equal to 5.98%. The additional oil recovery obtained by
using xanthan solution and nickel NPs dispersion individu-
ally was 4.48% and 4.58%, respectively (Rellegadla et al.
2018). Khan et al. studied the rheological behavior of dif-
ferent mixtures of polymer and SiO,, TiO, and Fe,O; NPs
at 50 °C, separately. Different concentrations of NPs in the
range of 0-1 wt% were used with 1 wt% of HPAM. The
results showed that the highest concentration of each NPs
has the most effect on increasing viscosity. SiO,, TiO,
and Fe,O; enhanced the viscosity of polymer solution (at
shear rate of 100 1/s) from 0.002 cp to 0.005 cp, 0.3 cp
and 0.016 cp, respectively. The authors claimed using NPs
increases storage module of polymer solutions. NPs—poly-
mer core flooding was also performed and comparing to con-
ventional polymer flooding improved recovery is reported
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(Khan et al. 2018). Corredor et al. synthesized polyacryla-
mide-grafted SiO,, TiO, and Al,O;. Their analysis proved
NPs grafted polymers enhance the viscosity, lower the IFT
and alter the wettability in the presence of NaCl at 25 °C.
(Corredor et al. 2019a). They also investigated the rheologi-
cal behavior of mixtures of xanthan and SiO,, TiO,, Al,O4
and Fe(OH); NPs at 25 °C and different salinities. They
concluded that the addition of TiO,, Al,0; and Fe(OH),
reduces the viscosity of xanthan solution. Contrarily, SiO,
enhances the viscosity of polymer solution (Corredor et al.
2018, 2019b).

Maghzi et al. conducted a series of experiments to inves-
tigate the effects of silica NPs on performance of polymer
(PAM) solution for enhancing oil recovery. They examined
the rheological behavior of polymer solution at various
shear rates (0.001-3.486 1/s). It was concluded that adding
silica NPs results in higher viscosity of solution. By flood-
ing in micromodel, they observed 25% more oil recovery
for NPs—polymer solution (Maghzi et al. 2013). They also
assessed the synergistic effects of silica NPs and HPAM on
wettability alteration of a glass micromodel. The authors
found out the dispersions alter the wettability of micromodel
toward strongly water-wet state (Maghzi et al. 2011).

Haruna et al. evaluated the potentials of using SiO, and
modified SiO, with PAM to enhance oil recovery. They
stated that using SiO,-PAM mixture have some limitations
like agglomeration in harsh conditions. Chemical agent
(3-aminopropyl) triethoxysilane was used to modify the
surface of SiO, for optimization of the interactions between
functional groups of PAM and SiO, in order to improve
dispersion stability. The surface-modified SiO, (M_SiO,)
interacts with PAM and creates a protective shield on PAM
micelles. So, they are capable of stabilizing the solution.
Thermal stability also increased by using M_SiO,. Viscosity
loss of M_Si0O,-PAM solution after 70 days was just 10%
while for SiO,-PAM and PAM system it was about 45% and
78%, respectively (Haruna et al. 2020).

Using ZrO, NPs with polymer (PAM) solution at different
temperatures and salinities has also studied by Al-Anssari
et al. They studied the stability and viscosity of NPs—poly-
mer systems. They have claimed that using zirconia NPs
in small quantities (<0.03 wt%) could improve solutions
viscosity at high temperatures and high salinities. It is note-
worthy that the adsorption of the NPs on polymer micelles
occurred at low concentrations and the addition of extra
amounts of zirconia NPs makes no significant effect (Al-
Anssari et al. 2021). Table 3 summarizes some studies on
hybrid application of NPs—polymer.

Hybrid of low-salinity water and nanoparticles

Addition of nanoparticles to low-salinity phase is an inter-
esting topic for researchers. Numerous criteria including
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existence of ions, compatibility of NPs with composition
of water and appropriate concentration of NPs should be
considered for simultaneous application of nanoparticles and
low-salinity phase. Existence of ions in bulk phase of nano-
fluids affects the stability of nanoparticles strongly. There
are some methods recommended for stabilization of NPs in
various ranges of salinity. Jafari et al. stabilized hydrophilic
silica in seawater by using H* protection. This method refers
to add some amounts of HCI to nanofluid. The generated H*
ions protect the NPs from free ions in the bulk and increase
the stability of nanofluids (Sofla et al. 2018). Addition of
surfactant to the nanofluids is another method to stabilize
NPs in saline solutions. Surface modification of NPs caused
by adsorption of surfactant enhances the stability of NPs,
especially in saline solutions (Olayiwola and Dejam 2019).

Wettability alteration is known as the main EOR mecha-
nism of both low-salinity flooding (Hosseini et al. 2015)
and nanoparticles injection. Numerous studies examined the
application of various nanoparticles with low-salinity phase
for different intentions. Taleb et al. investigated the optimum
conditions for injection of low-salinity phase and nanofluid
(composed of their synthesized Faujasitr-Based silica NPs)
by static analyses. The low-salinity phase of their study was
composed of 2 wt% NaCl and 0.2 wt% KCI. It was observed
that increasing the concentration of synthesized NPs (up to
200 ppm) reduces the value of IFT. Contact angle measure-
ments illustrated that the use of low-salinity phase contain-
ing nanoparticles makes the surface of the rock more water
wet. Finally core flood tests showed 5% greater oil recovery
by injection of low-salinity phase solely and 10% higher
recovery factor by application of low-salinity-based nanoflu-
ids (Taleb et al. 2020). In another study, Sadatshojaei et al.
evaluated the synergistic effects of using nanoparticles and
low-salinity phase in a carbonate rock. Low-salinity phase
(dilutions of seawater with TDS? of 47,681.3 ppm) was com-
posed of Na*, K, Mg?*, Ca’*, SO,*~, CI~ and HCO, ions.
They categorized the existed ions into active and inactive
ions. As they reported category of inactive ions includes
Na*, K* and C1~ and active ions category consists of Mg,
Ca**, SO,>". IFT and contact angle measurements proved
that at lower concentrations of inactive ions, the actives
would be capable of moving freely through the bulk phase
and decrease the value of IFT. Also they concluded that
increasing the salinity makes the nanofluid instable (Sadat-
shojaei et al. 2019).

Shakiba et al. added some amounts of silica nanoparti-
cles to low-salinity water to stabilize instable sands during
production from unconsolidated rocks. Since sands could be
mobilized by injection of low-salinity water, precipitation of
silica nanoparticles stabilizes unconsolidated sands. They

3 Total dissolved solids.
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reported that flooding the cores by low salinity and silica
NPs enhances the strength of rock up to 46% more than the
rocks which flooded by low-salinity phase solely (Shakiba
et al. 2020).

To seek EOR potentials of low-salinity NPs system in
heavy oil reservoirs, Ding et al. evaluated the performance of
Al,0; and SiO, nanoparticles when dispersed in low-salinity
phase. They selected a 1/10 dilution of brine containing Na™,
Ca®*, Mg**, CI~, OH™, HCO’~, CO;*~ and SO, as the low-
salinity phase for their study. The addition of SiO, nanopar-
ticles to low-salinity phase at low temperature (25 °C) had
no effect on oil recovery (before and after breakthrough),
while injection of SiO, nanofluid after low-salinity phase (as
the second slug after low-salinity water injection) showed
more than 2% increase in oil recovery. Despite SiO,, addi-
tion of Al,O5 NPs to the low-salinity phase resulted in much
better sweep efficiency before breakthrough. But they real-
ized that the amount of enhanced oil recovery after break-
through of low-salinity containing Al,O; nanoparticles is the
same as what they observed for SiO, nanoparticles. Since
heavy oil is used in this study, increasing the temperature of
injected phase resulted in higher recovery factor. At temper-
ature of 45 °C, the low-salinity phase contained SiO, showed
a greater recovery factor than the one composed of Al,O;
nanoparticles. This trend is reported to change inversely at
70 °C (Ding et al. 2019).

By dispersing different concentrations of silica nano-
particles into dilutions of Persian Gulf seawater, Saeedi
Dehghani and Daneshfar investigated the synergistic con-
tribution for application of silica nanoparticles and low-
salinity phase. They measured contact angle and performed
some micromodel analyses in the presence of synthetic oil.
They found out injection of silica nanoparticles dispersed in
deionized water has lower efficiency than injection of low-
salinity phase alone. Also, they observed a synergistic effect

for injection of dispersed nanoparticles in the low-salinity
phase. Since the addition of nanoparticles increased the vis-
cosity of injected phase, better mobility control could be
obtained using this method. The improved mobility control
is capable of postponing breakthrough time (Dehaghani and
Daneshfar 2019).

In another study, Sagala et al. functionalized silica nano-
particles and evaluated the capability of increasing oil recov-
ery by injection of nanofluid-based low-salinity water. Their
chosen low-salinity phase composed of 0.1 wt% of NaCl.
Application of low-salinity water with surface-modified
nanoparticles caused wettability alteration in oil-wet sand-
stones. Addition of nanoparticles to low-salinity phase also
increased the value of recovery factor by 15% in compari-
son with injection of low-salinity phase alone. Their report
also indicated a right shift of relative permeability curve
after injection of low-salinity phase, while the movements
of curves are greater in the presence of nanoparticles, which
shows intensified wettability alteration (Sagala et al. 2020).
The shift of relative permeability curve after injection of
low-salinity phase and low-salinity-based nanofluids is illus-
trated schematically in Fig. 7.

Abhishek et al. investigated the adsorption of silica nano-
particles to the calcite and chalk surfaces under static and
dynamic conditions and at different ranges of salinities. They
measured the amounts of calcite and magnesium contents at
inlet and effluent phases during core flooding by low-salinity
phase included nanoparticles. They observed a reduction in
calcite content in the effluent after addition of 0.1 wt% nano-
particles to the low-salinity phase. This could be a good sign
to conclude calcite dissolution during low-salinity phase
injection will be avoided by the addition of nanoparticles
(Abhishek et al. 2018).

Kiani et al. examined using Al,O; nanoparticles for
injection into sandstone reservoirs at various salinity and
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temperature conditions. They obtained the most recovery
factor at elevated temperatures up to 80 °C. Clay could be
detached from the surface of sandstone and wettability alter-
ation can take place during injection of low-salinity phase.
High temperature is a positive factors for more adsorption of
Al,O; on the surface of rocks. Therefore, due to the occur-
rence of wettability alteration and stabilization of clay par-
ticles, the most recovery factor is reported at highest tem-
perature (Kiani et al. 2016).

Divandari et al. analyzed the effects of salt type (NaCl,
MgCl, and CaCl,) on IFT in the presence of 3 different
nanoparticles (Fe;O,, Fe,05, SiO,). Nanoparticles were
coated by citric acid. They introduced MgCl, as the best
IFT reducer among others when saline water is injected.
This could be justified with respect to lower radius of Mg>*
in comparison with other ions. The shorter the radius of
ions, the more effectiveness in the reduction in the IFT will
take place. They reported that the minimum IFT values for
all salts belongs to the concentration of 40000 ppm. Higher
concentrations of salts resulted in accumulation of cations
at the interface and restrict the tendency of asphaltenes for
move toward interface. They introduced Fe;O, as the most
efficient nanoparticles for the reduction in the IFT. Also,
they reported Fe,O; as the less effective nanoparticle for the
reduction in the IFT. The trend of IFT reduction (the most
reduction was for MgCl,, CaCl, and NaCl, respectively) was
not changed by the addition of NPs or surfactant (Divandari
et al. 2020). In fact, asphaltenes and resins are natural sur-
factants in crude oil. The addition of salts and nanoparticles
can enhance or restrict their performance in the reduction in
the IFT (Pejmannia et al. 2022).

Rezvani et al. made an extensive study on stability and
efficiency of Al,O; nanoparticles at porous media con-
ditions. They measured the values of IFT and interfacial
shear viscosity* between synthetic oil (composed of toluene,
n-heptane and asphaltene) and nanofluid at different tem-
perature conditions and in the presence of MgSO, and NaCl
salts. Due to their results, increasing temperature decreases
IFT. They reported that the rate of IFT reduction empow-
ered in the presence of nanoparticles at some concentrations
(Rezvani et al. 2019). Increasing temperature activates two
mechanisms for decreasing IFT: (1) displacement of nano-
particles to the interface of oil and water and consequently
increasing the surface (Ngai and Bon 2014), and (2) catalytic
behavior of nanoparticles at elevated temperatures for crack-
ing the heavier molecules of oil.

There are several points which should be considered for
application of nanoparticles and low-salinity phase. Due to

* Interfacial shear viscosity is defined as the ratio between the shear
stress and the shear rate in the plane of the interface.
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what mentioned above, researchers and operators should
consider the following parameters:

1. Low-salinity phase decreases the IFT between oil and
water with respect to repulsion of charges.

2. Density of ions charge plays a key role for activation of
EOR mechanisms.

3. Increasing temperatures intensifies Brownian motion of
nanoparticles. This is the reason for more efficiency of
nanoparticles at elevated temperatures.

4. Active ions are composed of divalent ions and inactive
ions include monovalent ions. Active ions are effective
for the reduction in the IFT. Also, the performance of
active ions improves at lower concentrations of inactive
ions.

5. Instability of nanofluid accelerates in the presence of
active ions. Stability of nanoparticles decreases at low
concentrations of Mg?*.

6. There is an optimum concentration for nanoparticles to
prevent formation of scale.

7. Sand production could be avoided by injection of some
amount of nanoparticle with low-salinity water.

8. Better sweep efficiency is expected with addition of
nanoparticles to the injected low-salinity water.

9. There is a synergistic effect for application of nanopar-
ticles with low-salinity water. This effect empowers the
mechanisms of each agent.

Hybrid of nanoparticles and foam

Gas injection is faced with challenges like channeling, gas
override, low sweep efficiency, fingering and unfavorable
mobility ratio (Andrianov et al. 2012; Yang et al. 2019).
About 70 years ago, foam injection became popular as a
method that eliminates most of the aforementioned chal-
lenges (Sun et al. 2014) and now is a common EOR method
(Hu et al. 2020; Jin et al. 2020; Zhou et al. 2020). Due to
higher viscosity, it is also reported that the foam could have
a viscosity up to 1000 times greater than gas (Liu et al.
2005). Observations showed that using foam, can be use-
ful in heterogeneous porous media and divert the fluid to
un-swept zones (Blaker et al. 2002; Hou et al. 2018; Skauge
et al. 2002; Sun et al. 2019). Foam in porous media is
defined as a gas dispersion within the liquid phase where
continuous phase is a liquid and the discontinuous phase is
a gas. The phases are separated by lamella (the thin film of
liquid) (Almajid and Kovscek 2016; AlYousef et al. 2020;
Falls et al. 1988). Stability is a key parameter which must
be considered for application of foams (Bai et al. 2010; Guo
and Aryana 2016; Ibrahim et al. 2017; Risal et al. 2019;
Yang et al. 2017). Some factors like reservoir condition
(e.g., reservoir temperature, pressure, oil saturation and
composition, brine saturation and composition), foaming
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agent and its concentration and type of gas affect foam
stability(Almubarak et al. 2020; Grigg et al. 2004). Thus,
for EOR purposes, the longer the lifetime of the lamella,
the greater the stability of the foam will be achieved (Zhu
et al. 2004). Some surfactants and polymers could be used
as foam stabilizers (Yekeen et al. 2018). Due to sensitivity
of surfactants and polymers to high salinity and tempera-
ture (Babamahmoudi and Riahi 2018; Farzaneh and Sohrabi
2015; Ko and Huh 2019; Kutay and Schramm 2004; Lee
et al. 2015; Singh and Mohanty 2017; Yekeen et al. 2017),
recently novel methods such as combination of foams and
nanoparticles (Almubarak et al. 2020) have been suggested
as a solution to improve the stability of foams during flood-
ing. Studies have shown that the use of nanoparticles as
foam stabilizer leads to beneficial effects (X. Li et al. 2022a,
b). The effects of TiO, on foam stability and efficiency of
oil production in glass micromodel were examined by Pan-
ahpoori et al. They observed that the mixture of TiO, and
hexadecyltrimethylammonium bromide (CTAB) improved
foam stability. Results showed that adsorption of CTAB
molecules on the surface of TiO, NPs is the main reason for
improvement in the stabilization of foam. They reported the
most adsorption belongs to 0.03 wt% of CTAB and 0.03 wt%
of TiO, NPs. Also, micromodel flooding tests showed that
nano-CTAB foam resulted more sweep efficiency (54%) and
recovery factor than nano-CTAB flooding (Panahpoori et al.
2019).

In order to design a suitable foaming agent, Kumar et al.
used carbon dioxide gas, Sodium dodecyl sulfate as anionic,
CTAB as cationic and polysorbate 80 (Tween 80) as non-
ionic surfactants, silica, alumina, zirconium oxide, calcium
carbonate and boron nitride nanoparticles and polymer,
alcohol and alkali as additives. They observed that ionic
surfactant can result in more stable foam in comparison with
nonionic surfactant. Also adding nanoparticles improved
foam stability. Specially using boron nitride reflected the
best response among other nanoparticles (Kumar and Man-
dal 2017).

Almubarak et al. evaluated the role of nanoparticles on
stabilization of foam. They combined a cationic surfactant
and a surface-modified silica nanoparticle and conducted
some glass micromodel tests to measure foam stability. They
observed that using nanoparticle with surfactant decreases
the mobility, improves sweep efficiency and enhances foam
stability due to forming smaller bubbles (Almubarak et al.
2020).

Harati et al. investigated the effects of different gas types
including nitrogen, methane and carbon dioxide on foams
which stabilized by SiO, nanoparticles and SDS. Results
showed that the half time and oil recovery of methane, nitro-
gen and carbon dioxide foams at optimum nanoparticle con-
centrations are 1054 min with 25% R.F, 1720 min with 31%

R.F and 62 min with 19% R.F, respectively (Harati et al.
2020).

The synergistic effects of alpha olefin sulfonate (AOS?)
and molybdenum disulfide (MOSZ6) nanosheets on foama-
bility and recovery improvement are assessed by Raj et al.
Their results illustrated that the synergy of AOS-MoS,
improves foam stability in the presence of calcium and
sodium ions because the MoS, nanosheets forms a layer
around the lamella and protects it. They also reported that
flooding by foams including AOS-MoS, increases oil recov-
ery by 12.1% in comparison with surfactant flooding alone
(Raj et al. 2020).

Sakthivel and Kanj studied the effects of adding carbon
nanodots to surfactant in order to enhance foam stability.
They reported using carbon nanodots can improve foam sta-
bility in high-salinity condition (up to 70%) by increasing
the lamella thickness and also can cause improvements in
mobility control. Moreover, static tests showed that air and
nitrogen foams are more stable than carbon dioxide (Sak-
thivel and Kanj 2021).

To discuss the effects of nanoparticle on foam system, Li
et al. investigated the effects of nanoparticles on foam per-
formance and wettability of carbonate rock. They observed
that by increasing Silica nanoparticle concentration, foaming
volume’ decreases while the generated foam is more stable.
They also reported that increasing the concentration of nano-
particle alteres the state of wettability to more water-wet.
Secondary surfactant foam and nanoparticle—foam flooding
tests were conducted after water flooding and resulted in
28.6% and 37.5% oil recovery improvement (Li et al. 2020).

Liu et al. studied the effects of hydrophobicity of nano-
particles in nanoparticle-foam system. They used Fe;0,
with four different contact angles (12.7°, 20.6°, 57.5° and
94.3°). Results showed that nanoparticle modification can
affect foam stability where the foam included nanoparticle
with contact angle of 94.3° were 2.36 times more stable than
non-modified one. Also a higher oil recovery than others
achieved for mentioned nanoparticle—foam system (Liu et al.
2020). Zhao et al. synthetized and used amphiphilic surface-
modified silica nanoparticles to improve foam stability and
oil recovery. Their results demonstrated that the half-life of
modified silica foam increased about 5 min at 60 °C in com-
parison with unmodified silica foam and flooding test also
showed that modified silica foam system can increase oil
recovery factor by 19.8% (Zhao et al. 2021).

Considering recent studies, between various nanopar-
ticle types, silica is the most used nanoparticle for foam

3 Alpha olefin sulfonate.
6 Molybdenum disulfide.

7 Foam volume generated at the end of stirring stage where foam is
generated.
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stabilization (Yekeen et al. 2018). Also, nanoparticles not
only improve the foam stability, but also enhance foam per-
formance in porous media by diverting injection foam to
low-permeability zones and improving sweep efficiency.

Advantages, disadvantages and limitations

As discussed before applications of nanoparticles for EOR
intends have great potentials. On the other hand, the synergy
of using NPs with cEOR methods improves the performance
of dominant contributing mechanisms. Figure 8 illustrates
some main advantages of using NPs in EOR procedures
based on the results of the literature reviewed above.

The usage of NPs in EOR process could not be consid-
ered as a complete, secure and perfect way. Compared to
the other common EOR methods like water flooding, gas
flooding and polymer flooding, hybrid nanoparticle EOR
methods are too young and immature as they are only used in
field scale in few and limited projects. Therefore, it is needed
to investigate and study hybrid nanoparticle EOR methods
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comprehensively from different aspects to find the optimum
way of using them. Based on several studies, Table 4 pre-
sents some of the main limitations and disadvantages for
application of NPs in EOR procedures (Agista et al. 2018;
Corredor et al. 2019¢; Davoodi et al. 2022; Gbadamosi et al.
2019c; Kumar et al. 2022).

Considering aforementioned advantages, disadvantages
and limitations, the following suggestions could be taken
into account for future related studies:

e Some important factors like reservoir condition, the main
contributing mechanism and rock and fluid interactions
are not fundamentally investigated.

¢ Environmental issues should be considered as one of the
screening criteria factors for application of nanoparticles
in EOR methods. Therefore, studies on the environmen-
tal effects of various nanoparticles used in EOR process
would be interesting and helpful to select the best nano-
particle.
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Table 4 Disadvantage/limitations of using hybrid of NPs and EOR methods

Disadvantage/Limitation Description

Immaturity

Considering the lifespan of hybrid nanoparticle EOR methods in comparison with common

EOR methods like water flooding, gas flooding and polymer flooding, they could be classi-
fied as immature method

Large-scale uncertainties

Using hybrid nanoparticle EOR methods in field scale has rarely been used and have been

studied mostly in laboratory scale

Performance uncertainty in reservoir conditions Salinity and temperature are two very effective and important factor in screening EOR meth-
ods. Unlike silicate nanoparticle and considering numerous nanoparticles used in petroleum
industry, there are still limited investigations that study these important factors on the method
performance. Also, most of the current articles which have studied the effect of harsh condi-
tion still have not capture the real status of reservoir condition in terms of salinity, hardness,
ionic compounds, temperature and pressure

Economic studies and econometrics

In last recent years numerous nanoparticles have been proposed for enhancing oil recovery

which have shown very good performance. But still a very important point has been missed
out: economic aspects. Many synthetized nanoparticles have been produced and used on
laboratory scale and have not reached mass production yet and there are open questions about
the profit and expenses of their usage which should be noticed

Environmental effects

Most of the petroleum engineering studies related to nanoparticles have dealt with oil recovery,

contributing mechanisms in enhancing oil recovery and rarely economic studies. Also, in last
two decades legislation of environmental issues has been accelerated. Therefore, considering
numerous types of nanoparticles used, the environmental effects of nanoparticles should be
investigated and modeled in larger scale

Amount of nanoparticles used

In most studies using hybrid EOR methods of nanoparticles the amount of nanoparticle to base

components is too high (twice to ten times higher) which raises the question that whether the
performance of the basic component has been improved by nanoparticles or vice versa

e Simulation and modeling studies make a great view of
the performance of EOR methods and there is still lack of
appropriate simulation and modeling studies, especially
for large-scale application of NPs.

e Shape, size and aspect ratio are important intrinsic prop-
erties of nanoparticles which should be studied and tested
comprehensively. The number of existing studies is not
sufficient and no certain conclusion could be derived on
the obtained results.

e Functional groups of nanoparticles determine their usage
and play a key role in their performance. Therefore,
investigating the type and variety of functional groups of
nanoparticles, especially newer ones (like carbon-based
nanoparticles), seems necessary.

Economic evaluation of EOR process

It is forecasted that COVID-19 pandemic would have a
great effect on energy consumption. Smith et al. assessed
the impact of COVID-19 pandemic on fossil fuel consump-
tion and they anticipated that despite the reduction in the
consumption during the pandemic, there will be a robust
growth in energy consumption after pandemic, especially
for emerging countries (Smith et al. 2021). Wang and Zhang
indicated that China’s economic growth has a significant
impact on energy consumption of high-income countries
(Wang and Zhang 2021). Their results are given in Table 5:

Table 5 Energy consumption with respect to income of countries

Category of High income  Upper middle Lower middle
investigated income income
countries
Grow inenergy  0.11-0.45 0.08-0.33 0.02-0.05
consumption
(%)

Industrialization, urbanization and economic growth of
developing or least developed countries leads to a peak of
energy demand in the world (Jiang and Lin 2012). The use
of fossil fuels got increased up to 98% of total demand of
energy in some countries (Perea-Moreno et al. 2016). The
increasing demand of hydrocarbon energy and its usage
restriction lead oil-producing countries to use of their poten-
tial to produce more oil and get more shares in oil mar-
ket. In the other words, the significance of EOR operations
is increasing in recent years.

In a comprehensive evaluation, economic assessment in
oil industry results in determining whether extraction and
EOR operations are commercially efficient to develop an
oilfield. The EOR processes are the efforts of energy indus-
try beyond the conventional exploration and production
strategies which are more dependent to technology than
geography or geology. There are limited studies which
investigated economics of EOR projects. Bondor examined
how economic analysis can be used to determine the most
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Fig.9 Oil production rate from
a petroleum reservoir versus
time for production under
natural mechanisms and EOR
process

effective direction for research. He found that economic
analysis determines the fundamental limitation process
which preclude the practical process (Bondor 1993). Flan-
ders and investigated the economic feasibility of performing
CO, EOR operation in small- and medium-size fields. They
found that the EOR tax incentives reduces the risk of under-
taken CO, project and the economic feasibility of CO, EOR
is very field-specific (Flanders and McGinnis 1993). Zekri
and Jebri applied economic sensitivity analysis on key vari-
ables such as oil prices, the price of injection solvent, capital
expenditures, operating expenses and oil recovery to develop
sensitivity graphs for each variable to assess future engineer-
ing EOR planning. They applied this empirical analysis for
Libyan oil reserves. Their preliminary investigation indicate
that the techniques of chemical EOR process are not cost-
effective due to the logistics of supplying large volume of
chemicals (Zekri and Jerbi 2002).

According to regular production function, the rate of
production (marginal production) from oil reservoirs var-
ies along the stage of production, as shown in Fig. 9. In the
beginning of production, the output rises in an increasing
rate, then the rate of production constant for a long dura-
tion. Subsequently, the rate of production decreases and the
producer has to decide among: (1) continuing the production
to reach the zero rate of production, (2) abandoning the field
or (3) starting the EOR operation. As illustrated in Fig. 9,
by applying EOR operations the rate of production would
increase. Then the production increases in a constant rate
that is lower than the latter constant rate of conventional pro-
duction period. Finally, the production would crash sharply.

Figure 9 indicates the output corresponding to production
function in Fig. 10. The conventional stages of production
function are illustrated in Fig. 10. In the first region of pro-
duction, the ratio of change in output to the variation of input
is greater than 1 (increasing return to scale). In the second
region which called economic region, the ratio is positive
and less than 1 (constant and diminishing return to scale).
The economic region continues to the maximum point of
accumulative production. Then the third region begins where
the ratio is negative (decreasing return to scale). Conven-
tionally, the producer may decide to cease the production
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in third region, though beginning the EOR operation can
be an option. The mentioned ratio (change of output to the
variation of input) for EOR operation is lower than economic
region in conventional production. In the following an eco-
nomic model is introduced to find out the optimum point of
third region for beginning the EOR operations. The optimal
amount of production is the other parameter which could be
determined by the aforementioned model.

Hotelling evaluation principle

Swierzbinski argue that Hotelling evaluation principle is an
economic approach to consider the choice of extraction of
exhaustible resource as an investment decision (Swierzbin-
ski, 2013). Jamal and Crain applied Hotelling evaluation
principle to calculate the net value of an exhaustible natural
resource (Jamal and Crain 1997). The cost increases at the
prevailing interest rate. This expectation is due to intertem-
poral maximization by the owner of resource. Miller and
Upton used Hotelling evaluation principle conducted some
analysis on optimal patterns of economic assessment for an
exhaustible resource. They applied Eq. 4 to optimize the
net value:
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where P, denotes market price, which is determined in a
competitive market. g, represents the amount of extraction
at time ¢, and r denotes prevailing interest rate. N is the aban-
donment time for exhaustible resources, and R, denotes total
reserves. It is assumed that there is no uncertainty in prevail-
ing interest rate during the time of investment. C, is the cost
of extraction, which is a function of g, and accumulative
amount of production at a specified time interval (Q,). The
accumulative amount of production is calculated by Eq. 5.

=4, ©)
s=0

where ¢, is the amount of produced oil at time s (Miller
and Upton 1985). With respect to economic fundamentals,
the cost of production increases trivially by enhancing the
production. Therefore, the amount of partial derivative
(6C,)/(8g,) should be positive during lifetime of oil reser-
voir. The derivative of (6C,)/(80Q,) is nonnegative and its
magnitude will increase by EOR process. The first-order
condition for profit optimization in each period is:

(o) =2 (22) (o) =4 1=0n
P13 ) ~&\Go, J\1+r) T8 TR

6)
where A represent Lagrange multiplier. For simplicity, it is
assumed that 6C,/6Q; = 0; therefore,

(i-e) (1) =4 ™

By solving the system of difference equation, we obtain
familiar Hotelling evaluation principle:

(P, =) = (Po—co)(1 + 1) ®)

Based on Eq. 8, the efficient intertemporal production of
an exhaustible resource is a function of net value of prod-
uct, which grows over time at the real rate of interest. Note
that Reynolds argues that Hotelling evaluation principle is
an appropriate model to investigate the economic limits for
production from oil and gas fields. Hotelling principle is pro-
gressed and developed by several researchers in recent years
(Reynolds 2013). Slade and Thille developed the model by
considering the role of oil as a risky asset in financial market
(Slade and Thille 1997). In the following, we abandon sev-
eral assumptions which are accounted in model of Miller and
Upton. Hotelling evaluation principle could be simplified by
assuming constant return to scale,® which yield:

VO_

0~ Co Z%

t=0

— ¢o) Ry, 9

Equation 9 reveals that the value of total reserve (R;)
depends on net value of each produced oil barrel. At the start
of EOR procedures, diminishing return to scale’ is inevita-
ble. Therefore, the derivative C_t/6q_t and 6°C,/5q,* is
positive for secondary and tertiary (EOR) production. To
investigate production under diminishing return to scale con-
dition, Eq. 8 is transformed to:

N N
1y Iy
Vo= X ro-ala(ris) -2 A(s). o
1= 1=l

where F, is the difference between average and marginal
cost. In general form:

Vo = (po — co)R 2}(1”) a1

The simplification assumption of 6C,/6Q, = 0 is aban-
doned due to inflationary conditions that most major devel-
oping oil-producing countries are encountered. The addi-
tional term is a constant. By substituting the first-order
conditions in Eq. 11:

O (5C\/ 1\
ﬂ=(po—cO)—§<5Qs>(l+r)- (13)

by substituting A in 12, Eq. 14 will be achieved:

N -1 5 CS 1 s N 1 ¢

Vo= o=c)r= 3 3 (55 a3 - 2r(1s)-

(14)

The last two expressions are constant and both of them

are nonnegative. To determine the proper enhancement oil

recovery operation, these two expressions should be consid-

ered for each well by its engineering parameters. Empirically

while the EOR operation is based on application of nanopar-

ticles, the revenues (outputs) and costs (inputs) for the model
are tabulated in Table 6:

8 Constant return to scale: proportional equality between changes of
input and output (§C,/8g,=constant and §>C,/5q,>=0).

° Diminishing return to scale: increasing the input enhances the out-
put by less ratio (§C,/8q, and 6C, /5q,” are positive).
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Table 6 Revenues (outputs)

. . Inputs
and costs (inputs) which should

Output

added to the model

Drilling and completion of injection wells (if needed)

Crude oil due to application of nanoparticles

Study, evaluation and simulation costs

Supplement of nanoparticles
Cost of stabilization process

Cost of water treatment for preparing nanofluid

Cost of injection equipment (pumping, pipelines, etc.)

Cost of human resources (wages)

Providing separation equipment to separate nanoparticles

from produced oil

Drilling and completion of new production wells (if needed)

Other costs of production under new conditions

Maintenance of wellhead equipment

Consequently, after the peak of production of the well,
two choices are to conserve remaining reserves or doing
enhancement oil recovery operation. For both, there is
uncertainty about technology and less resource lose social
value which is irreversible sunk cost (related to uncertainty).
In this regard, applying the engineering parameters consist-
ent with each well properties removes uncertainties and
reduce sunk cost that make Hotelling evaluation principle
available and more precisely to use.

Conclusions

This review represented an insight into application of nano-
technology for EOR intends from the prospective view of a
petroleum engineer. Based on valuable results achieved by
various researchers and scientific theories, some important
points could be concluded. The conclusion could be sum-
marized as below:

e Although stability of nanofluids in reservoir condition is
a challenge, there is numerous benefits for application of
NPs through EOR process.

e Nanoparticles have the potential to alter the state of wet-
tability of formation rock by creating a new surface. They
could be adsorbed to the surface of rock by precipitation
(due to gravity) and electrostatic force (due to difference
charge of NPs and rock surface).

e NPs usually have tendency to move forward to the inter-
face of oil and water. This tendency and their activity at
the interface lead to IFT reduction.

e Catalytic effect of NPs and adsorption of asphaltene con-
tent, prevents asphaltene deposition and, respectively,
reduces the viscosity of heavy oils.

e Application of high-pressure homogenizer is the most
effective physical method for stabilizing nanofluids.
However, chemical methods reflect better response in
comparison with physical method.
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e Application of surfactants and polymers and pH control
is the most common chemical stabilization processes.

e Hybrid application of NPs and surfactant enhances the
efficiency of NPs by adsorption of surfactant micelles
and gradual desorption. In addition, lowering the
retention of surfactants in porous media alongside
with improved stability of NPs enhances the amount
of recovered oil.

e Hybrid application of NPs with foams increases foam
stability and amend sweep efficiency.

e Hybrid application of NPs with polymers is an effective
method for increasing the strength of polymer solu-
tions.

e Hybrid application of NPs with low-salinity water
empowers wettability alteration under two main mecha-
nisms. Low-salinity water creates a new surface on the
rock by dissolution and hydration of minerals. Besides,
subsidence of NPs on the surface of rock with gravity
precipitation and electrostatic adsorption covers the
surface.

e Hotelling method represents an appropriate model for
economic evaluation of EOR process.
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