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Abstract
Study has shown that the precipitation of asphaltenes could be the most detrimental mechanism that significantly influ-
ences well productivity during crude oil processing. The flow of the crude oil could seriously be affected if the effect of the 
asphaltenes is not inhibited. This study aims to investigate the effect of  TiO2-based nanofluid in stabilizing crude oil flow. The 
effect of the ratio of  TiO2/SiO2 nanocomposite in the organic nanofluid, the salinity of the nanofluid, and pH on the amount 
of organic solvent (n-heptane) added to stabilize the crude oil flow was investigated using Gaussian Process Progression 
(GPR) with five kernel functions [exponential square kernel (model 1), rotational quadratic (model 2), Matern 5/2 (model 
3), exponential (model 4), and non-isotopic rotational quadratic (model 5)]. The GPR using the various kernel function had 
good modeling of the relationship between the ratio of  TiO2/SiO2 nanocomposite in the organic nanofluid, the salinity of 
the nanofluid, the pH, and the amount of organic solvent (n-heptane) added to stabilize the crude oil flow. This is evidence 
from the R2 of 0.820, 0.999, 0.999, 0.999, 0.999 for model 1, model 2, model 3, model 4, and model 5, respectively. Each 
of the models had low prediction errors as indicated by the MSE, RMSE, and MAE. Based on the sensitivity analysis, the 
ratio of  TiO2/SiO2 nanocomposite in the organic nanofluid had the most significant influence on the amount of n-heptane 
added to stabilize the crude oil.
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Introduction

The stability of crude oil flow is often disrupted due to 
the presence of asphaltene, a high molecular weight solid 
component of crude oil weight (Du et al. 2018; Setoodeh 
et al. 2018b). The presence of asphaltene often caused a 

series of challenges in various stages of crude oil process-
ing (Setoodeh et al. 2018a). One of the serious challenges 
is the difficulties in transporting crude oil by pipeline over 
long distances under a variety of climatic circumstances 
(Sivakumar et al. 2018). As a result of this. the presence 
of asphaltene in crude can lead to significant operational 
and production issues (Chala et al. 2018). Hence, serious 
research efforts have been made to investigate its effects and 
possibilities of mitigating its effects (Khaleel et al. 2020; 
Enayat et al. 2021). Asphaltene deposition after  CO2 injec-
tion in conventional oil reservoirs has been the subject of 
several investigations (Enayat et al. 2021). Studies have 
shown that an increase in pressure below  CO2 minimum 
miscibility pressure (MMP) causes asphaltene deposition in 
sandstone to increase, while above  CO2 MMP an increase in 
pressure causes asphaltene deposition to decrease (Soroush 
et al. 2014). In a similar study, cycle gas injection was used 
by Shen and Sheng (2018) to study asphaltene formation 
in the Eagle Ford shale. The asphaltene precipitation and 
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deposition were studied using filters of 30 nm, 100 nm, and 
200 nm. The finding revealed that there was a substantial 
permeability degradation due to the presence of asphaltene.

Different approaches have been investigated to improve 
crude oil stability by mitigating the effect of asphaltene 
(Fakher et al. 2020). One of such strategy is the use of an 
inhibitor to prevent or delay asphaltene precipitation in crude 
oil (Mohammadi et al. 2011). Studies have shown that when 
asphaltene particles in oil are exposed to  TiO2 nanofluids in 
static circumstances, it was found that the asphaltenes were 
shown to be more stable when exposed to  TiO2 in organic-
based nanofluids in an acidic environment (Mohammadi 
and Richon 2007; Ghasemi et al. 2020, 2021). In a further 
study, Mohammadi et al. (2011) explored the use of  TiO2, 
 SiO2, and  ZrO2-based nanofluids as inhibitors to asphaltene 
precipitation in crude oil. The study revealed that n-Heptane 
was shown to be much more effective in destabilizing col-
loidal asphaltene in the presence of  TiO2 nanofluids at pH 
values below 4. The mechanistic, modeling and optimiza-
tion of  TiO2/SiO2 nanofluids as an inhibitor for the stability 
of asphaltene particles in crude oil has been reported by 
Mohammadi et al. (2017). The results show that there is 
a strong correlation between asphaltene adsorption on the 
surface of the particles and the onset point of the nanocom-
posites made of 80%  TiO2.

For efficient stabilization of the asphaltene in the crude 
oil, it is important to study the relationship between the 
pH of the medium, the composition of the nanoparticles in 
the nanofluid, the salinity, and the organic solvents using 
machine learning algorithms such as Gaussian Process 
Regression (GPR). The GPR is a nonparametric machine 
learning algorithm that employs Bayesian method to regres-
sion (Gao et al. 2018; Ebrahimi et al. 2021). The GPR has 
the capacity to operate effectively with limited datasets and 
provide uncertainty assessments on the predictions of the 
targeted output (Chen et al. 2018). The GPR is a robust 
machine learning tool that has been used to model several 
processes (Taki et al. 2016; Liu et al. 2020; Van Dao et al. 
2020). The predictive capability of the GPR has been dem-
onstrated in modeling the prediction of future capacity and 
the remaining useful life of batteries (Richardson and Leach-
man 2017). Shen and Sheng (2018) revealed the robustness 
of employing GPR in modeling short-term the prediction of 

solar power to curb its volatile nature and minimize the level 
of uncertainty in power systems. Similarly, GPR has also 
been used to model the relationship between capacity, stor-
age temperature, and state-of-charge (Liu et al. 2020). The 
GPR model displayed a robust prediction performance of 
high accuracy and accurate generalization ability (Mageed 
et al. 2020; Shnain et al. 2022). Extensive literature search 
shows that the use of GPR for modeling the relationship 
between parameters such as the pH, salinity, and the ratio 
of  TiO2/SiO2 nanoparticle in the nanofluids and the amount 
of n-heptane in crude oil has not been reported. This study, 
therefore, focuses on the application of GPR to model the 
effect of pH, salinity, and the ratio of  TiO2/SiO2 nanoparti-
cles in the nanofluids on the amount of n-heptane in stabiliz-
ing crude oil flow.

Experimental and model configuration

The onset of asphaltene flocculation may be measured using 
a variety of techniques that have been developed (Moham-
madi et al. 2017). A detailed description of the materials and 
the experimental procedure has been reported by Moham-
madi et al. (2017). The flocculation onset of crude oils may 
be determined by introducing a precipitating agent, gener-
ally a straight-chain alkane, such as n-heptane, to the crude 
oil. When asphaltenes are flocculated out of the crude oil 
medium, the onset point is defined as the minimal quantity 
of the precipitant agent. As reported by Mohammadi et al. 
(2017), the n-heptane titration technique was used to deter-
mine the flocculation points of crude oils. The dataset for 
the modeling consists of the  TiO2/SiO2 nanocomposite com-
position in the nanofluid, the salinity, the pH, and the maxi-
mum volume of the n-heptane added to crude oil. The set of 
data was generated using a central composite experimental 
design. The detailed descriptive statistics of the parameters 
used for the modeling are summarized in Table 1. These 
parameters include the range, the minimum, and maximum 
values, the mean, standard deviation, and the variance.

The choice of GPR as a sort of Bayesian non-parametric 
machine learning approach used in this study can be attrib-
uted to its tendency to learn complicated systems while deal-
ing with uncertainty in a systematic manner (Alghamdi et al. 

Table 1  Descriptive statistics 
of the parameters used for the 
modeling

Parameters Range Minimum Maximum Mean Std. deviation Variance

TiO2/SiO2 nano-
particle ratio

0.05 0.00 0.05 0.03 0.01 0.00

Salinity 5.00 3.00 8.00 5.50 1.38 1.89
pH 7.00 2.00 9.00 5.50 1.92 3.69
n-heptane vol-

ume added to 
crude oil

0.41 0.38 0.79 0.57 0.11 0.01
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2020; Liu et al. 2020). The GPR is structured in such a way 
that the regression learner acquires knowledge of distribu-
tion over functions by acquiring knowledge of the mean and 
covariance functions at x, represented by f (x) in Eq. (1). The 
GPR hyperparameters of length-scale and marginal standard 
deviation help to control the frequency of functions and the 
magnitude of the range of function, respectively.

where m depicts the mean function, k is the kernel functions, 
x is the matric of the training features,

The training dataset which could consist of a set of N data 
is presented in Eq. (2),

While the test dataset which could consist of a set of N 
data is represented in Eq. (3)

where X∗ depicts the matric text points, y is the vector train-
ing target, X is the feature (s).

The detailed steps involved in configuring the GPR model 
are represented in Fig. 1. These steps include data acqui-
sition through the experimental design, data pre-process-
ing, data uploading into the regression learning platform 
in MATLAB (version 2019a, MathWorks Inc.) environ-
ment, modeling configuration by setting up the parameters, 
training of the model, performance analysis using various 

(1)f (x) = GP
(

m(x), kx, x�
)

(2)�train = (X, y) =
{

xi, yi
}N

i=1,
xi ∈ �d, y ∈ �

(3)�test = X∗ =
{

x∗,i
}N

i=1,
x∗,i ∈ �d

matrices such as coefficient determination (R2), mean stand-
ard error (MSE), root mean square error (RMSE) and mean 
absolute error (MAE). Once the performance of the GPR 
model is satisfactory, the model is deployed for modeling the 
prediction of the appropriate amount of n-heptane require to 
stabilize the crude oil flow. A typical topology of the GPR 
network is depicted in Fig. 2. It consists of a set of predictors 
(x1–x3) and the targeted output (y1–y2). Each of the predicted 

Fig. 1  Stages involved in the 
configuration of the Gaussian 
process regression model

Data acquisition  

Data Pre-processing  

Data Uploading  

Model Configuration 

Model Training   

Performance analysis   

Model deployment

High R2, low MSElow R2, High MSE

Fig. 2  The topology of the Gaussian process regression model show-
ing the weight (w) associated with the input units
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is linked with the hidden layer using hidden neurons. The 
hidden neurons are assigned a weight (w) and bias (b). The 
predictors consist of the ratio of  TiO2/SiO2 nanoparticles, 
salinity, and pH while the targeted output consists of the 
amount of the n-heptane added to stabilize the crude oil. A 
total of 17 experimental runs were employed to train and 
test the models.  

Results and discussion

The effect of the interaction of parameters with one another 
is depicted in Fig. 3. The interaction effect of salinity and 
the ratio of  TiO2/SiO2 nanoparticles in the nanofluid on the 
amount of the n-heptane added to stabilize the crude oil is 
depicted in Fig. 3a. Both salinity and the ratio of  TiO2/SiO2 
nanoparticles in the organic solvent influence the amount 
of n-heptane added to stabilize the crude oil. The effect of 
the salinity on the amount of n-heptane added to stabilize 
the crude oil was significant until 6 wt% and thereafter a 
decline in the n-heptane added to stabilize the crude oil was 
observed as the salinity increases. This implies that salinity 
up to 6wt% is suitable for the right amount of n-heptane 
needed to stabilize the crude oil. On the other hand, the 
increase in the ratio of  TiO2/SiO2 nanoparticle in the nano-
fluid significantly influences the amount of n-heptane require 
to stabilize the crude oil which is also similar to the trend 
observed in Fig. 3b for the interaction between the pH and 
the ratio of  TiO2/SiO2 nanoparticle in the nanofluid. An 
increasing effect on the amount of n-heptane needed to sta-
bilize the crude oil is noticeable at a pH range of 1–7. There-
after, a declining effect was observed at a pH greater than 7. 
The interaction between pH and salinity depicted in Fig. 3c 
does not have a regular pattern as shown in Figs. 3a, c. Both 
pH and salinity have undulating effects on the amount of 
n-heptane required to stabilize the crude oil from the effect 
of asphaltene. Modeling the stability of crude oil from the 
effect of asphaltene requires detailed knowledge of are the 
various parameters are interrelated with the targeted out-
puts. The interaction effect of different nanoparticles such 
as  SiO2, MgO, and  Al2O3 for the adsorption of asphaltene 
has been reported by Madhi et al. (2017). The study revealed 
that the  SiO2, MgO, and  Al2O3 nanoparticles have a higher 
affinity toward asphaltenes. Hence, the injection of such 
nanoparticles in porous media would significantly improve 
oil recovery.

In this study, five different models namely squared expo-
nential GPR (model 1), rotational quadratic GPR (model 
2), Matern 5/2 GPR (model 3), exponential GPR (model 
4), and optimizable GPR (mode5). The performance of 
the various GPR models used in this study as a function 
of the various statistical analysis is summarized in Table 2 
and depicted in Figs. 4, 5, 6, 7, 8, 9. Figure 4 depicts the 

dispersion and the regression plots obtained from the pre-
diction of the amount of n-heptane required to stabilize the 
effect of asphaltene using model 1. The plot in Fig. 4a shows 
that the observed and the predicted values are to a large 
extent correlated. Using the squared exponential kernel for 
the GPR model resulted in the prediction of the amount of 
n-heptane required to stabilize the crude oil resulting in R2 
of 0.820 (Fig. 4b). This implies that 82% of the datasets can 
be explained and generalized using the GPR model with a 
squared exponential kernel. The analysis of the errors shows 
that RMSE, MSE, MAE values of 0.047, 2.27 ×  10–2, and 
3.97 ×  10–2, respectively were obtained for the prediction of 
the amount of n-heptane added to the crude oil. The perfor-
mance of the GPR model using the squared exponential ker-
nel reported in this study is consistent with that reported by 
Van Dao et al. (2020) for high-performance concrete com-
pressive strength prediction. An R2 of 0.882 with RMSE, 
and MAE of 5.736, and 4.143, respectively. Also, the use 
of a squared exponential kernel for GPR in the prediction 
of fragmentation in surface mines has been reported by Gao 
et al. (2018). The model resulted in robust prediction with 
an R2 of 0.948 and a prediction error of 2.02 based on the 
RMSE.

The performance of GPR with rotational quadratic 
kernel in predicting the amount of n-heptane required to 
stabilize the crude oil based on dispersion and regression 
plot is shown in Fig. 5. Figure 5a shows that the observed 
and the predicted values are closely related. This may be 
validated further from Fig. 5b resulting in an R2 of 0.990. 
This implies that the rotational quadratic kernel enhances 
the performance of the GPR to be able to learn the rela-
tionship between input parameters and the targeted output. 
The robustness of the GPR with the rotational quadratic ker-
nel can also be confirmed from the error analysis as indi-
cated with low values of RMSE, MSE, and MAE shown in 
Table 2. The performance of the rotational quadratic kernel-
based GPR model used in this study is consistent with those 
reported in the literature. Gao et al. (2018) reported an R2 
of 0.936 for the prediction of rock fragmentation in surface 
mines with an RMSE of 2.18. The predictive modeling of 
total acid and basic number in engine oils using Rotational 
Quadratic GPR has been reported by Macián et al. (2021). 
The excellent performance of the model was proven with an 
R2 of 0.983 and RMSE of 0.105. Similar to the performance 
of the Rotational Quadratic GPR, the GPR with Matern 5/2 
kernel also displayed a robust performance as indicated by 
the dispersion and regression plots in Fig. 6. There is a prox-
imity between the observed n-heptane added to the crude oil 
and the forecasted values as displayed in Fig. 6a. This shows 
that the Matern 5/2 kernel also influences the performance 
of the GPR mode in learning the relationship between the 
input parameters and the targeted output. The prediction 
accuracy of the model can be proven further in Fig. 6b with 
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Fig. 3  Effect of a salinity and 
 TiO2/SiO2 nanoparticle ratio b 
pH and salinity and  TiO2/SiO2 
nanoparticle ratio c pH and 
salinity of the n-heptane volume 
added to the crude oil



2434 Journal of Petroleum Exploration and Production Technology (2022) 12:2429–2439

1 3

an R2 of 0.999. This is an indication that the GRP model 
with Matern 5/2 kernel generalized well using the datasets 
with RMSE, MSE, and MAE of 0.011, 1.43 ×  10–4, and 
9.15 ×  10–2, respectively. The tendency of the Matern 5/2 
GPR model to have a good prediction can be attributed to 
the ability of the spectral densities of the stationary kernel 
to create Fourier transforms of the input signals. The perfor-
mance of the GRP model with the Matern 5/2 kernel used in 
this study is consistent with that reported in the literature. 
Alghamdi et al. (2020) employed Matern 5/2-based GPR 

for the prediction of non-invasive continuous blood pressure 
from cuff oscillometric signals with R2 of 0.700 and RMSE 
of 7.500. The Matern 5/2 GPR model used in this study had 
a better prediction compared to that reported by Alghamdi 
et al. (2020) probably due to the nature of the datasets. The 
prediction of combined terrestrial evapotranspiration index 
over Large River Basin Based using Matern 5/2 kernel for 
GPR has been reported by Elbeltagi et al. (2021). The pre-
diction of the combined terrestrial evapotranspiration index 

Table 2  Performance analysis 
of the various GPR models used 
in this study

Evaluation metrics Model 1 Model 2 Model 3 Model 4 Model 5

RMSE 0.047 0.012 0.011 0.011 0.01
R2 0.820 0.990 0.990 0.990 0.990
MSE 2.27 ×  10–2 1.36 ×  10–4 1.43 ×  10–4 1.14 ×  10–4 1.107 ×  10–4

MAE 3.97 ×  10–2 8.83 ×  10–3 9.15 ×  10–2 7.9 ×  10–3 7.01 ×  10–3

Prediction speed 260 29 2300 6400 28
Training time (obs/sec) 48.25 19.74 2.49 1.275 200.55

Fig. 4  The performance of GPR with exponential square kernel based 
on the a dispersion plots b regression plot

Fig. 5  The performance of GPR with rotational quadratic kernel 
based on the a dispersion plots b regression plot
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over the Large River Basin Based using the Matern 5/2 GPR 
model resulted in R2 of 0.75 and RMSE of 0.39.

The performance of the GPR with the exponential kernel 
as a function of the dispersion and regression plots in pre-
dicting the amount of n-heptane required stabilized crude oil 
is depicted in Fig. 7. Similar to the GPR with exponential 
square and rotational quadratic kernels, the use of expo-
nential kernels also enhances the performance of the GPR. 
Figure 7a revealed that the measured amount of n-heptane 
required to stabilize the crude oil strongly correlates with the 
predicted amount of n-heptane. The R2 of 0.999 estimated 
from Fig. 7b is an indication of the robustness of the expo-
nential GPR to model the relationship between the input 
and output parameters. Hence, over 99% of the datasets are 
well-learned by the model and thereby have a good predic-
tion. The robust performance of the exponential has been 
reported in the literature. The use of GPR with exponential 
kernel for the prediction of non-invasive continuous blood 
pressure from cuff oscillometric signals has been reported 
by Alghamdi et al. (2020). The R2 of 0.925 implies that the 
predicted output was strongly correlated with the observed 

values with RMSE of 4.883. Also, Amankwaa-Kyeremeh 
et al. (2021) reported a robust performance of exponential 
GPR used for the prediction of rougher copper recovery. An 
R2 of 0.981 and RMSE of 0.17 were obtained for the predic-
tion of the cooper recovering which is an indication that the 
predicted values are strongly correlated with the observed 
values with minimum prediction error.

The GPR algorithm was optimized using a non-isotopic 
rotational quadratic kernel function as shown in Fig. 8. The 
optimized GPR was obtained after 5 iterations, the points 
at which the least MSE was obtained. The performance 
of the optimized GPR as a function of the dispersion and 
regression plots is presented in Fig. 9. Figure 9a shows that 
the observed amount of n-heptane added to stabilize the 
crude oil correlates significantly with the forecast values 
by the optimized GPR. This can be validated further from 
in Fig. 9b with an R2 of 0.999. Compared to the other GPR 
models, the optimized GPR model displayed the lowest MSE 
of 1.107 ×  10–4. The residual analysis for the prediction of 
the amount of n-heptane added to stabilize the crude oil is 

Fig. 6  The performance of GPR with Matern 5/2 kernel based on the 
a dispersion plots b regression plot

Fig. 7  The performance of GPR with exponential kernel based on the 
a dispersion plots b regression plot
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depicted in Fig. 10. The analysis shows that residuals of ± 
0.08, ± 0.025, ± 0.013, ± 0.015 and ± 0.008 , respectively for 
model 1, model 2, model 3, model 4, and model 5, respec-
tively (Figs. 10a–e). This further confirms that model 5 
which is the optimized GPR had the least residual, an indi-
cation of its superior performance compared to the other 
models. The sensitivity analysis to determine the influence 
of the input parameters on the predicted output by the opti-
mized model using modified Garson algorithms is depicted 
in Fig. 11. The analysis shows that all the three input param-
eters significantly influence the predicted n-heptane amount 
added to stabilize the crude oil. However, the greatest influ-
ence on the predicted output was offered by the ratio of the 
 TiO2/SiO2 nanoparticles in the nanofluids which is consist-
ent with that reported in the literature.

Conclusion

This study examined the performance of Gaussian Process 
Regression for the prediction of the amount of n-heptane 
require to stabilize crude flow using different kernel func-
tions such as in exponential square kernel (model 1), rota-
tional quadratic (model 2), Matern 5/2 (model 3), expo-
nential (model 4), and non-isotopic rotational quadratic 
(model 5). The GPR models were robust in modeling the 
non-linear relationship between the ratio of  TiO2/SiO2 
nanocomposite in the organic nanofluid, the salinity of 
the nanofluid, and pH of the solvent (n-heptane) added to 
stabilize the crude oil flow. As indicated by the R2 > 0.8 for 
all the models, the predicted n-heptane require to stabilize 
the crude oil flow is strongly correlated with the observed 
values. The various error analysis using MSE, RMSE, and 

Fig. 8  The minimum MSE 
obtained for the optimized GPR 
for the various iteration

Fig. 9  The performance of optimizable GPR based on the a disper-
sion plots b regression plot
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Fig. 10  The residual analysis for the prediction of the amount of n-heptane added to stabilize the crude oil using a model 1 b model 2 c model 3 
d model 4 e model 5
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MAE shows very small prediction errors using the various 
models. However, the optimized GPR had the best per-
formance based on the least prediction error. The three 
parameters were observed to strongly influenced the model 
output according to the input analysis. The ratio of  TiO2/
SiO2 nanocomposite in the organic nanofluid had the most 
significant influence on the model output. The influence 
of the input parameters on the model output can be ranked 
as the ratio of  TiO2/SiO2 nanocomposite in the organic 
nanofluid > salinity > pH. This study has demonstrated the 
importance of nanoparticles addition to nanofluid used to 
stabilized crude oil flow from a modeling perspective.
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