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Abstract
Tight oil accumulates in impermeable reservoir rocks, often shale or tight sandstones. The flow behaviour of tight oil in 
unconventional reservoirs is described by peculiar complexities such as the typical low permeability to viscosity ratio and 
the dissolution of some gases in the oil phase. Reservoir simulations that consider these complexities negligible stand the 
potential of poorly characterizing the reservoir flow dynamics. The adoption of similarity transformation effectively reduces 
the complexities associated with the flow equations through spatial variable (r) and temporal variable (t). The Boltzmann 

variable 

�

� =

r
√

t

�

 is introduced to facilitate the reformulation of transient two-phase flow phenomenon in a radial geometry. 

The technique converts the two-phase Black oil model (thus highly nonlinear partial differential equations (PDEs)) to ordinary 
differential equations (ODEs). The resulting ODEs present a reduced form on the flow model which is solved by finite dif-
ference approximations (the Implicit-Pressure-Explicit-Saturation (IMPES)) scheme. No loss of vital flow characteristics 
was observed between the Black oil model and the similarity transform flow model. Furthermore, the similarity approach 
facilitated the determination of pressure and saturation equations as unique functions of the Boltzmann variable. This deriva-
tion is applied to an infinitely acting reservoir where the Boltzmann variable tends to infinity ( � → ∞ ). Finally, this case 
study’s analytical solution formulated critical relations for fluid flow rate and cumulative production, which are useful for 
single-phase flow analysis.

Keywords Boltzmann transformation · Similarity variable · Two-phase · Radial flow · Black oil model

Introduction

The decline in conventional hydrocarbon resources cou-
pled with the increase in energy demand has encouraged 
the development of unconventional resources. The produc-
tion of oil from conventional resources has peaked and is 
currently on a terminal, long-run global decline (Gordon 
2012). According to U.S. Energy Information Administra-
tion (2013); Kuppe et al. (2012), tight oil systems are exam-
ples of unconventional resources that provide a significant 
amount of petroleum for the world’s energy needs. Literature 
highlights several definitions for unconventional resources 
based on varying factors such as reservoirs with perme-
ability threshold less than 0.1mD (Kazemi 1982; Belhaj 
et al. 2003; Alkuwaiti et al. 2021); nature of basin and trap 
mechanisms (Meckel and Thomasson 2008); and fluid types 
(maturity, density and viscosity) (Thakur and Rajput 2011). 
In this paper, the graphical definition proposed by Cander 
(2012) that incorporates both rock property (permeability) 
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and fluid property (viscosity) is adopted. Therefore, uncon-
ventional reservoirs define reservoirs whose permeability-
viscosity ratios require appropriate techniques to alter the 
rock permeability or the in situ fluid viscosity to achieve 
commercially viable production rates.

Production of tight oil comes from very low permeabil-
ity rocks that must be stimulated using hydraulic fracturing 
mechanisms to create sufficient permeability for matured oil 
and natural gases to flow at economical rates (Firincioglu 
et al. 2012; Orangi et al. 2011). The low permeability of 
tight oil reservoirs requires production with large pressure 
drawdowns. The pressure drawdown is often large enough 
to engender the drop of flowing pressures below the bubble 
point of in situ liquids hence, causing the evolution of dis-
solved gases (Aziz and Settari 1979; Chen and Ewing 1997).

Several mathematical models Peaceman (1977); Aziz 
and Settari (1979); Dake (1978); Carlson (2006); Chen and 
Ewing (1997); Yu-Shu (2016) have been used to analyze 
the flow dynamics of conventional reservoirs. However, 
the development of models for unconventional reservoirs 
presents peculiar complexities, as discussed by Aldhuhoori 
et al. (2021a, 2021b). The black oil model, for example, 
provides a traditional approach for studying multiphase 
and multicomponent flow systems with a potential mass 
exchange between phases in a porous medium (Peace-
man 1977). The nonlinearities associated with the models 
describing multiphase flow in tight oil reservoirs present a 
challenging task to engineers in finding immediate solutions 
(Tabatabaie and Pooladi-Darvish 2016). Furthermore, the 
analysis and understanding of the factors that affect the flow 
performance of these unconventional reservoirs are critical 
for their efficient exploitation.

These inherent complexities necessitate the adoption of 
modelling and simulating approaches that appropriately 
describe such problems without losing vital information 
about the flow phenomenon(Marshall 2009). The radial dif-
fusivity equation is widely used in the petroleum industry 
to mimic hydrocarbon flow with several applications in well 
testing (Ertekin et al. 2001; Ahmed 2018). Unfortunately, 
the work of Tabatabaie and Pooladi-Darvish (2016) high-
lights a transient linear flow model applied in the study of 
boundary dominated flow. The implementation of similarity 
variable theory in flow analysis of tight oil reservoirs is one 
of several approaches to finding solutions to reservoir flow 
problems. The similarity theory is fundamentally based on 
a combination of variables peculiar to the equations under 
consideration. One of such variable combinations is defined 
by the Boltzmann variable ( � ). The Fickian diffusion equa-
tion is pivotal in studying concentration-dependent mass 
diffusion in several fields. It has been established that find-
ing closed-form solutions to problems with concentration-
dependent diffusion coefficients were complicated (Kass 
and O’Keeffe 1966). Boltzmann (1894) proposed a novel 

analytical approach for evaluating concentration-dependent 
diffusion coefficients. The study transformed the Fickian 
diffusion equation from a partial differential equation to an 
ordinary differential equation, commonly referred to as the 
B-equation. The B-equation was subsequently used to deter-
mine the diffusion coefficients (Okino et al. 2012; Ahmed 
et al. 2015).

Carslaw and Jaeger (1959) adopted the Boltzmann trans-
formation approach to determine solutions of heat conduc-
tion problems. Similarly, Bird et al. (1962) investigated 
several problems associated with heat and mass transfer 
and fluid flow. Ayala and Kouassi (2007) also applied the 
Boltzmann transformation in the study of gas condensate 
reservoirs where an analytical solution for fluid pressure in 
terms of saturation was developed. Other investigations have 
also established varying forms of the saturation-pressure 
relationship, such as those proposed by Raghavan (1976) 
using the producing gas-oil ratio (GOR). Behmanesh (2016) 
developed an alternative solution to establish the saturation-
pressure relationship by adopting a numerical approach.

However, this paper explores the use of the Boltzmann 
variable to transform the radial two-phase Black oil flow 
model into reduced forms. The reduced form (ODEs) and the 
PDEs were numerically solved using an Implicit- Pressure-
Explicit-Saturation (IMPES) finite difference technique. 
This approach also facilitates the derivation of an analytical 
solution under the assumption that the reservoir is infinitely 
acting (a limiting case of short producing time at constant 
pressure production) for � → ∞.

Mathematical formulation

In this paper, the radial diffusivity of two-phase (oil and gas) 
in porous media is described by a similar form of the Black 
oil model, henceforth named as such (Peaceman 1977; Aziz 
and Settari 1979; Yu-Shu 2016). The formulation presents a 
pair of coupled nonlinear PDEs resulting from the combina-
tion of the following three governing equations: (a) the law 
of mass conservation (the continuity equation), (b) Darcy’s 
empirical law, (c) equation of state (Aziz and Settari 1979; 
Chen and Ewing 1997; Peaceman 1977; Bear and Bachmat 
2012). Based on a set of assumptions, the two-phase radial 
diffusivity model for oil and gas, respectively, is given as:
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Equation (2) specifically accounts for both gases dissolved 
in solution and those that evolve out of the solution when 
in situ pressures fall below bubble point pressure. The evo-
lution of gases out of solution is described using the oil-gas 
solubility ratio (Rs).

Similarity transformation of flow model

Prior to the similarity transformation, the parameters defined 
in Table (1) are adopted to reformulate Eqs. (1) and (2) as 
follows:

A step-wise transformation of Eqs. (3) and (4) into ODEs 
is implemented by introducing the Boltzmann variable 
( � =

r
√

t
 ) as shown in Appendix (8) and (9). The transforma-

tion process yields ODEs for oil and gas, respectively, as 
follows:

Equations (5) and (6) present a coupled system of ODEs 
that is solved by an Implicit-Pressure-Explicit-Saturation 
(IMPES) scheme. The adoption of the IMPES scheme neces-
sitate the reformulation and decoupling of Eqs. (5) and (6) 
into pressure and saturation equations.

The derivation of a pressure equation is achieved by first 
expanding the derivatives of all parameters that are functions 
of pressure, p and oil saturation So . Considering the ODE 

(3)
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for oil flow given by Eq. (5), the expansion of � in terms of 
p and So yields:

Notably, Eq. (7) has two unknowns, pressure and saturation. 
If saturation were known, Eq. (5) could be solved directly 
to find pressure as a function of the Boltzmann variable. 
However, saturation profile is not known a priori. In order 
to complete the system of equations and unknowns, Eq. (6), 
representing the flow of gas, is employed to obtain a satura-
tion equation.

Again, the derivation of the saturation equation require 
the expansion of the derivatives of the parameters R, b and 
� in Eq. (6) to obtain:

The saturation equation for the flow problem is finally 
derived through further re-arrangement of Eq. (8) as:

Saturation and pressure profile of flow model

A similar decoupling process is adopted to reformulate the 
radial diffusivity of two-phase Black oil model defined by 
Eqs. (1) and (2). The decoupling of the nonlinear PDEs 
result to pressure and saturation equations that are analogous 
to the similarity Eqs. (7) and (9).

First, Eq. (1) is multiplied by the binomial term 
(Bo − RsBg) , which represents the critical formation volume 
factor of oil in the medium. Equation (2) on the other hand 
is multiplied by the gas formation volume factor, (Bg) . The 
addition of the resulting equations yield the right hand side 
(RHS) given by:

whereas the resulting LHS expression is given by:
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Parameters
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The adoption of the chain rule facilitates the expansion of 
all the time derivative terms in the RHS Expression (10). 
Nevertheless, a fundamental assumption on the state of the 
flow problem requires that the total saturation of oil and 
gas is 1, ( So + Sg = 1 ). This primary assumption, therefore, 
causes all the time derivatives of saturation to resolve out of 
the RHS Expression (10) to yield:

From a mathematical perspective, the decoupling approach 
contributes to the derivation of the following compressibil-
ity terms that influence the nature of the flow of the in situ 
fluids. 

(a) Gas compressibility: cg = −
1

Bg

�Bg

�p

(b) Oil compressibility: co = −
1

Bo

�Bo

�p
+

Bg

Bo

�Rs

�p

(c) Total compressibility: ct = Sgcg + Soco

Additionally assuming that the formation compressibility 
cf  is negligible, the right hand side (RHS) Expression (12) 
simplifies to:

The combination of the derived left-hand side (LHS) 
Expressions (11) and right-hand side (RHS) Expression (13) 
as well as the introduction of the parameters given in Table 
(1) yields the pressure equation as:

In conclusion, Eq. (3) describing the radial flow of oil in the 
derivation process is used to determine the saturation profile 
once the pressure profile is obtained from Eq. (14). Similar 
expansions of Eq. (3) by the chain rule yields a saturation 
equation given by:
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Implicit‑pressure‑explicit‑saturation (IMPES) 
scheme

The equations associated with the two-phase Black 
oil model are highly non-linear. Therefore, a numeri-
cal approximation technique is implemented to offer a 
comparative basis to the similarity solution. Literature 
proposes several schemes like the Fully Implicit (FI), 
Implicit-Pressure-Explicit-Saturation (IMPES), Adap-
tive Implicit Method (AIM) and other schemes. The FI is 
unconditionally stable when solving for the unknown pres-
sure and saturation. However, the implicit nature presents 
a highly expensive computational approach per timestep 
compared to the IMPES approach (Marcondes et al. 2009; 
Chen et al. 2006).

The IMPES is considered one of several practical 
approaches in reservoir simulation studies (Coats 1982; 
Fanchi 2001; Chen et al. 2006). The procedure facilitates the 
decoupling of the flow model into a pair of pressure Eq. (14) 
and saturation Eq. (15). The formulation of a unique pres-
sure equation that is independent of the ordering of variables 
or ordering of equations is one advantage of implementing 
IMPES. The pressure equation is solved implicitly while 
lagging all saturation dependencies to the old time level. 
After obtaining the pressure solution at a new time level, the 
saturation equation is solved explicitly (Maciasa et al. 2013). 
As pressure is the only unknown variable determined by a 
linear system of equations, the approach requires small com-
putational effort per timestep to implement. However, the 
explicit part must conform to the Courant-Friedrichs-Lewy 
(CFL) condition (CFL number < 1) to avoid instability in the 
saturation solution. For this reason, the IMPES approach is 
limited to small timesteps (Marcondes et al. 2009).

Thomas and Thurnau (1983) proposed the Adaptive 
Implicit Method (AIM), which combines the inherent advan-
tages of the IMPES and FI schemes to achieve better stabil-
ity, accuracy, and efficiency. The AIM approach implements 
the FI method in regions where the IMPES method exhibit 
instabilities while implementing the IMPES method in the 
rest of the reservoir (Fagin and Stewart 1966; Fung et al. 
1989; Watts and Shaw 2005). Unknown pressure and satu-
ration are primarily determined implicitly in complicated 
subdomains where the CFL number>1, while only pressure 
is implicitly determined in less heterogeneous subdomains. 
A switching criterion based on error estimation at the begin-
ning of each time step is used to control the change of the 
computational schemes. However, this approach introduces 
a load imbalance problem which is impractical in parallel 
computing environments (Lu and Wheeler 2009).
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Analytical solution for an infinite acting 
system ( � → ∞)

A reservoir that exhibits no apparent outer boundary effects 
on fluid flow is termed infinitely acting. In this paper, the 
condition for infinite-acting reservoir systems corresponds 
to the Boltzmann variable approaching infinity ( � → ∞ ). 
From a practical point of view, the implications include 
small values of time or large values of distance since � is a 
function of r and t. The derivation of analytical solutions for 
pressure and saturation under the condition of large � values 
is developed as follows.

At large values of � , the term �
�

�p

��
→ 0 . Hence Eq. (7) 

reduces to:

However, since the saturation profile is not known a priori. 
The flow equation of gas in Eq. (9) is employed to complete 
the system of equations needed to determine the unknowns 
(pressure and saturation).

The infinite-acting flow problem ( � → ∞ ), defined by 
the system of equations (Eqs. (16) and (9)), is further con-
strained by the following initial and boundary conditions;

The constrains given by Eqs. (17), (18) and (19) are applica-
ble for the investigation of an infinite acting reservoir, with 
constant pressure production at the wellbore. Eq. (17) indi-
cates that, the pressure is constant and equal to the pressure 
at the producing face or wellbore (pw) . Equation (18) and 
(19) representing the reservoir pressure (pe) and oil satura-
tion (So) , respectively, are uniform (thus remain unchanged) 
at initial time (that is, at t = 0 ) to the far boundary of the 
reservoir ( r → ∞).

Pressure solution

The development of the analytical solution for pressure for 
the infinite acting flow problem ( � → ∞ ) involves the substi-
tuting Eq. (9) into Eq. (16) to obtain the following equation 
expressed in terms of pressure only:
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In order to reduce the nonlinearity associated with Eq. (20), 
the two-phase pseudo-pressure (m) is introduced in the res-
ervoir flow behaviour (Fetkovich 1973; Raghavan 1976; 
Behmanesh 2016). In this paper, a similar approach is used, 
and the two-phase pseudo-pressure is expressed as:

Let, the first derivative of the two phase pseudo-pressure be 
defined as dm =

�

�i
dp which resolves Equation (20) to:

Under the unique condition of � → ∞ Eq. (22) is reformu-
lated as:

where:

Replacing the full expressions for � and � into Eq. (24) gives

Eq. (25) is similar to the well known hydraulic diffusivity 
of a single-phase reservoir, adjusted to reflect the effect 
of two-phase flow and the evolution of gas out of the oil 
when the pressure drops below the bubble point pressure. 
Equation (26) and (27), on the other hand, account for the 
total compressibility of the fluids and fractional flow of oil, 
respectively.

Several physical interpretations are imbibed by Eqs. 
(26) and (27) despite the rigorous mathematical approach 
adopted in their derivation. The different terms of Eq. (26), 
more specifically, are explained as follows: 
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(a) The first term 
((

SoBg

Bo

)

dRs

dp

)

 represents the amount (pos-
itive quantity) of gas released per unit pore volume at 
reservoir conditions during the pressure drop of dp.

(b) The second term 
((

Sg
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)

dBg

dp

)

 represents the effect of gas 
compressibility on the flow.

(c) The third term 
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 represents the effect of oil 
compressibility.

(d) The last term 
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1
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 is the pore compressibility 
which may be considered as negligible in some simpli-
fying cases.

The fractional flow of oil (fo) , given by Eq. (27), is akin to 
the conventional form of the Buckley Leverett fractional 
flow equation employed when oil displaces gas in a horizon-
tal reservoir. This equation shows that, as the gas mobility 
(
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)

 decreases, fo increases. Consequently, when fo 
increases, the term c∗

t
fo , representing the energy of the res-

ervoir, increases, implying an increased oil recovery.
The solution of Eq. (23) constrained by the two condi-

tions for pressure (Eqs. (17) and (18) ) is readily obtained as 
follows.The introduction of the derivative, dm

d�
= � facili-

tates the reduction of Eq. (23) into a first order ODE which 
is solved by adopting the method of separation of variables 
to yield:

where c1 is a constant of integration. Finally, substituting � 
(Eq. (28)) back into dm
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= � and integrating both sides 

gives;

Given that, the special values Erfc(0) = 1 and Erfc(∞) = 0.
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and

Hence, the pressure solution becomes;
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Saturation solution

The analytical solution for saturation of the infinite acting 
problem ( � → ∞ ) is determined by introducing dm =
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where;

Since � → ∞ , the evaluation of the coefficients 
(

dm

d�

)

 in Eq. 

(34) at their initial values yields:

where;
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The introduction of

into Eq. (38) and subsequent integration of the resultant 
gives:

where c1 = mw − mi = −(mi − mw)

Considering the special value Erfc(∞) = 0 and evaluation 
So(�) at � = ∞ gives:

Hence, the saturation solution is obtained as;

Production parameters

The derived pressure and saturation solutions are useful for 
deriving oil and cumulative production equations. The cumu-
lative oil production from hydrocarbon-bearing reservoirs is 
generally expressed as:

where the oil flow rate ( qo ), according to Darcy’s equation, 
is given by

Equation (45) is reformulated in terms of the two phase 
pseudo pressure as:

Hence, the substitution of the derivative of the pseudo pres-
sure (Eq. (32)) yields the oil production equation as:
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qodt

(45)qo = A
kkro

�oBo

�p

�r r=rw

(46)qo = A
kkro
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�m

�� �=0

Finally, the cumulative oil production given by Eq. (44) can 
also be expressed:

Results and discussion

The behaviour of tight oil reservoirs during transient radial 
flow under constant pressure production is studied. The 
reservoir simulation is conducted for the similarity and 
two-phase Black oil formulations. The analysis of the flow 
dynamics is based on the data adopted in Tabatabaie and 
Pooladi-Darvish (2016). The unique descriptions of the 
various known parameters necessary for the simulation are 
presented in Figs. (1, 2, 3, 4, 5 and 6).

In the analysis of the formulations, a cylindrical reservoir 
of radius(r), 800m and pay thickness(H), 50m, is considered. 
The porosity and the initial permeability of the flow prob-
lem are taken to be 0.1 and 0.01md, respectively. The flow 
model is initially saturated with oil at a saturation pressure 
of 50000kPa and produced at a constant flowing pressure of 
10000kPa. The fluid properties of the reservoir are presented 
in Fig. (2,  3, 4). In this paper, the Corey-type relative perme-
ability functions defined in Eqs. (49) and (50) are employed 
to relate the variation of relative permeabilities to the satura-
tion and illustrated by Fig. (1).

In addition, the endpoint relative permeabilities are taken 
as 1 regardless of the fluid phase. Similarly, the gas and oil 
relative permeability exponents are each considered to be 
2. Figure (2) through to (6) describe the Pressure-Volume-
Temperature (PVT) parameters adopted in this work. Figure 
(2) illustrates a typical behaviour of the oil formation volume 
factor. Below the bubble point pressure, the oil formation 
volume factor increases with pressure. The volumetric fac-
tors (Bo) and (Bg) readily relate the volume of fluid that are 
obtained at the surface (stock tank) to the volume that the 
fluid occupy when compressed in the reservoir.

Fig. (4) defines the relationship between the solu-
tion gas-oil ratio to pressure. For this paper, Rs increases 
approximately linearly with pressure, which is a function 
of the oil and gas composition. Tight oils contain high 

(47)qo = A
kkro

�oiBoi

�

mi − mw
√

��
∞

�

1
√

t

(48)Np(t) = A
kik

∗

ro

�oiBoi

�

mi − mw
√

��
∞

�

√

t

(49)kro = k∗
ro
Sno
o

(50)krg = k∗
rg
(1 − So)

ng



3416 Journal of Petroleum Exploration and Production Technology (2022) 12:3409–3424

1 3

amounts of dissolved gas; hence, the oil-gas solubility 
ratio increases with pressure as observed in Fig. (4) until 
the bubble point pressure is reached. Upon attaining bubble 

point, the variation becomes constant, and the oil becomes 
undersaturated.

Fig. 1  Corey-type relative permeability plots for oil and gas

Fig. 2  Oil formation volume 
factor verses pressure
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Typical behaviour of gas and oil viscosities as functions 
of pressure are illustrated by figures (5) and (6).

Under constant pressure production at the wellbore, 
reservoir fluids propagate towards the wellbore from the 
undisturbed regions in the reservoir over time. The con-
stant pressure production of 10000kPa causes, instantane-
ously, a two-phase flow of oil and gas through the porous 
media into the wellbore. The two-phase phenomenon 

ensues since the wellbore pressure is below the bubble 
point pressure of 50000kPa, hence, causes the evolution 
of gases out of the solution. The nature of the pressure 
drop over the domain consequently affects the saturation 
distribution of fluids (oil and gas).(Figs. 7, 8 and 9)

During the flow period, it is observed that the pres-
sure profile for each time step does not significantly dif-
fer. This phenomenon may be attributed to the assumption 
imposed on the proportion of oil to gas in the system. The 

Fig. 3  Gas formation volume 
factor verses pressure

Fig. 4  Oil-Gas solubility ratio verses pressure
Fig. 5  Oil viscosity verses pressure
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assumption of a slightly compressible flow system causes 
flow that is synonymous with a single-phase flow system.

The transformation of the radial two-phase Black oil 
model (PDEs) to ODEs was dependent on the condition that 
all independent variables (r and t) can be combined to a 
single form defined by the Boltzmann variable ( � ). Figures 
(10), (11) and (12) compare the solutions of the ODEs and 
the nonlinear PDEs and showed no vital information lose. 
The pressure and saturation profiles in real-time domain col-
lapse unto a single curve when plotted versus the Boltzmann 
variable, � as observed in Figs. (10), (11) and (12). All the 
real-time solutions (p(r, t) or So(r, t) ) can be readily calcu-
lated by taking any point on the plot of p(�) or So(�) and 
assigning their values to a corresponding distance found 
from � =

r
√

t
 at any particular time.

In developing the analytical solution for the limiting case 
of � → ∞ , the infinite-acting condition subjects the radial 
flow regime to take linear flow patterns for larger reservoir 
extents. The subsequent derivations for oil production rate 

Fig. 6  Gas viscosity verses pressure

Fig. 7  Pressure profile in time and space resulting from full numerical approach

Fig. 8  Gas saturation profile in time and space resulting from full numerical approach
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and cumulative oil production conforms with the results on 
linear flow in tight oil reservoirs by Tabatabaie and Pooladi-
Darvish (2016).

Despite the development of the analytical solution, the 
practicality remains stalled. From Eqs. (31) through to (48), 
the initial gas saturation is zero due to the infinite boundary 
condition imposed on the flow problem. Hence, evaluating 
�
∞

 at initial conditions removes the effect of gas mobility 

from the analytical solution (since, 
(

krg

�g

)

i

= 0 ). However, 

it accounts for the effect of gas on oil flow, by changing kro , 
and the effect of gas evolution on compressibility, given as, 
(

SoBg

Bo

)

i

(

dRs

dp

)

i

 . Naturally, reservoirs with higher gas 

mobility tend to lose energy support faster than reservoirs 
with lower gas mobility and produce less. It is, therefore, 
necessary to take into account the effect of gas mobility in 
Eqs. (47) and (48) by determining a correction factor.

It is worth noting that no assumptions regarding the vari-
ation of porosity and absolute permeability with pressure 
were considered in the radial flow model. The saturation-
pressure relationship used in this paper are independent of 
absolute permeability. As discussed by Ramey (1964), the 
total system compressibility is beneficial for multiphase 
pressure transient analysis rather than a single-phase 
compressibility.

Fig. 9  Oil saturation profile in time and space resulting from full numerical approach

Fig. 10  Pressure profile from 
numerical approach
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Conclusion

The study of radial two-phase flow in tight oil reservoirs is 
appropriately characterized in this paper by adopting a sys-
tem of nonlinear partial differential equations that account 
for the occurrence of both dissolved and evolving gases 
when in situ pressures fall below bubble point pressure. The 
evolution of gases out of solution is described using the oil-
gas solubility ratio (Rs). Specific to this paper, the Boltz-
mann variable ( � =

r
√

t
 ) is introduced to facilitate the conver-

sion of the nonlinear PDEs into a system of ODEs. The 
adoption of this technique enabled a straightforward 

estimation of unknown reservoir parameters (pressure and 
saturation). The similarity transforms presented in this paper 
enabled the estimation of critical reservoir profiles and pro-
vided a reasonable alternative to solving reservoir flow prob-
lems. The similarity approximation delivered a good map-
ping following comparison to the radial two-phase Black oil 
model (nonlinear PDEs) based on the data simulation 
results. This establishes that the similarity approach is sat-
isfactorily sufficient in solving flow problems of this nature.

The subsequent extension of this paper to understand 
infinite-acting systems ( � → ∞ ) yielded analytical solutions 
that conform with results obtained by Tabatabaie and Pooladi-
Darvish (2016) on linear flow in tight oil reservoirs. Under the 

Fig. 11  Gas saturation profile 
from similarity approach

Fig. 12  Oil saturation from 
similarity approach
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limiting condition, similar formulations for oil rates and cumu-
lative oil productions were derived. These were determined by 
adopting a two-phase pseudo-pressure (m) that linearized the 
flow problem.

Under several simplifying assumptions to the flow, it was 
necessary to consider the total reservoir diversities to under-
stand the viability of similarity transformation in reservoir 
engineering techniques. The data and concepts employed in 
this paper provides an alternative theoretical representation 
of flow in tight oil reservoirs.

Appendix A Similarity Transformation 
of the Oil Equation

The introduction of � and � causes the reduction of Eq. (1) to 
Eq. (27) which is given by:

The similarity transformation is performed on Eq. (38) using 
the Boltzmann variable given by, � =

r
√

t
 . In order to carry 

out the transformation, the derivatives of � with respect to r 
and t are required and are given as:

From Eq. (A1), expanding the left hand side yields:

A change of variables is performed by implementing the 
chain rule on Eq. (A5 to introduce the derivatives of the 
Boltzmann variable.

Further expansion of Eq. (A6) gives:

By grouping terms, Eq. (A7) gives:
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Dividing through Eq. (A8) by 
(
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)2

 and expanding deriva-
tives gives:

From Eq. (17), �
2�

�r2
= 0,hence Eq. (A9) simplifies to:

The first and second terms of Eq. (A11) are re-written to 
yield Eq. (A12) for the oil equation in terms of the Boltz-
mann variable. This is the similarity transformation of the 
oil equation.

Since the PDE Eq. (A12) is only dependent on the Boltz-
mann variable it is re-written as an ODE in the form:

Appendix B Similarity Transformation 
of the Gas Equation

Similarly, the introduction of � , b and R into the flow equa-
tion for gas reduces Eq. (2) to:

which is reformulated into an ODE using the Boltzmann 
variable(�)

The expansion of the left hand side of Eq. B14) starts the 
transformation process to yield:
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The implementation of the chain rule on Eq. (B15) intro-
duces the derivatives of the Boltzmann variable as given by:

Further expansion of Eq. (B16) gives:

By grouping terms, Eq. (B17) gives:

Dividing through Eq. (B18) by 
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 and expanding deriva-
tives gives:

From Eq. (31), �
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= 0 , hence Eq. (B19) simplifies to:

Substituting Eq. (39) and Eq. (18) into Eq. (B20) gives:

Expanding the derivative of the second term in Eq. (B21) 
gives:

Equation (B22) is re-written as:

Further, the oil equation given by Eq. (A12)) can be 
expanded to:
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Substituting Eqs. (A2) and (32) into Equation (A10) 
gives:

Then, substituting Eq. (B24) into Eq. (B23) gives:

Finally, expanding and simplifying terms in Eq. (B25) yields 
a diffusivity equation in terms of the Boltzmann variable. 
These procedures establish the similarity transform of the 
gas equation as:

Since the PDE Eq. (B26) is only dependent on the Boltz-
mann variable, it is re-written as an ODE in the form:
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