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Abstract
Deformation bands (DB) are known to influence porosity and permeability in sandstones. This study aims to predict the 
occurrence of DB and to quantify their impact on reservoir properties based on field measurements in the steeply dipping limb 
of a kilometer-scale fold in Yasamal Valley, western South Caspian Basin. An integrated approach of characterizing bands and 
their effect on reservoir properties included measurements of natural gamma radioactivity and permeability using portable 
tools, along with bed dip and the count of DB across distinct facies. A set of core analyses was performed on outcrop plugs 
with and without bands to estimate the alteration of rock properties at the pore scale. Interpretation of outcrop gamma-ray 
data indicates the absence of bands in Balakhany sandstones containing shale volume greater than 18% for unconsolidated 
and 32% for calcite-rich facies. A high amount of calcite cement appears to increase the number of DB. A poor, positive 
trend between bed dip and DB concentration was identified. We show that net to gross, defined as the thickness fraction of 
sandstone bound by mudstones, is among the parameters controlling the occurrence of bands. Samples containing a single 
DB show a 33% and 3% decrease in permeability and porosity, respectively, relative to the host rock. We reveal a new set of 
lithological and petrophysical factors influencing DB occurrence. This study offers a direct tool that can be applied in sub-
surface reservoir analogs to predict the occurrence and concentration of DB and estimate their influence on rock properties.
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Introduction

Fluid flow in reservoir rocks can be heavily influenced by 
naturally occurring, deformation-related features depending 
on their type and distribution (Tsang and Neretnieks 1998; 
Rotevatn et al. 2009; Zhou et al. 2014; Zuluaga et al. 2016). 
The current study is concerned with deformation bands 
(DB)—tabular structures forming in brittle porous granular 
media that were extensively investigated by several authors. 

One of the pioneering studies about DB was done in Entrada 
and Navajo sandstones by Aydin (1978), who recognized 
such structures as small faults with displacements ranging 
from a few millimeters to a few centimeters, which is below 
seismic resolution and cannot be readily detected by con-
ventional well logs. There are only few studies examining 
formation of deformation bands and their influence on rock 
properties in subsurface fields (Wilkins et al. 2020; Liu et al. 
2021). Therefore, more efforts were put to characterize them 
from outcrop analogs (e.g., Sanderson 2016; Gambino et al. 
2019). Since deformation bands are known to influence the 
fluid flow in porous media, attempts were made to predict 
their occurrence in a rock volume (Das et al. 2011; Robert 
et al. 2019; Wu et al. 2020) and quantify their impact at 
pore (Atilla and Ahmadov 2009; Das et al. 2013) and reser-
voir (Botter et al. 2016; Wilson et al. 2021; Pourmalek et al. 
2021) scales.
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In the present-day literature, deformation bands are 
known as strain localization features forming in highly 
porous sandstones (e.g., Shipton and Cowie 2001; Fossen 
et al. 2007; Elphick et al. 2021) and are classified into sev-
eral types (disaggregation bands, phyllosilicate bands, cata-
clastic bands, and solution and cementation bands) based 
on deformation mechanisms, leading to different petro-
physical properties (Fossen et al. 2007). This depends on 
the kinematic and mechanic response of host rock grains to 
applied dynamical processes, resulting in grain reorganiza-
tion mainly by sliding, rotation, and/or fracturing. Based 
on a numerical study, Xiong et al. (2021) suggested that 
porosity and pore structure are the primary controls in the 
evolution of failure mode with confining pressure. The type 
of deformation bands, on the other hand, is controlled by 
intrinsic rock properties, including mineralogy, grain round-
ness, sorting, etc. (Fossen et al. 2017). Based on mechanical 
data and microstructural observations, Tembe et al. (2008) 
demonstrated that deformation bands are characterized 
to be the dominant mechanism of rock failure in arkosic 
sandstones in the transitional regime from brittle faulting 
to cataclastic flow. Beke et al. (2019) suggested that the 
evolution of deformation bands is primarily controlled by 
burial history: DB gradually change from disaggregation to 
cataclastic bands with increasing burial depth. Fossen et al. 
(2017) reviewed that the tectonic regime plays a dominant 
role in the distribution and organization of DB in porous 
sandstone. That is, in contractional tectonic settings, DB are 
widely distributed in space in response to the higher mean 
stress applied, while sandstones exposed to extensional tec-
tonics tend to have localized behavior of DB distribution. It 
should be noted that primary lithologic heterogeneities and 
presence of faults influence the distribution of deformation 
bands (Soliva et al. 2016; Torabi et al. 2021) but do not 
control its general trend.

An extensive, qualitative analysis of direct and indirect 
factors controlling the formation of deformation bands was 
done by Fossen et al. (2017). Many variables complicate 
the quantitative prediction of deformation bands at the field 
scale, and differentiating their contribution often becomes 
a challenge. Nevertheless, Zuluaga et al. (2014) and Fossen 
et al. (2017) observed an increasing trend in the number of 
DB per meter with an increasing bed dip in fault-propagation 
folds, which can be considered as a representation of strain.

Millimeter-to-centimeter thicknesses of deformation 
bands restrict direct measurements of porosity and perme-
ability inside individual bands using Routine Core Analysis 
(RCAL) or Mercury Injection Capillary Pressure (MICP) 
experiments, unless they cluster into a thick DB zone 
[5–10 cm (2–4 in.)] that can be sampled as a single plug for 
standard measurements. Hence, alternative, indirect calcula-
tion methods are required for single bands, such as one- and 
two-point spatial correlation functions (Torabi et al. 2008), 

Lattice–Boltzmann modeling (Keehm et  al. 2006), and 
other techniques applied to a binary image [derived from 
thin sections, computed tomography (CT), scanning electron 
microscopy (SEM), etc.] of rocks containing deformation 
bands.

The impact of deformation bands on fluid flow can be 
considered as a function of their kinematics and petrophysi-
cal properties, which control cataclasis intensity. Ballas 
et al. (2015) summarized data from 31 studies and revealed 
that the permeability reduction in an individual deforma-
tion band ranges from zero to six orders of magnitude com-
pared to the host rock. Fossen and Bale (2007) evaluated the 
reduction in flow efficiency based on the differential form of 
steady-state Darcy equation and concluded that the perme-
ability difference between the host rock and the deformation 
band should be higher than four orders of magnitude to have 
a significant effect on fluid flow. Romano et al. (2020) and 
Romano et al. (2021) showed via core-scale fluid flow simu-
lations that deformation bands can act as strong capillary 
barriers and cause fluid compartmentalization in sandstones. 
Numerical simulations were also performed for carbonate 
(Rotevatn et al. 2016) and siliciclastic (Matthai et al. 1998; 
Sternlof et al. 2006; Zuluaga et al. 2016; Awdal et al. 2020) 
reservoirs to examine the influence of deformation bands 
on total recovery with respect to their permeability contrast 
with the host rock. Rotevatn et al. (2009) concluded that 
deformation bands may have both positive and negative 
effects on sweeping efficiency, depending on the perme-
ability contrast. While Rotevatn et al. (2016) showed that 
the reduction in permeability in deformation bands reduces 
the sweep efficiency, Zuluaga et al. (2016) observed, on the 
contrary, that there is an increase in the total recovery factor 
when the permeability of deformation bands drops. Differ-
ent outcomes of production performance obtained in these 
works outline the state of the art in the understanding of DB 
characteristics and highlight the complexity and the impor-
tance of the problem.

In this paper, we deal with cataclastic bands (Nogueira 
et al. 2021; Silva de Souza et al. 2021) widely distributed 
within the contractional, steeply dipping flank of a 5-km (3.1 
mi.)-long anticline in the Apsheron Peninsula, Azerbaijan, 
where porosity and permeability reduction occurs through 
some degree of granulation (cataclasis) and compaction of 
host rock grains. The aim of the study is to provide a tool 
that can be used in reservoir modeling to predict conditions 
of DB occurrence in sandstones and to evaluate rock prop-
erties in deformed areas of the hydrocarbon fields in Azer-
baijan based on outcrop and laboratory measurements. The 
study was inspired by the need in the industry to address the 
quantitative characterization of degradation of rock proper-
ties at the reservoir scale that can find its reflection in the 
subsurface models. We want to determine (1) how deforma-
tion bands are formed and distributed along and across the 
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steeply dipping limb of an anticline fold and (2) how much 
they alter porosity and permeability at the field and pore 
scales.

To address these questions, the scope of the research 
included an examination of correlations between the bed 
dip and the number of DB observed along and across steeply 
dipping and overturned parts of the plunging anticline. Simi-
larly, the effect of mineralogical composition (clay content), 
which is believed to control the elastic properties of rocks 
(Bai 2016), was investigated through estimation of the shale 
volume of sandstones derived from field measurements of 
natural gamma radioactivity. Many previous studies focus 
on qualitative—and less frequently quantitative—micro-
structural analyses of deformation bands based on photo-
micrographs of thin sections (e.g., Antonellini et al. 1994; 
Torabi and Fossen 2009), which are less available in the 
industry due to a limited number of core samples as opposed 
to the extensively used, continuous well log data. Hence, the 
motivation in this study was to implement gamma-ray (GR) 
logs for direct application purposes in large-scale reservoirs. 
Additionally, we hypothesize that mudstones that sandwich 
a sandstone layer may potentially act as stress absorbers 
and influence the concentration of deformation bands in the 
study area represented by layer-cake formations (alternating 
sandstones and mudstones). This approach was introduced in 
this study through a novel net-to-gross analysis, which can 
also be readily applied to well logs.

Finally, the influence of deformation bands on reservoir 
properties was quantified through abundant measurements 
of permeability on the outcrop samples in the laboratory and 

on the surface of the exposed rocks using a portable per-
meameter in the field. The reduction in initial rock porosity 
and permeability caused by a single deformation band was 
determined at the micro scale. The magnitude of reduction 
in the reservoir properties was then examined against min-
eralogical composition and facies type.

Geological setting

Regional geology

Azerbaijan is located in the Caucasus region of the 
Alpine-Himalayan fold belt, and its main geo-structural 
elements are the South Caspian Basin (SCB) and the 
Kura Basin in the eastern and western parts, respectively 
(Fig. 1a). The Kura intermountain basin extends between 
the Greater and Lesser Caucasus mountain systems from 
the east of Georgia to the west coast of the Caspian Sea. 
This basin was shaped by multi-phase active tectonism 
accompanied by the collision, accretion, and rotation 
of the plates of Eastern European Platform and Arabian 
plate during the Eocene-Pliocene time (Zonenshain and 
Pichon 1986; Granath and Baganz 1996; Jackson et al. 
2002; Brunet et al. 2003; Nemcok et al. 2011). Compared 
to the SCB, the Kura intermountain basin has a more 
structurally complicated history with the occurrence of 
different types of volcanogenic processes, sharp facial 
variations, and stratigraphically irregular oil and gas 
saturation in volcanoclastic, carbonate and siliciclastic 

Fig. 1  a Regional geological map of the main tectonic units of the 
South Caspian region (modified after Brunet et al. 2003). b Geologi-
cal map of the eastern Greater Caucasus, the northeastern Kura basin, 

and the western Apsheron Peninsula, showing the location of the 
studied anticline in Yasamal Valley (modified after Allen et al. 2003). 
Map location is shown with the black rectangle in (a)
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sedimentary rocks. Only the eastern part of the basin, 
named the Lower Kura sub-basin, is similar to the SCB 
in terms of its geologic structure and tectonic evolution, 
both being characterized by high sedimentation rates in 
the relatively recent Pliocene–Quaternary time (Abdul-
layev et al. 2018).

The Productive Series (Lower Pliocene), considered 
to be the main reservoir rock in the South Caspian and 
nearby Kura basins, was accumulated by the Paleo-Volga, 
Paleo-Amu Darya, and Paleo-Kura rivers after the isola-
tion of the Caspian Lake from the world ocean in the 
early Pliocene (Jones and Simmons 1996; Reynolds et al. 
1998; Aliyeva 2005; Green et al. 2009). In the Kura basin, 
the thickness of mud-rich, argillaceous sediments of the 
Productive Series brought by the paleo-Kura river reaches 
more than 2 km. In contrast, the giant paleo-Volga river 
has brought the sand-rich sediments of the Productive 
Series that increase in thickness and reservoir quality 
toward the Apsheron Peninsula of the SCB.

Many outcrops exist in the Apsheron Peninsula that 
contain both the structural and sedimentological elements 
described above. The exposed rocks display plunging 
anticlines manifested by mixtures of thrust, strike-slip, 
and normal faults in different parts of the structure, where 
strain during folding is accommodated in a similar man-
ner to the offshore fields (Allen et al. 2003).

Outcrop analog: Yasamal Valley

Yasamal Valley, represented by a plunging anticline, has the 
most favorable conditions to study deformation bands on 
the outcropping Productive Series and was chosen to be the 
main area of investigation for this study. The outcrops of 
Yasamal Valley are good structural and sedimentological 
analogs to the offshore fields of the SCB: they are steeply 
dipping (Allen et al. 2003), abundant in deformation bands 
(Souque et al. 2010), and rich in clean, unconsolidated sand-
stones of similar properties (Reynolds et al. 1998; Hinds 
et al. 2004). Sanderson (2016) showed qualitatively the pres-
ence of deformation bands in Yasamal Valley outcrops in 
similar intensities and orientations to DB observed in the 
cores from the Productive Series sandstones in the offshore 
ACG field, Azerbaijan.

The Yasamal anticline (also known as Shubani) is 
located in the Apsheron Peninsula to the north-west of 
the SCB (Fig. 1b) and was formed as a result of folding 
during the late Pliocene (Gurevich and Chilingar 1995). 
It is a four-way dipping anticline with well-pronounced 
north/south pericline areas and flanks dipping in the east 
and west directions. The structure is complicated by three 
longitudinal faults at the crest—one of which is a thrust 
fault (Alizadeh et al. 1966; Allen et al. 2003), causing the 
steepening of dips in the east limb of the anticline—and 
by series of east–west-oriented normal and reverse faults 
(Fig. 2a). The structure is partly asymmetric, with the west 

Fig. 2  a Google Earth image of the Yasamal (Shubani) anticline, 
showing the locations of measured sections (Sites 1, 2, 3), faults, and 
distribution of calcite-rich layers (Balakhany [BAL] VIII and VI) 
observed in this study. The long fault near the crest is the main thrust 
that follows close to the slightly curved anticline axis. Elevation 
is vertically exaggerated by a factor of two. The yellow lines in site 

images represent subunit boundaries. b Interpreted geological cross 
section of the Yasamal anticline, showing west dipping thrusts on 
the hanging wall of the main thrust fault (red) at the east limb and an 
approximated reconstruction of the crest and hinges (modified after 
Allen et al. 2003). Cross-section location is shown in Fig. 1b
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limb dipping at around 40 degrees, and segments of the 
east limb outcrops dipping at a near-vertical position. The 
overturned layers of the east limb (Fig. 3) are observed 
along the entire flank and interpreted as west dipping 
thrusts within the hanging wall of the main thrust (Allen 
et al. 2003) (Fig. 2b).

The exposed stratigraphic succession in Yasamal Valley 
consists of the Upper Productive Series (Fig. 4a) and has 
been under investigation for the last few decades; various 
opinions exist on the subdivision of its units. The alternat-
ing successions of sandstone- and mudstone-dominated 
facies of the Balakhany Suite characterize repeated proxi-
mal and distal fluvial–deltaic paleoenvironments during 
high-frequency base-level fluctuations (Kroonenberg et al. 
2005), which resulted in layer-cake reservoirs, comprised 
of channel and sheet sandstones. The assignment of subu-
nits in our study was based on the vertical changes in the 
mutual proportion of sandstone and mudstone layers and 
was assisted with GR logs, depicted in Fig. 4b (the collec-
tion procedure of the outcrop GR data is described in the 
following methodology chapter).

Outcrop observations reveal two well-exposed sand-
stone subunits: the thicker and coarser-grained sand-
stones of Balakhany VIII, and the thinner-bedded and 
finer-grained sandstones of Balakhany VI formations 
(inset images in Figs. 2a, 3). These sandstone-prone units 
are deposited during periods of increased fluvial-deltaic 
discharge and sediment supply to the basin. Sand-prone 
settings mainly consist of amalgamated and sheet sand-
stones. Mudstone-rich settings, comprised of Balakhany 
V, VII, and IX intervals, are dominated by alluvial plain 
and lacustrine facies.

Methods

To characterize the relationship of deformation bands char-
acteristics with reservoir properties and other influencing 
factors (bed geometry, mineralogy, net to gross, etc.), a set of 
portable tools, such as Gamma Ray and Permeameter, in the 
field and a complex of laboratory measurements were used.

Field measurements

The fieldwork was performed in three locations along the 
fold: the south pericline (Site 1), and the southern (Site 2) 
and northern (Site 3) parts of the east limb (Fig. 2a), where 
deformation bands are widely distributed. Sections were 
measured with 30 cm (1 ft) increment, where for each point 
lithological description and measurements of gamma-ray, 
permeability, and structural elements were made.

(1) Lithological and structural descriptions in measured 
sections

A detailed description of facies was made both across 
the stratigraphy, covering Balakhany IX to X formations, 
and laterally along individual sandstone units to allow the 
analysis of the impact of DB characteristics on the whole 
sequence, as well as on a single reservoir unit. For each 
measured point, deformation bands were counted using the 
scanline approach along 1 m [3.28 ft] sections perpendicular 
to the measurements path. Orientations (strike and dip) of 
individual layers were measured using a Brunton compass to 
investigate the quantity of DB as a function of bed geometry, 
particularly steepness.

Fig. 3  Outcrop of slightly overturned layers in the east limb of the 
Yasamal anticline, showing an example of schematic logging along 
the true stratigraphic thickness (TST) of Balakhany (BAL) subunits 
at Site 2 from Fig.  2a. The red arrows show the direction of meas-
urements along the TST of the layers, and the blue lines display the 
schematic throw between measurements along the layer contacts. The 

black box in the lower left corner is a close-up example of the actual 
measurement path, where real throws are much smaller than shown in 
the schematic. White circles represent example locations of gamma-
ray (GR) measurements with 30 cm (11.8 in.) increment. TinyPerm II 
measurements were made only in sandstones at the same positions as 
GR points
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(2) Gamma-ray measurements and calculation of shale vol-
ume

Portable GR tool (MGS-150) was used for stationary 
measurements of the natural radioactivity of the Balakhany 
Suite (Upper Productive Series) rocks to construct a com-
prehensive GR log with 30 cm (1 ft) increment along the 
true stratigraphic thickness (TST) of the outcropping layers, 
as illustrated schematically by arrows and circles in Fig. 3. 
To estimate clay content at the bed scale and relate it to the 
distribution of deformation bands in the field, shale volume 
 (Vshale) was calculated from outcrop GR logs using Steiber’s 
1970 empirical equation (Asquith and Krygowski 2004):

(1)Vshale =
IGR

3 − 2 × IGR

IGR =
GRlog − GRmin

GRmax − GRmin

where  GRlog is the gamma-ray reading of a given point, 
and  GRmin and  GRmax are the minimum and maximum 
gamma-ray values in the measured interval.

It is important to note that shale volume derived using 
this approach is different from the quantification of clay 
and phyllosilicate content from petrographic images at the 
micro-scale (e.g., Knipe et al. 1997) in that it represents 
centimeter-scale measurements as adopted from the wire-
line logs used in the industry.

(3) Sandstone net-to-gross calculation

The influence of the strongly layered, heterogeneous 
rock system of the Balakhany Suite on the conditions of 
deformation band formation was of particular interest. To 
assess the effect of bounding mudstone layers on the distri-
bution of deformation bands within an encased sandstone 
body, we introduced a simple approach called “sandwich 
net to gross (NTG)” (see Fig. 5), which is defined as:
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30 cm (11.8 in.) increment (see Fig. 3) in three sections at the Yasa-
mal anticline (Sites 1, 2, and 3 in Fig. 2a), with corresponding Tin-
yPerm II measurements of permeability (converted to standard plug 
values) in sandstones
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where  TSTsandstone is the true stratigraphic thickness of 
a sandstone layer and  TSTmudstone_upper and  TSTmudstone_lower 
represent the TST of the overlying and underlying mudstone 
beds, respectively.

(4) Permeability measurements in the field

A portable permeameter (Tiny Perm II) was used to 
measure the air permeability of sandstones at the same loca-
tions as the stationary GR measurement points (see white 
circles in Fig. 3) and analyze the impact of deformation 
bands on permeability at the field scale. An average of three 

(2)

SandwichNTG =
TSTsandstone

TSTsandstone + TSTmudstone_upper + TSTmudstone_lower

measurements was recorded at each point and converted to 
a plug-equivalent value (divided by 1.8 [Fossen and Torabi 
2011]). These permeability values are shown in Fig. 4b (blue 
points).

Laboratory measurements

Factors controlling the rock properties in deformed areas 
cannot be fully evaluated and described by the field measure-
ments (GR and permeameter) alone. Therefore, a composite 
analysis of thin section petrography and laboratory tests, 
such as RCAL, SEM, X-Ray Diffraction (XRD), and CT, 
was carried out to proclaim the impact of those factors at the 
pore scale. Sister-plugs with and without a deformation band 
were sampled within a short distance (1–2 cm [0.4–0.8 in.]) 
from each other to minimize any dissimilarity associated 
with different sedimentological structures or features. Due 
to the friable nature of the Yasamal Valley sandstones, the 
plugs were extracted in the direction of horizontal perme-
ability (drilling directly into the layer). Figure 6 shows plugs 
of the two main sandstone facies with DB. The identification 
of minerals was made via XRD and SEM measurements. 
The former provides fractional content of minerals, while 
the latter displays the spatial distribution of oxides and their 
percentages in the sample. Porosity and permeability of the 
plugs were measured using helium porosimeter and air per-
meameter at confining pressure (400 psi [28.1 kg∕cm2]).

Although there are sophisticated numerical modeling 
techniques for estimation of the permeability of a single DB 
(see the Introduction section for details), within the scope of 
our study, we used a simple harmonic averaging methodol-
ogy of serial beds (Ahmed 2001), one of which was taken as 
a deformation band (Fig. 6a). The analytical equation, used 
to derive DB permeability, is defined as:

Fig. 5  Schematic representation of “sandwich net to gross (NTG),” 
showing a sandstone unit bound by mudstone layers in Balakhany 
VIII subunit at Site 3 from Fig. 2a. Refer to text for a detailed expla-
nation

Fig. 6  Examples of sandstone 
plugs with a deformation band. 
a Calcite-rich sandstone plug 
with setting parameters for 
calculating the permeability of 
a single deformation band using 
the harmonic average method 
(see Eq. 3). b Unconsolidated 
sandstone plug. The plugs are 
4.5 cm (1.77 in.) in length and 
3.7 cm (1.46 in.) in diameter. 
The deformation bands in the 
samples are contoured by red 
dashed lines
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where Kav is the average permeability of a plug with a defor-
mation band, Lt is the total length of the plug, Lb is the width 
of the deformation band inside the plug (inferred from CT 
scans), Kh is the host rock (matrix) permeability (sister plug 
without a deformation band), and  Kb is the deformation band 
permeability.

Description of the host rock and deformation bands

Sandstones observed in the Yasamal Valley outcrops can be 
classified into two main types: (1) unconsolidated, relatively 
clean and (2) consolidated, calcite-rich. While the first type 
is observed across the entire structure, calcite-rich sand-
stones are locally distributed in the east limb (in the form of 
calcite concretions and cemented beds), extending from its 
northern end about 2 km (1.24 mi.) toward the south (refer 
to Fig. 2a). XRD data show that these facies have a sharp 
contrast in mineralogical composition (Fig. 7). While the 
percentage of calcite in unconsolidated sandstones varies 
between 10 and 20%, it reaches 40% to 50% in calcite-rich 
sandstones. Analysis of the thin section and SEM images 
show that the Balakhany Suite sandstones are mostly fine to 
very fine grained and generally moderately sorted (Fig. 8).

Deformation bands in Yasamal valley sandstones range in 
lengths from centimeter scale in individual bands to meter 
scale in clusters of bands (Fig. 9). The calcite-rich sand-
stones are more abundant in deformation bands, displaying 
chaotic distribution patterns, compared to the less dense DB 
networks with a preferential orientation in unconsolidated 
sandstone beds (Fig. 9). Tiny offsets were observed in a few 

(3)Kav =
L
t

Lb

Kb

+
(Lt−Lb)

Kh

cases where bands cross-cut lamination or each other. From 
a kinematic point of view, the studied bands can be classi-
fied as shear-enhanced compaction bands, as seen from their 
inclinations relative to bed boundaries (Fig. 9a).

The photomicrographs of the thin sections display cata-
clastic bands with various degrees of cataclasis and high 
compaction in both sandstone facies. For example, samples 
one (Fig. 10a, b) and two (Fig. 10c, d) show more cataclasis 
than sample three (Fig. 10e, f), witnessed by the smaller 
grains inside the bands in contrast to the surrounding grains 
of the host rock. Unconsolidated sandstones (sample one) 
have finer and angular to subangular grains, while the grains 
in calcite-rich facies are subangular to poorly rounded (sam-
ples two and three). The latter samples also have a relatively 
uniform distribution of grain sizes within the bands. Sample 
one has the highest clay content (16.6% from XRD data in 
Table 1) among unconsolidated sandstones with deforma-
tion bands.

Formation conditions of deformation bands

Distribution of deformation bands across the plunging anti-
cline in Yasamal Valley varies significantly and depends on 
the lithology of the formations and bed geometry.

Lithologic and mineralogic control

Processing and subsequent interpretation and analysis of GR 
logs and deformation bands data yielded that no bands (or 
other deformation structures) are observed for any bed dips 
in various locations of the Yasamal Valley outcrops, where 
shale volume exceeded 18% for unconsolidated and 32% for 
calcite-rich sandstones, respectively (Fig. 11a). Here, DB 
occurrence is the number of times DB were seen in a given 
 Vshale range and not the absolute number of deformation 
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Fig. 9  Deformation bands (showing positive relief) and their distribution in unconsolidated (a) and calcite-rich (b) sandstones from Site 2 and 
Site 3, respectively. The view is to the outcrop face in the direction of true stratigraphic thickness. Site locations are shown in Fig. 2a

Fig. 10  Photomicrographs 
of cataclastic bands under 
parallel—(left column) and 
cross-polarized (right column) 
light for unconsolidated (a, b) 
and calcite-rich (c–f) sandstone 
samples. Deformation bands are 
dashed in yellow. Deformation 
band in (a, b) is composed of 
crushed quartz grains mixed 
with clays (Balakhany VII sam-
ple); band in (c, d) is a mixture 
of quartz, feldspar, and calcite 
(Balakhany VI sample); band 
in (e, f) is dominated by calcite 
(Balakhany VIII sample)
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bands. The reduction in the occurrence of deformation bands 
correlates well with the increase in Vshale in unconsolidated 
sandstones. Figure 11b shows the probability of the occur-
rence of deformation bands based on the field measure-
ments in Yasamal Valley, where the number of times DB 
were observed in the measured sections is divided by the 
total number of measurement points. The same trends are 
observed for both facies.

On the other hand, the absolute number of deformation 
bands, as mentioned earlier, depends on several confluence 
parameters, including the bed geometry. To further inves-
tigate the influence of clay content (in this case quantified 
through Vshale) on the absolute number of DB in the clean 
sandstones, the dip angle effect was diminished by selecting 
the batch of samples from individual unconsolidated and cal-
cite-rich sandstone layers of the Balakhany VIII and VI sub-
units with a minor variation in dip angles (within the range 
of ~ 2°–3°). As shown in Fig. 11c, the trends are certainly 

observed for both facies. Not only an overall increase in 
the concentration of deformation bands in the calcite-rich 
sandstone facies is observed, but also the shift in the  Vshale 
threshold (from 18 to 32%) for the presence or absence of 
deformation bands is confirmed as shown in Fig. 11a. In all 
of the cases described above, when these threshold values 
are met, the function of clay content in the formation of a 
deformation band becomes dominant over layer steepness, 
as shown in Fig. 11d where no DB were observed above the 
respective  Vshale thresholds at any dip angle value.

From another perspective, the total clay content (com-
prised of illite, kaolinite, and montmorillonite fractions 
from XRD data shown in Table 1) of the Yasamal Valley 
sandstones was examined against the average number of 
deformation bands in the layer (Fig. 12). The sample taken 
from an unconsolidated silty sandstone layer where no 
deformation bands (or other deformation structures) were 
observed shows 21.3% clay content. Calcite-rich sandstone 

Table 1  Distribution of clay 
minerals in unconsolidated and 
calcite-rich sandstone layers 
(based on X-ray diffraction) 
with corresponding average 
concentration of deformation 
bands in the layer

* Total clay is counted as the sum of illite, kaolinite, and montmorillonite fractions

Average #DB/m 
in the layer

Total clay (%) Montmoril-
lonite (%)

Illite (%) Kaolinite (%) Sandstone facies

2 13.9 6.4 4 3.5 Unconsolidated
2 16.6 7.5 4.4 4.7
7 9 6 3 –
7 7.4 4.3 3.1 –
0.65 8.5 4 2.5 2
2 8.8 4.1 2.7 2
2 5.5 3.5 2 –
2 6 4 2 –
0 21.3 10.7 5.2 5.4
0.26 7.5 5 2.5 –
0.26 2.6 – 2.6 –
0.15 5 3 2 –
0.15 5 – 2.5 2.5
10 4 – 2 2 Calcite-rich
4 6.5 2 2.5 2
4 6.5 2 2.5 2
4 7 2 2.5 2.5
4 1.8 – 1.8 –
4 2 – 2 –
11 2 – 2 –
11 2 – 2 –
19 5 – 2.5 2.5
19 6 – 3 3
10 5 – 2.5 2.5
10 5 – 2.5 2.5
10 7 – 3.5 3.5
2 4 – 2 2
10 6 – 3 3
10 6 – 3 3
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layers show an overall higher band density compared to the 
unconsolidated units (Table 1 and Fig. 12), similar to the 
previous observations.

We also introduce another way of relating the lithology 
effect to the distribution of DB. During the graphical inves-
tigation of bands versus “sandwich net to gross” (see Eq. 1), 
no deformation bands were observed below a boundary net-
to-gross value of 0.31 (Fig. 13). This also applies when Vshale 
is lower than the cutoff 18% (seen from the six blue points 
that lie below the net-to-gross threshold in Fig. 13), which 
shows that “sandwich net to gross” is another factor influ-
encing the occurrence of DB in unconsolidated sandstones.

Geometric/structural control

The current-day structure of the Yasamal anticline suggests 
that the east limb has undergone relatively greater strain, as 
can be inferred from the steeply dipping (60°–90°) and over-
turned layers (see Fig. 3). Numerous populations of DB were 
observed on the outcrops of this flank. In contrast, extensive 
observation of the gentler dipping (approximately 40°) rock 
exposures in the west flank of the anticline revealed no pres-
ence of deformation bands. This remarkable difference in 
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the distribution of DB in the two limbs suggests that bed 
geometry is another influencing factor.

To quantify this influence, the absolute values for the 
dip angles of individual layers were used to correlate with 
the average number of deformation bands in those layers. 
Figure 14 shows that the relationship between the average 
concentration of DB and the dip angle in unconsolidated 
sandstones is less pronounced in the direction parallel to 
layering, compared to the data collected perpendicular to the 
bed plane. Although the values are scattered in both plots, in 
both cases, there is an increase in the concentration of DB 
with the steepness of the formations.

Impact on reservoir properties

The influence of deformation bands on the rock properties 
at the field scale is complicated due to the heterogeneous 
nature of the Balakhany Suite. To quantify this effect, the 
average permeability values of the unconsolidated sand-
stones layers were plotted against the average number of 
deformation bands in those beds, and an exponential trend in 
the reduction in permeability was observed (Fig. 15).

Compared to the field scale, the effect of deformation 
bands on the micro-scale porosity and permeability is more 
pronounced as the dimension of the band contained within 
a plug and that of the plug are comparable. Figure 16 com-
pares the rock properties of the Balakhany VIII and VI sis-
ter plugs with and without a deformation band. As can be 
observed from the best-fit line equations, the permeability 
reduction is 33% (Fig. 16a), while for porosity it amounts 
to 3% (Fig. 16b). The reducing effect of deformation bands 
can also be observed from the trendlines of porosity and 
permeability relationships in Fig. 16c, d.

The measured permeability values of the plugs with a 
single deformation band show reduction from one to three 
orders of magnitude compared to the host rock (Fig. 17). 
Calcite-rich sandstones have significantly lower per-
meability values both in the host rock (0.18–11.6 mD 
[1.91–123.23 × 10–15  ft2]) and DB (0.002–0.12 mD 
[0.021–1.28 × 10–15  ft2]) compared to unconsolidated sand-
stones but show similar orders of permeability reduction. 
It can also be observed that clay content does not correlate 
with the permeability contrast between the DB and the host 
rock.
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Discussions

Sandstone composition and Vshale approach

To our knowledge, the Vshale approach has not been imple-
mented for quantification of formation conditions of defor-
mation bands before. It is crucial to emphasize, again, that 
the Vshale cutoff values (18% for unconsolidated sandstones 
and 32% for calcite-rich sandstones) represent a centime-
ter-scale shale volume factor, which does not correspond 
directly to the clay content of the host rock, and are not to 
be compared to the results reported in other studies through 
quantification of clay content from micro-scale images of 
thin sections (e.g., cataclastic bands observed in poorly 
lithified sandstone with more than 30% clay and phyllosili-
cate content in Torabi 2014). Additionally, the application 
of other nonlinear methods of Vshale calculation—such as 
the Larionov (1969) and Clavier (1971) equations that are 
known to estimate higher shale volume values than Steiber’s 
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1970 equation (Asquith and Krygowski 2004)—would yield 
different thresholds for DB formation. The Vshale logs in this 
study were acquired from three different locations of the 
anticline spanning 5 km (3.1 mi.) in length and encompass-
ing 155–200 m (509–656 ft) of true stratigraphic thickness 
(or cumulative measured thickness of 375 m [1230 ft] from 
the three logs) (see Fig. 4b). This coverage is comparable to 
the scale of subsurface reservoirs, highlighting the value of 
the  Vshale approach in predicting deformation bands.

The presence of the calcite cement in the pore space of 
the sandstone rocks indeed increases the number of DB, but 
also complicates their distribution pattern, seen from vari-
ously inclined and cross-cutting DB sets within the calcite-
rich sandstone layers (see Fig. 9b). The increase in the  Vshale 
threshold value for calcite-rich sandstones (compared to the 
calcite-poor, unconsolidated sandstones) is related to the 
brittleness of calcite cement in the pore space (Hoshino and 
Koide 1970). It has been observed that during deformation, 
microfractures form both in the calcite cement matrix and 
detrital (e.g., quartz) grains (Friedman 1963). Additionally, 
Xiao and Evans (2003) quantified that an increase in calcite 
amount decreases the bulk rock strength in synthetic cal-
cite–quartz aggregates. The calcite content of the sandstones 
in our study is either low (10–20% in unconsolidated sand-
stones) or very high (40–50% in calcite-rich sandstones), 
which limits the analysis of the effect of calcite cement on 
DB concentration in the intermediate range.

Finally, while feldspar minerals are generally known to 
influence the occurrence of deformation bands and are also 
prone to fracturing and cataclasis (Exner and Tschegg 2012; 
Griffiths et al. 2018), such impact is not observed from the 
analysis of the studied samples, most likely due to the low 
amount of feldspar present in the rocks (10% on average, 
refer to Fig. 7).

“Sandwich net‑to‑gross” approach

We believe that a contrast in the elastic properties of suc-
cessive beds may cause a redistribution of stresses in indi-
vidual sandstone units. Sandstones bound by thicker beds of 
mudstone might experience a decreased compressive load, 
potentially alleviating the generation of deformation bands. 
This heuristic led to our field-scale investigation to test if the 
intermediate to low net-to-gross succession of the Balakhany 
Suite affects the occurrence and concentration of deforma-
tion bands. This examination revealed another threshold 
for DB formation, which was not known a priori. To our 
knowledge, “sandwich net to gross” is a unique approach in 
analyzing the formation conditions of a deformation band, 

Table 2  Porosity and permeability data obtained from plugs (based on routine core analysis) with and without deformation bands (DB), and cor-
responding total clay content (based on X-ray diffraction)

* Permeability of a single deformation band was calculated using the harmonic average method (see text for details). Total clay is counted as the 
sum of illite, kaolinite, and montmorillonite fractions

Permeability of a 
plug with DB (mD)

Permeability of a plug 
without DB (mD)

Porosity of a 
plug with DB

Porosity of a 
plug without DB

Calculated permeability 
of DB in a plug (mD)

Total clay (%) Sandstone facies

19.23
559.97
1671.88
1636.63

67.84
870.56
2607.1
2256.45

19.8
29.2
32.7
32.9

23.4
30.2
34.2
32.1

1.42
56.55
222.59
210.23

15
15.25
5
N/A

Unconsolidated

0.123
1.080
0.490
5.400
0.110
0.121

0.192
2.938
0.633
11.596
0.356
0.180

6.1
9.1
6.9
10.2
6.2
5.0

6.3
9.4
7.4
10.9
5.9
5.4

0.00442
0.01828
0.02420
0.12165
0.00184
0.00384

6.5
6.5
N/A
1.9
5.5
5

Calcite-rich
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and its simplicity (Eq. 1) would allow this analysis to be 
applied directly to well logs. No previous experimental or 
modeling study was found on the effect of this parameter 
on the formation conditions of a deformation band. This 
and the Vshale approach can be used as quick tools to make 
basic predictions about the presence (and concentration) or 
absence of deformation bands in analog subsurface fields.

Structural geometry

The wide presence of deformation bands in the steeply dip-
ping east limb and their absence in the gentler dipping west 
limb of the Yasamal anticline suggest that the bed dip affects 
the occurrence of DB in the fold. Although a weak correla-
tion, the concentration of deformation bands in Balakhany 
sandstones is higher in steeper beds. Zuluaga et al. (2014) 
and Fossen et al. (2017) observed similar, but clearer asso-
ciations in the monoclinal limbs of fault-propagation folds 
(Navajo Sandstone in the San Rafael monocline and Entrada 
Sandstone in a monocline near the Colorado National Monu-
ment, respectively). Fossen et al. (2017) suggested that the 
variations in the relationship of the band number with dip 
largely depend on fold mechanism and lithological proper-
ties. We observe that the clay content of sandstones becomes 
a dominant factor in the formation of a deformation band 
when it reaches the reported, certain volumes, invariant of 
the bed dip (see Fig. 11c).

Apart from the dip angle, other structural elements can 
also influence the DB distribution. Souque et al. (2010) 
showed that grain crushing (fracturing) in the sandstone 
units depends on the structural position and increases from 
the limb to the hinge of the anticline in Yasamal Valley, 
related to relatively higher strain accommodation in the 
hinge zones. Similarly, Wilkins et al. (2020) observed a 
significantly higher density of deformation bands in res-
ervoir sands near the hinge of the monocline in the Hol-
stein Field, Gulf of Mexico, than in the downdip sands in 
its forelimb with similar petrological characteristics. The 
formation of DB in the hinge zones of fault-related folds 
was also observed in a few other studies, for example, the 
Youshashan anticline in the western Qaidam Basin, China 
(Liu and Sun 2020), and the Orange anticline in South East 
Basin, France (Soliva et al. 2013), both of which are fault-
propagation folds. Abrupt changes in the dip angles along 
a short distance can lead to the occurrence of deformation 
bands and porosity collapse due to the dominating, kine-
matic shear component.

We, therefore, envisage an interdependence between the 
dip angle, dip change rate (i.e., curvature), and distance to 
the hinge zones with the concentration of deformation bands 
or porosity and/or permeability in the clean sandstone lay-
ers. In our study, the sampling rate of dip angle measure-
ments was not sufficient for reliable dip gradient calculations 

because of the complications associated with on-site data 
acquisition (i.e., discontinuous exposures and inaccessible 
outcrops). Another challenge in the outcrop conditions of 
Yasamal Valley is to identify the distance of the data points 
to the highly eroded hinge zones, which would require 
reconstructing the structural evolution the plunging anti-
cline. Although this may be a quick, practical solution to 
predict porosity and permeability reduction in the deformed 
areas of subsurface reservoir rocks (provided information 
on dip and dip azimuth from well logs, and hinge points 
from calibrated seismic surfaces are available), other fac-
tors can equally influence the occurrence and distribution 
of DB, such as the migration of hinges, stress history, and 
presence of faults (Farrell et al. 2014; Fossen et al. 2017; 
Torabi et al. 2021).

Porosity and permeability

Evidence of pervasive occurrence of DB within a fold can be 
a good indicator of regional deterioration of the rock prop-
erties. Our study suggests that the field-scale permeability 
decreases with an increasing number of DB. Since the rela-
tionship in Fig. 15 shows the average permeability of the 
individual layers (averaged from TinyPerm measurements 
in 30 cm [1 ft] increment along those layers that included 
points both with and without DB), deformation bands appear 
to influence permeability away from the band plane, possibly 
caused by slight changes in the pore arrangement of the host 
rock adjacent to the band during deformation. Fossen et al. 
(2011) observed an opposite relationship between perme-
ability and deformation band concentration when the perme-
ability is higher than 10 darcy (converted to plug value). The 
authors claim that a higher host rock permeability suggests 
more “room” for the creation of deformation bands, given 
that there is a positive correlation between permeability and 
porosity. The contrast in these results might be caused by the 
significant difference in permeability values (the TinyPerm 
II measurements, converted to plug values, of unconsoli-
dated sandstones in Yasamal Valley ranged from 246 to 4600 
mD [2.61 ×  10−12  ft2 to 4.89 ×  10−11  ft2], compared to values 
ranging between 10 and 50 darcy [1.06–5.31 ×  10−10  ft2], 
converted to plug values from Figs. 9b and 10 in Fossen 
et al. 2011) and grain sizes (Navajo sandstones are coarse-
grained dune beds, while Balakhany sandstones are fine to 
very fine-grained [refer to Fig. 8]). The absence of coarse-
grained sandstones in the Balakhany Suite does not allow 
us to perform sensitivity analysis with respect to the grain 
size variation.

At the pore scale, the existence of the impact of a 
deformation band on reservoir properties is more obvi-
ous, however, the degree of that impact varies for porosity 
and permeability. A deformation band has a higher influ-
ence on permeability in contrast to porosity (33% vs. 3% 
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reduction). Such a behavior is expected due to the nature 
of DB: the presence of small pore throats prevailing in a 
band (as observed from MICP-based pore size distributions 
in Gambino et al. 2019) creates a strong capillary pressure 
barrier within its proximity (Torabi et al. 2013), which has 
a stronger effect on the permeability, whereas the volume 
of the pores associated with the deformation band is very 
small; hence, there is less effect on the porosity of the plug. 
Quantifying the effect of various distribution patterns or 
amalgamation of deformation bands at larger scales (e.g., 
3 × 3 × 3 m [10 × 10 × 10 ft] sized sandstone chunk) is a chal-
lenging lab experiment and, to our knowledge, has not been 
done, yet. Romano et al. (2020) performed the first sub-core 
scale flow experiments, assisted by a micro-CT scanner, on a 
sample (5 cm [2 in.] in diameter and 10 cm [4 in.] in length) 
of Navajo Sandstone containing one cataclastic deformation 
band and two laminae. The results show that these laminae 
and DB act as a capillary barrier.

The magnitude of permeability reduction by a single 
deformation band documented in this study (1 to 3 orders of 
magnitude) has been widely observed in various sandstones 
mentioned by Ballas et al. (2015) and Fossen et al. (2017). 
These studies show that the order of reduction depends on 
deformation mechanism (e.g., degree of cataclasis, compac-
tion, etc.) and several intrinsic properties of the host rock 
(e.g., mineralogical composition, grain size, sorting, etc.), 
which is probably the reason why an increase in clay content 
alone did not align well with an increase in the permeability 
contrast in Balakhany sandstones.

It should be noted that in the pervasively calcite-cemented 
sandstones, where porosity and permeability are reported 
to be substantially reduced (Dutton et al. 2000; Rahman 
and Worden 2016), the impact of deformation bands on 
fluid flow may become secondary and insignificant. This 
is observed in the calcite-rich sandstones (samples without 
DB) of Balakhany, which have poor reservoir quality regard-
less of deformation. Additionally, Del Sole and Antonellini 
(2019) showed that in the case of a pre-existing deformation, 
calcite cement precipitation enhances the porosity and per-
meability reduction effect caused by the deformation bands 
in sandstones. Our work did not include a study of the timing 
of DB formation with respect to the calcite precipitation.

Conclusions

We used field and laboratory measurements to quantitatively 
analyze the formation conditions of deformation bands, 
their distribution, and impact on porosity and permeability 
of sandstones at field and pore scales in a steeply dipping 
limb of an anticline fold. The results show that several fac-
tors control the occurrence and concentration of deforma-
tion bands, namely lithologic and mineralogic composition 

(shale volume, calcite cement), bed geometry (dip angle), 
and contrast in the elastic properties of successive beds 
(represented by sandstone net-to-gross thickness ratio). We 
present novel threshold values that can be used directly in 
analog fields to predict deformation bands.

Generally, the presence of deformation bands in the 
steeply dipping limb of Yasamal Valley reduces the aver-
age permeability of unconsolidated sandstone layers and is 
therefore an indicator of degraded reservoir quality. Labo-
ratory results show that while porosity reduction between 
the outcrop samples with and without a deformation band 
(sister plugs) is around 3%, for permeability this reduction 
is much greater, averaging at 33%, and could potentially sig-
nificantly baffle the fluid flow when upscaled to the reservoir 
production scale. The presence of excessive calcite cement 
(> 40%) in the sandstones significantly increases the num-
ber of deformation bands and complicates their distribution 
patterns, as well as significantly decreases the porosity and 
permeability; our data and previous literature suggest that 
calcite-cemented sandstones would therefore act as barriers 
to fluid flow.

The studied outcrops of the Balakhany Suite are equiva-
lent in age, composition, and structural style to the Upper 
Productive Series reservoirs in the South Caspian Basin; 
therefore, the results of this study can be applied in geologi-
cal modeling to predict reservoir properties and optimize 
well locations in the deformed sector of the offshore fields 
with degraded properties.
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