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Abstract
Diffusive transport in porous media is a complex process in multi-scaled fractured media modeling. This paper presents a dif-
fusive transport model for non-Dacian flow in a naturally fractured reservoir with triple porosity and permeability. To address 
the non-Darcian flow behavior associated with fluid transport in fractured porous media, the Darcy/Forcheimer equation was 
used. A point-diffusive equation was obtained from mass conservation and the Darcy–Forcheimer momentum equation; this 
is used together with interface conditions to incorporate the microscopic properties of the domain. Subsequently, the resulting 
equation was spatially smoothed to obtain an effective macroscopic average model. The macroscopic model obtained, unlike 
the existing models, has a cross-diffusive term for mass transport by induced fluxes and a mass transfer term accounting 
for mass transfer between the matrix and the surrounding fractures via the interface. The numerical simulation displayed a 
horizontal-linear flow behavior in the fractured network instead of a radial flow in the matrix. The results further suggest 
that despite the fractures aiding in fluid transport, they enhance fluid production in the reservoir compared to the matrix.

Keywords Diffusion · Fractured reservoir · Darcy–Forchheimer equation · Volume averaging method · Closure problem · 
Triple-porosity/permeability model · Transfer function

Introduction

In recent times, modeling fluid transport in fractured res-
ervoirs piqued the interest of oilfield experts and profes-
sionals in reservoir modeling. Fractures existing in res-
ervoirs have a high-level effect on transport processes in 

reservoirs. It introduces secondary conduits, which makes 
the porous media more permeable, and hence more produc-
tive (Zhao et al. 2022). The fractures, on the other hand, 
have an adverse effect of increasing the rate of decline of 
fluid production, which may lead to early breakthrough—
a phenomenon in petroleum production that requires early 
injection (Bratton et al. 2006). The complexity of mod-
eling fluid transport in fractured reservoirs increases with 
the increasing level of fractures and their interaction with 
the matrix. The geometrical and physical properties of the 
fractured domain influenced by the presence of fractures 
also poses a significant challenge in reservoir modeling for 
diffusive transport processes. The inception of fractured 
reservoir modeling is identified in the works of Barenblatt 
et al. (1960) and Warren and Root (1963), which considered 
modeling transport processes in the fractured medium as 
a dual continuum for the rock/matrix and fractures, with 
each continuum exhibiting different flow properties. This 
approach led to the development of dual-porosity and dual-
permeability models. Consequently, the triple-porosity 
and triple-permeability models for multi-scale fractured 
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reservoirs with the fractures considered at different length-
scales, and depending on fracture size were also developed.

The existing fractured reservoir models are based on 
laminar flow regime (Choquet 2004; Nakshatrala et  al. 
2016; Wei et al. 2018; Zhang et al. 2018), with few con-
sidering dual-porosity models for nonlinear flows (Altinörs 
and Onder 2010). According to Altinörs and Onder (2010) 
and Berre et al. (2019), the use of laminar flow assumption 
for fractured reservoir modeling is inaccurate, due to the 
high flow velocity and permeability in fractures, resulting 
in nonlinear flow behavior in fractured reservoirs (Barros-
Galvis et al. 2018). Another limitation identified with exist-
ing models is the representation of the transfer term, which 
accounts for mass transfer between the interacting domains; 
the matrix and its surrounding fractures. In existing mod-
els, mass transfer terms like those proposed in the work of 
Barenblatt et al. (1960) and Warren and Root (1963) for 
multi-continuum modeling only accounts for geometrical 
properties such as fracture-matrix interface area and physical 
properties like fracture-matrix permeability and fluid viscos-
ity (Berre et al. 2019). Moreover, in reactive systems, the 
gradient in concentrations in each of the interacting media 
induces a flux in the domain at the matrix-fracture interface. 
As a result, mass transfer between interacting domains may 
be affected not only by the geometrical and physical proper-
ties of the fractured domain, as well as the distribution and 
orientation of fractures, as reported in Berre et al., (2019) 
but also by cross-diffusion effects due to induced fluxes. As 
a result, in order to accurately represent the mass transfer 
term, the transfer coefficient must be extended or generalized 
to capture additional important domain properties. Diffusive 
transport in multi-phase systems has been extensively stud-
ied using the volume averaging theory concept (Borges da 
Silva et al. 2007; Whitaker  1999), which has the property 
of up-scaling by taking micro-scale information from the 
multi-phase system to the macroscopic scale level (Fran-
cisco et al. 2017). The method of volume averaging was 
successfully applied to transport problems in heterogeneous 
porous media for active and passive dispersion n the works 
of Ahmadi et al. (1998), Carbonell and Whitaker (1983) and 
Whitaker  (1999). This technique led to volume-averaged 
transport equations with effective diffusive coefficients and 
mass transfer terms which take into account additional geo-
metrical and physical properties of the domain.

In this work, fluid transport process for nonlinear flows 
in a multi-scale naturally fractured reservoir where the 
medium is assumed to have two different length-scales of 
fractures, �m (micro-fracture) and �M (macro-fracture), is 
considered. The matrix and the two scales of fracture net-
works are assumed to have different flow properties, in this 
case, thus making the medium heterogeneous. Unlike the 
existing models, the proposed model began with the devel-
opment of ’point‘ advective diffusive transport equation 

from the mass conservation equation and the Darcy–Forch-
heimer momentum equation in order to address the issue of 
nonlinear flow behavior in fractured domains. The volume 
averaging technique was then applied to the point-diffusive 
transport equation at the microscopic level to obtain a novel 
local volume averaged triple porosity and permeability 
model representing diffusive transport at the macroscopic 
level. The resulting model incorporates non-Darcian behav-
ior by using the Darcy–Forchheimer momentum equations. 
It also has cross-diffusive terms that take into account cross-
diffusion between interacting phases of the medium and a 
mass transfer term that considers the domain’s diffusive 
properties. Flow properties such as flow velocity and fluid 
viscosity are well captured in the transfer term, and it also 
addresses the issue of fracture orientation and varying frac-
ture interface areas. A detailed formulation, analysis and 
numerical results of the developed model are presented in 
the subsequent sections.

Micro‑scale boundary value problem 
for non‑Darcian flow in multi‑scale fractured 
porous media

We consider a multi-scale fractured porous media with three 
phase system, namely, the matrix, the micro-and the macro-
fracture networks; denoted as � -, �-and �-phase, respectively, 
illustrated in Fig. 1.

The diffusive transport process, which involves the mass 
transfer between the matrix and the 2-scale fracture networks 
were investigated in this study. At the matrix-fracture inter-
face, we proposed a sharp interface of zero thickness with 
no adsorption or desorption. The instantaneous flow veloci-
ties at the interacting interfaces ( � − � and � − � interfaces) 
equal the velocity normal to the interface. As a result, the 
pressure and the normal component of the pressure fluxes 
at the interacting interfaces are both continuous. The sin-
gle-phased fluid transport processes with non-Darcian flow 
behavior in the three-phase system are modeled as

where Φ, �, and � are, respectively, the porosity of the 
domain, fluid density and flow velocity. Fluid transfer occurs 
in fractures with a flow rate Q, that is proportional to the 
pressure drop, mathematically represented as;

Darcy empirically established an equation relating the flow 
velocity and the pressure drop given in Eq. 3 (Darcy et al. 
1856)

(1)�t(Φi�i) + ∇ ⋅ (�i�i) = 0 for i ∈ {�, �, �}

(2)Q ∝ −
�p

�x
.
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where K and � are, respectively, domain permeability and 
fluid viscosity. The concept of permeability in porous media 
has been empirically proven to be valid in two important 
conditions, thus; 1) the fluid must be Newtonian, and 2) 
inertial forces must be small enough in comparison to vis-
cous forces. This proves that for a porous medium with a 
characteristic pore scale l, the Reynolds number,

must be small enough where �, v, and � represent the fluid 
density, characteristic velocity and viscosity, respectively. 
As a result of the viscous drag forces which may be domi-
nant in the porous medium, the condition for the validity of 
Darcy flow in a porous medium is

According to Dukhan and Minjeur (2011), porous media 
exhibits different permeabilities depending on the flow 
velocities of the fluid in the medium. Hence, we may have 

(3)� = −
K

�

�p

�x

(4)Re =
�vl

�

Re < 1.

low flow velocities accounting for low permeable medium 
while high flow velocities gives rise to high permeable 
porous medium. Therefore, when a fluid in motion transits 
from low permeable medium to high permeable medium, 
the pressure drop ceases from being linear to nonlinear. In 
this flow regime, the Darcy flow concept no longer holds for 
high Re (Zolotukhin and Gayubov 2022). As a result, we use 
the Darcy–Forcheimer equation (5);

which incorporates the inertial term, ��‖�‖� that accounts 
for the nonlinear pressure drop where � =

c

KaΦb
 is a func-

tion of porosity and permeability, Ka is inertial permeability, 
and � is the flow velocity. Using the mass conservation Eq. 1 
and the Darcy–Forchheimer equation 5, we obtain the dif-
fusive transport equation for non-Darcian flow processes as;

where the diffusivity coefficient resulting from the nonlinear 
flow behavior is obtained as

(5)−∇Pi =
�

Ki

�i + �i�‖�i‖�i i ∈ {�, �, �}

(6)
c
i
Φ

i
�
t
(P

i
) + ∇ ⋅ (c

i
�
i
P
i
) − ∇ ⋅ (D

i
∇P

i
)

= 0 in phase i ∈ {�, �, �}.

Fig. 1  Fractured reservoir 
model
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depending on the geometrical properties of the domain.
The governing equations associated with the diffusive 

transport process considered in the three-phase system 
described in Fig. 1 are given as:

in the �− region and

in the �−region ( � ∈ {�, �}).
In addition to the interfacial boundary conditions BC1 

and BC2, BC3 and BC4 are the boundary conditions at 
the exits and entrances of the macroscopic region. It is 
important to note that BC3 and BC4 are only known in 
terms of average quantities at the macroscopic level. A�e , 
A�e denote the area of the entrances and exits of �-region 
and �-region, respectively, at the boundary of the macro-
scopic domain.

Spatial smoothing

To obtain the macroscopic transport equations that capture 
microscopic properties of the domain at the macroscopic 
level, the volume averaging method is employed. The macro-
scale variables are defined through spatial smoothing (aver-
aging) of the domain from the microscopic level. Here, we 
begin the averaging process by associating with every point 
in the macroscopic region an averaging volume (illustrated 
in Fig. 1) that is constant in space and time. Given the three-
phase system, we express the averaging volume, V.

Thus, the volume fraction, �i for each phase i in the averag-
ing volume can be expressed as

(7)D =
K

� + 2K��‖�‖

(8)c�Φ��t(P�) − ∇ ⋅ (D�∇P�) = 0 in phase �

(9)BC1: P�(�, t) = P�(�, t) at the � − � interface

(10)
BC2: (D�∇P�) ⋅ ��� = (D�∇P�) ⋅ ��� at the � − � interface

(11)
c�Φ��t(P�) − ∇ ⋅ (D�∇P�) = 0 in phase � ∈ {�, �}

(12)BC3: P�(�, t) = f (�, t) at A�e

(13)BC4: P�(�, t) = g(�, t) at A�e

(14)V = V� + V� + V� .

(15)�i =
Vi

V
i ∈ {�, �, �},

and further express the superficial average and intrinsic aver-
age of the pressure distribution in the averaging volume, 
respectively, as;

these are related by Eq. 17.

The average of the spatial derivative is defined using the 
spatial averaging theorem as

To begin with the up-scaling process, we consider first the 
flow interactions between the �-region and the �-region. Fol-
lowing the volume averaging theory and since the averag-
ing volume, V , is invariant in time, the average of the mass 
accumulation term can be simplified as

The spatial averaging theorem in Eq. 18 can be used to 
obtain the average of the diffusive term as;

which subsequently simplifies to

Using Eqs. 19 and 21 with similar simplifications for the �
-phase, the spatially smoothed equations for flow interaction 
between the �-region and the �-region are given in the form 
(in the �−region)

(16)⟨P�⟩ = 1

V ∫
V�

P�dV and ⟨P�⟩� =
1

V� ∫
V�

P�dV

(17)⟨P�⟩ = ��⟨P�⟩� .

(18)⟨∇P�⟩ = ∇⟨P�⟩� + 1

V ∫
A��

���P� dA

(19)

⟨cΦ�
t
(P�)⟩ = 1

V ∫
V�

cΦ�
t
(P�) dV

= cΦ�
t

⎛⎜⎜⎝
1

V ∫
V�

P� dV

⎞⎟⎟⎠
= cΦ�

t
⟨P�⟩.

(20)

⟨∇ ⋅ (D�∇P�)⟩ =∇ ⋅ ⟨D�∇P�⟩
+

1

V ∫
A��

��� ⋅ (D�∇P�) dA,

(21)

⟨∇ ⋅ (D�∇P�)⟩

= ∇ ⋅

⎡⎢⎢⎢⎣
D�

⎛⎜⎜⎜⎝
∇⟨P�⟩ + 1

V ∫
A��

���P� dA

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
+

1

V ∫
A��

��� ⋅ (D�∇P�) dA.



2515Journal of Petroleum Exploration and Production Technology (2022) 12:2511–2522 

1 3

and in the �-region we have

where the interfacial flux, 1
V ∫
A��

��� ⋅ (D�∇P�) dA contribut-

ing to mass transfer from �-region into �-region, is repre-
sented as (Quintard and Whitaker 1993)

to connect the (�, �) regions at the interface. The Sv� in the 
coefficient is the total interfacial surface area at the (�, �)
-interface. In this representation (Eqs. 22 and 23), the pre-
ferred intrinsic pressure variables describing the diffusive 
transport process is used, and the spatial deviation variables 
P̃� and P̃� are used in the diffusive integral terms according 
to the relation

The spatial deviation variables present in the volume-aver-
aged Eqs. (22) and (23) are to be estimated in terms of the 
averaged quantities, by developing a closure problem. This 
is done to obtain a closed form averaged transport equations 
at the macroscopic region.

Closure problem

In order to derive a macroscopic transport equation written 
only in terms of the averaged variables, we develop a closed 
form problem of the average transport Eqs. (22) and (23). This 
is made possible by developing a closure problem from which 

(22)

(cΦ)����t⟨P�⟩�

− ∇ ⋅

⎡⎢⎢⎢⎣
D�

⎛⎜⎜⎜⎝
��∇⟨P�⟩� + 1

V ∫
A��

��� P̃� dA

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
=

1

V ∫
A��

��� ⋅ (D�∇P�) dA

(23)

(cΦ)����t⟨P�⟩�

− ∇ ⋅

⎡
⎢⎢⎢⎣
D�

⎛
⎜⎜⎜⎝
��∇⟨P�⟩� + 1

V ∫
A��

���P̃� dA

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

=
1

V ∫
A��

��� ⋅ (D�∇P�) dA

(24)
1

V ∫
A��

��� ⋅ (D�∇P�) dA = Sv�D�(⟨P�⟩� − ⟨P�⟩�),

(25)P� = ⟨P�⟩ + P̃� and P� = ⟨P�⟩ + P̃� .

the deviation variables can be estimated in terms of the aver-
aged variables. By dividing the average transport equation by 
the phase volume fractions �� and �� ; and subtracting it from 
the original (point) equation, the resulting partial differential 
equation for the spatial deviation variable is derived in the � 
phase as;

with a similar representation in the �-phase.
To solve the spatial deviation equation at the microscopic 

level, we identify and work with terms that contribute to the 
diffusive transport equation, thus ‘non-contributing’ terms 
are removed from the equation by estimating and comparing 
terms at length-scales � (microscopic scale) and � (macro-
scopic scale), of the measuring volumes. From this, we obtain 
the boundary value problem for the spatial deviation variables 
as (in the �-phase);

and in the �-phase we have

Obviously, the solution to the boundary value problem for 
the deviation variables depends on the source and the bound-
ary data which are represented in the problem in terms of 
∇⟨P�⟩� , ∇⟨P�⟩� and (⟨P�⟩� − ⟨P�⟩�).

Following the works of Whitaker  (1999), Carbonell and 
Whitaker (1984) and Ahmadi et al. (1998), the spatial devia-
tions are expressed as functions of the macroscopic variables 
in terms of the closure variables � and s, written as;

(26)

cΦ�tP̃�
⏟⏟⏟

Accumulation

= ∇ ⋅ (D�∇P̃�)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

diffusion

+ �−1� ∇�� ⋅D�∇⟨P�⟩�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

diffusion

source

+ �−1� ∇ ⋅

⎛
⎜⎜⎜⎝

D�

V ∫
A��

��� P̃� dA

⎞
⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

non − local

diffusion

+ Sv�D�(⟨P�⟩� − ⟨P�⟩� , )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

interfacial flux

(27)

− ∇ ⋅ (D�∇P̃�) = Sv��
−1
� D�(⟨P�⟩� − ⟨P�⟩�)

BC1: P̃� = ⟨P�⟩ + P̃� − ⟨P�⟩ at A��

BC2: ��� ⋅ (D�∇P̃�) = ��� ⋅ (D�(∇⟨P�⟩ + ∇P̃�))

− ��� ⋅ (D�∇⟨P�⟩) at A��

(28)

− ∇ ⋅ (D�∇P̃�) = Sv��
−1
� D�(⟨P�⟩� − ⟨P�⟩�)

BC3: P̃�(�, t) = f (�, t) at A�e

BC4: P̃�(�, t) = g(�, t) at A�e
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The closure variables

The closure variables si and �i,�ij(i ≠ j), i, j ∈ {�, �} are, 
respectively, scalar and vector fields, that, respectively, maps 
the averaged quantities ⟨Pi⟩i and its spatial derivative ∇⟨Pi⟩i 
unto P̃i which is specified according to the boundary value 
problems (I–III), defined for the closure variables from the 
closure problems 27 and 28. The boundary value problem 
is developed by substituting the proposed solution given by 
Eq. 29 into the closure problem represented by Eqs. 27 and 
28. From this, we obtain the boundary value problem I as;

Problem I

Here, the boundary conditions BC3 and BC4 in Eq. (28) are 
replaced by spatially periodic conditions which allows us to 
write the periodic condition (Periodicity) for the closure var-
iables in Eq. 31. The periodicity condition is imposed since 
the boundary problem for the spatial deviation variables is 
to be solved for P̃� , at the microscopic scale of characteristic 
length � , and not the entire macroscopic region. To do this, 
we abandoned BC3 and BC4 in Eq. (28) imposed at A�e 
since it influences the P̃�-field in the representative micro-
scopic region on the order of � and replaced it by spatially 
periodic condition, if the representation is treated as a unit 
cell in spatially periodic porous medium (Whitaker  1999). 
Similar simplification is applied to obtain the second and 
third boundary value problems for the closure variables as;

Problem II

(29)

P̃� =�� ⋅ ∇⟨P�⟩� + ��� ⋅ ∇⟨P�⟩�
+ s�(⟨P�⟩� − ⟨P�⟩�)

P̃� =�� ⋅ ∇⟨P�⟩� + ��� ⋅ ∇⟨P�⟩�
+ s�(⟨P�⟩� − ⟨P�⟩�)

(30)

− ∇ ⋅ (D�∇��) = 0 in � phase

BC1: �� = ��� at � − � interface

BC2: ��� ⋅ (D�∇�� −D�∇���) = −���D�

at � − � interface

(31)

−∇ ⋅ (D�∇���) = 0 in � phase

Periodicity: ��(� + l
i
) = ��(�) ���(� + l

i
) = ���(�) i = 1, 2, 3

(32)

−∇ ⋅ (D�∇���) = 0 in � phase
BC1: �� = ���

BC2: ��� ⋅ (D�∇�� −D�∇���) = −���D�

at � - � interface

at � - � interface

Problem III

The closed form problem

The closed form problem representing diffusive transport 
equations at the macroscopic region is obtained by substi-
tuting the proposed solution in Eq. (29) into the volume-
averaged Eqs. (22) and (23). The diffusive term with the 
deviation variable can be simplified as follows;

where

Substituting the diffusive term into Eq. (29) leads to the �
-phase macroscopic equation,

which is further simplified as;

where

(33)

− ∇ ⋅ (D�∇��) = 0 in � phase

Periodicity: ��(� + li) = ��(�) ���(� + li) = ���(�)

i = 1, 2, 3

(34)
∇2s� = −Sv��

−1
� D�

BC1:s� = −s�

in � phase

at � - � interface
BC2:��� ⋅ (D�∇s� +D�∇s�) = 0 at � - � interface

(35)

∇2s� = −Sv��
−1
� D� in � phase

Periodicity: s�(� + li) = s�(�) s�(� + li) = s�(�)

i = 1, 2, 3

(36)

− ∇ ⋅

⎡
⎢⎢⎢⎣
D�

⎛
⎜⎜⎜⎝
��∇⟨P�⟩� + 1

V ∫
A��

��� P̃� dA

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

= −∇ ⋅ ��
�
�� ⋅ ∇⟨P�⟩� +��� ⋅ ∇⟨P�⟩�

�

− ��U�(⟨P�⟩� − ⟨P�⟩�)

(37)U� =
�−1� D�

V ∫
A��

���∇s� dA

(38)

(cΦ)����t⟨P�⟩� − ∇⋅

��
�
�� ⋅ ∇⟨P�⟩� +��� ⋅ ∇⟨P�⟩�

�

= ��U�(⟨P�⟩� − ⟨P�⟩�) − Sv�D�(⟨P�⟩� − ⟨P�⟩�)

(39)

c�Φ��t⟨P�⟩� − ∇⋅�
�� ⋅ ∇⟨P�⟩� +��� ⋅ ∇⟨P�⟩�

�

= R��(⟨P�⟩� − ⟨P�⟩�)
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and the coefficient of the mass transfer term, R�� is obtained 
as;

Similarly, the �-phase macroscopic transport equation is 
obtained as;

Next, spatial smoothing for transport equations for flow 
interactions between the �-phase and the �-phase also leads 
to �-phase and �-phase macroscopic transport equations, 
respectively, obtained as (in the �–phase);

and in the �-phase as;

where the boundary value problem for the closure variables 
si , �i, and �ij(i ≠ j) i, j ∈ {�, �} are defined similarly to 
problems I–III obtained in “The closure variables” section.

The macro‑scale transport equations 
for multi‑scale fractured reservoirs

To fully represent transport processes in the model proposed 
for the �, �, �-system, the two cross-diffusive terms and the 
mass transfer terms (i.e., ��� ⋅ ∇⟨P�⟩� , ��� ⋅ ∇⟨P�⟩� and 
R��(⟨P�⟩� − ⟨P�⟩�) , R�� (⟨P�⟩� − ⟨P�⟩�) ) appearing in the 

(40)
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volume averaged transport equation in the �-region for flow 
interaction between the � and that of �-and �-region needs to 
be accounted for in the matrix model. This leads to a system 
of volume averaged transport equation for diffusive transport 
in the multi-scale fractured reservoir as;

where the effective diffusivity and cross-diffusive coeffi-
cients are, respectively, represented as; (for i, j ∈ {�, �, �} , 
i ≠ j)

and the coefficient of the mass transfer term, Rij is repre-
sented as;

Input parameters

The input parameters for the numerical simulation are shown 
in Table 1. To accurately represent the permeability of the 
domain for the numerical simulation, these values were 
evaluated from the properties of each of the domain using 
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the relations proposed in the work of Tiab and Donaldson 
(2016) for fractures and matrix, respectively, defined as

where the micro-and macro-fracture heights are given, 
respectively, as h� = 100 and h� = 115 , and the fracture 
aperture e

Vf
 defined in Table 1.

Numerical results and discussion

The cross‑diffusive terms and transfer function

The cross-diffusive term in the averaged transport equations 
results from flux contribution induce by one domain on the 
other interacting domain. Since the concentration gradients 
in either of the interacting domains induces a flux on each 
other, the cross-diffusive term becomes an important com-
ponent in this model, which describes diffusion between 
the matrix and the fractures. It is observed that the cross-
diffusive term with coefficient

contributes to the fluxes of each interacting domain (describ-
ing the diffusion between matrix and fracture) by a signifi-
cant amount when compared to the effective diffusive term 
with coefficient

(50)
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.

The effective diffusive coefficient obtained in this model has 
surface normal component �ij , that depends on flow velocity, 
fluid density and viscosity and porosity of domain, which 
significantly affects pressure distribution of the domain.

The transfer term with coefficient

obtained in this model, captures, in addition to the geometri-
cal and physical properties of the domain, diffusive proper-
ties at the interacting interface, which have high influence 
on fluid transport processes, and the surface normal vector 
that deals with issues of fracture orientation. Flow veloci-
ties, �i of the interacting domains is another flow property 
captured in the transfer function which affects mass trans-
fer process by either increasing or decreasing the diffusive 
coefficient Di . The transfer function obtained in this model 
is more accurate compared to that proposed by Barenblatt 
et al. (1960), which is less accurate according to Berre et al. 
(2019).

Pressure profiles

We discuss in this section the pressure profiles from the 
numerical simulation of the proposed model. A fractured 
reservoir producing at a constant rate is considered, where 
the injector and the producer are set at x = 0 and x = 1 , 
respectively. The numerical results were obtained using 
the finite element method via variational formulation of the 
strong form of the problem and the solution sought for in a 
Hilbert-Sobolev space. Figure 2 shows the flow distribution 
in the matrix domain of the fractured porous medium. The 
matrix distribution shows radial movement from a higher 
concentrated region toward the surrounding fractures and/
or the exits of the domain. It is observed that, with time, 
the pressure distribution in the matrix domain exhibits a 
slightly short transient behavior preceding a quasi-steady-
state regime—a phenomena which is identical to that of tran-
sient fractured porous media models (Bourdet et al. 1984; 
Warren and Root 1963).

The flow transport process in the fractures for micro-and 
macro-fracture domains is shown, respectively, in Fig. 3 and 
4, exhibiting radial linear flow movement for both domains. 
Fractures act as conduits and aid in fluid production. A higher 
concentration of the pressure values is observed from the pres-
sure profiles at the inlet (the injector, x = 0 ) with decreasing 

(53)Rij = �−1
i
Di

⎛
⎜⎜⎜⎝
1

V ∫
Aij

�ij∇si dA − svi

⎞
⎟⎟⎟⎠
,

Table 1  Table of input parameter values for simulation of proposed 
model (Wei et al. 2018)

Domain porosity, �

T (yrs) � (kg/m3) � (Pa⋅s) �� �� ��

5 1 0.001 0.40 0.05 0.04

Compressibility (m2/N) Fracture aperture 
(Microns)

C� C� C� e
V�

e
V�

0.15 0.18 0.20 20 55
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concentration across the flow path to the outlet (the producer, 
x = 1 ). This allows mass transfer from the inlet to the outlet of 
the domain in a radial, linear behavior. Due to the radial, linear 
movement in the fractures compared to the radial movement in 
the matrix, mass transport is also high, enhancing productivity. 
We note that a steady-state flow regime is also observed in the 
fractures after a short transient flow regime.

Conclusions

Fractures in porous media occur at different scales, and 
this introduces high heterogeneity due to the different flow 
properties that occur at different regions of the fractured 
domain. Moreover, due to the presence of fractures, high 
flow velocity and permeability occur, causing a deviation 

Fig. 2  Increasing pressure distribution in the matrix domain with increasing time
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from the laminar flow regime to non-Darcian flow behav-
ior. As a result, we propose a multi-scale fractured res-
ervoir model to study the complex transport process in 
naturally fractured reservoirs, where non-Darcian flow 
behavior is captured using the Darcy–Forcheimer flow 
equation. The model is a multi-continuum model con-
sisting of the matrix surrounded by micro-fracture and 
macro-fracture networks leading to triple porosity and 
triple permeability model. In this model, each continuum 
has its own porosity, permeability and compressibility 

properties. An up-scaling technique is used to accurately 
represent diffusive transport processes and mass transfer 
between interacting phases for the proposed fractured 
reservoir model, which captures flow properties from the 
microscopic level to the macroscopic level. The local vol-
ume-averaged transport equations (VATE) proposed in our 
study have better features and are more robust for study-
ing diffusive transport processes in naturally fractured 
reservoirs than the existing triple-porosity permeability 
model like that proposed in Whitaker  (1999), Wu et al. 

Fig. 3  Pressure distribution in the micro-fracture domain showing a radial-linear flow behavior
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(2004) and Zhang et al. (2018). These existing models has 
no cross-diffusive properties, has constant diffusive coef-
ficients that are independent of microscopic properties, 
including fluid density, flow velocity and fluid viscosity, 
and also assume the flow to be linear, which according to 
Bere et al., (2019) is inaccurate. Numerical simulations of 
the proposed model capture the expected behavior of pres-
sure profiles in multi-scaled naturally fractured reservoirs.
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