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Abstract
Oil production forecasting is an important task to manage petroleum reservoirs operations. In this study, a developed time 
series forecasting model is proposed for oil production using a new improved version of the adaptive neuro-fuzzy inference 
system (ANFIS). This model is improved by using an optimization algorithm, the slime mould algorithm (SMA). The SMA 
is a new algorithm that is applied for solving different optimization tasks. However, its search mechanism suffers from some 
limitations, for example, trapping at local optima. Thus, we modify the SMA using an intelligence search technique called 
opposition-based learning (OLB). The developed model, ANFIS-SMAOLB, is evaluated with different real-world oil pro-
duction data collected from two oilfields in two different countries, Masila oilfield (Yemen) and Tahe oilfield (China). Fur-
thermore, the evaluation of this model is considered with extensive comparisons to several methods, using several evaluation 
measures. The outcomes assessed the high ability of the developed ANFIS-SMAOLB as an efficient time series forecasting 
model that showed significant performance.

Keywords  ANFIS · Slime mould algorithm · Oilfield · Time series forecasting · Oil production

Introduction

Forecasting oil production is a significant step for controlling 
the management of the cost-effect and monitoring the operation 
of petroleum reservoirs. Consequently, the forecasting of oil 
production facilitates the reservoir engineers to design plausible 
projects, which triggers to prevent the blind investment and 
attains sustainable evolution. Therefore, accurate forecasting of 
a petroleum reservoir is highly required to control and manage 
the effective cost of the oil reservoirs. The reservoir properties, 
including porosity, permeability, compressibility, fluid satura-
tion, and other well operational parameters have a significant 
effect on oil production. Therefore, it is challenging to forecast 
future oil production accurately because of the reservoir’s com-
plexity, and uncertain subsurface conditions (Liu et al. 2020). 
Numerical reservoir simulation (NRS) and decline curve analy-
sis (DCA) are conventional methods and are commonly used 
to predict oil production (Doublet et al. 1994; Cumming 2013; 
Cancelliere et al. 2011). However, both conventional meth-
ods still have some limitations,that affect the accuracy of the 
forecasting performance. Thus, the effective development of 
oilfields requires an accurate development approach to predict 
the oil production precisely which assists to select the proper 

 *	 Mohammed A. A. Al‑qaness 
	 alqaness@whu.edu.cn

 *	 Renyuan Sun 
	 sunry@upc.edu.cn

1	 School of Petroleum Engineering, China University 
of Petroleum (East China), Qingdao, China

2	 State Key Laboratory for Information Engineering 
in Surveying, Mapping and Remote Sensing, Wuhan 
University, Wuhan 430079, China

3	 Department of Computer, Damietta University, Damietta, 
Egypt

4	 Faculty of Earth Resources, China University 
of Geosciences, Wuhan, China

5	 Department of Mathematics, Faculty of Science, Zagazig 
University, Zagazig 44519, Egypt

6	 Artificial Intelligence Research Center (AIRC), Ajman 
University, Ajman 346, United Arab Emirates

7	 Department of Artificial Intelligence Science & Engineering, 
Galala University, Suze 435611, Egypt

8	 School of Computer Science and Robotics, Tomsk 
Polytechnic University, Tomsk 634050, Russia

http://orcid.org/0000-0002-6956-7641
http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-021-01405-w&domain=pdf


384	 Journal of Petroleum Exploration and Production Technology (2022) 12:383–395

1 3

oil recovery methods to increase oil production, and enhance 
oil transfer from subsurface to surface. Also, it leads to extend-
ing the oilfield’s life cycle and energizing the economy profit. 
The (DCA) method utilizes the empirical equations to fit the 
oil production historical data to characterize the whole reser-
voir’s production mechanism (Tomomi et al. 2000). Moreover, 
matching the historical production data of the oil wells is a 
significant challenge, and consuming time, even if the history 
well’s production presents perfect matching. Nevertheless, the 
potential of calculating the uncertain predictions is possible, 
even if there are complex and unstable production conditions 
(Li et al. 2003). On the other hand, the accuracy of (NRS) is 
robust and reliable to predict oil production; however, accu-
racy and reliability depend on the static geological model and 
the quality of dynamic reservoir simulation models, because 
the development construction of the static geological models 
is extremely difficult (Hutahaean et al. 2015, 2016; Al Rassas 
et al. 2020). Furthermore, the parameterization approaches of 
the static geological model, and the combing means of objec-
tive components have a significant effect on the reservoir his-
tory matching, and reservoir predicting (Liu et al. 2020; Song 
et al. 2020; Kalra et al. 2018). Although multi-objective opti-
mization issues can be addressed effectively, a perfect reservoir 
history matching model can trigger to cause a bad prediction. 
The process of history matching is a challenge and required too 
much time to deal with extensive work.

Deep learning approaches and their implementation have 
recently grown in the petroleum industry, particularly in res-
ervoir engineering applications (Alkinani et al. 2019), includ-
ing predicting porosity and permeability (Erofeev et al. 2019; 
Ahmadi and Chen 2019), Pressure-Volume, Temperature (PVT) 
(Goda et al. 2003; Alkinani et al. 2019), sensitive analysis and 
history matching, and forecasting oil production (Ahmadi and 
Bahadori 2015; Montgomery and O’sullivan 2017; Guo et al. 
2018).

Furthermore, the powerful development of deep learning, 
with the significant evolution of the deep learning algorithms, 
was introduced to the petroleum industry to overtake the com-
plication issues of traditional methods (Song et al. 2020). 
Additionally, in literature, various machine learning and deep 
learning methods had been presented for forecasting oil pro-
duction (Liu et al. 2020; Wang et al. 2020; Sagheer and Kotb 
2019; Wang and Chen 2019). Song et al. (2020) employed 
Long Short-Term Memory (LSTM) for forecasting oil produc-
tion time series. In (Alalimi et al. 2021), a modified Random 
Vector Functional Link network was proposed for time series 
prediction. This model was applied for oil production in Tahe 
oilfield, China. Liu et al. (2020) used LSTM with Empirical 
Mode Decomposition Ensemble to forecast oil production. In 
(Cc et al. 2013), an oil production forecasting model, namely, 
the higher-order neural network was proposed. Masini et al. 
(2020) proposed a combination of algorithms including clus-
tering and density-based clustering with Artificial Intelligence 

techniques including (Long Short-term memory cells algorithm 
(LSTM), Vertical Flow Performance (VFP)) to demonstrate 
assisted production forecasting from the real-time data. McK-
enna et al. (2020) employed three different levels of uncertainty, 
including (facies geometry, permeability distribution, and res-
ervoir rock heterogeneity) to assess their influence on reservoir 
evaluation and prediction. Sequential Gaussian simulation and 
Kriging probability- field were used to estimate and demon-
strate previous uncertainty levels. Fan et al. (2021) presented 
a hybrid model which considered the benefits of linearity and 
non-linearity and the effect of manual operations by incorporat-
ing the ARIMA (autoregressive integrated moving average) and 
the LSTM. Moreover, four evaluation methods were utilized to 
compute the forecasting accuracy.

Rădulescu et al. (2020) proposed an econometric approach 
for forecasting oil production to permit decision-makers and 
oil product stakeholders to take liability for the production in 
OECD partner countries. This liability is perceived from vari-
ous perspectives: political, economic, environmental, military, 
social, etc. Sagheer and Kotb (2019) proposed deep LSTM to 
address the drawbacks of conventional prediction techniques 
and present accurate predictions. Semenychev et al. (2017) 
Elucidated the complexities of modeling and forecasting the 
petroleum industry by integrating several production trend 
models and models of fluctuation. These methods increase the 
production forecasting accuracy by incorporating the fluctua-
tion components models and controlling the model’s evolution 
and fluctuation. Allen (2020) proposed a data-driven approach 
as an alternative to traditional production prediction methods. 
They presented a proxy-well model to predict the production by 
choosing significant parameters and reservoir data as independ-
ent predictor variables. After that, principal component analysis 
(PCA) was employed to obtain the relevant features,and was 
employed to estimate the cumulative productions. Wang et al. 
(2018) a hybridization model of a nonlinear and linear predic-
tion approach was proposed to establish predicting techniques 
in two-stages, integrating nonlinear grey approach accompa-
nied by mentalism idea to establish nonlinear metabolism grey 
approach and incorporating it with ARIMA. Al-Shabandar 
et al. (2021) presented a new model for prediction oil produc-
tion using a deep-gated RNN that comprises several hidden 
layers, in which each one has a set of nodes. This model had 
been evaluated with long-term time-series data.

Negash and Yaw (2020) proposed a new model for oil 
production forecasting employing artificial neural networks 
(NNs), which require a physics-based feature extraction to 
predict fluid production and to boost the forecasting effect. 
Additionally, there are also other models, such as (Suhag 
et al. 2017; Liu et al. 2020; Karasu et al. 2020; Male 2019; 
Aizenberg et al. 2014).

Furthermore, the application of DL in the petroleum 
industry was not only apply for forecasting oil production, 
however, recently different DL methods were employed to 
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simulate the carbon emission and reduction (Wang et al. 
2022, 2020, 2021), as well as the impact of energy consump-
tion during the COVID-19 pandemic (Wang et al. 2021)

In this study, we develop a time-series forecasting 
approach using an improved ANFIS (adaptive neuro-fuzzy 
inference system) (Jang 1993) for oil production. We utilize 
an enhanced version of the lately proposed metaheuristic 
optimization method, Slime mould algorithm (SMA) based 
on the opposition-based learning (OBL).

In recent years, the ANFIS model has been adopted in 
various forecasting applications, such as, oil consumption 
(Al-Qaness et al. 2018; Al-qaness et al. 2019), COVID-19 
cases (Al-Qaness et al. 2020), influenza cases (Al-qaness 
et al. 2020), and others (Zhou et al. 2019). The SMA is a 
recently developed optimization algorithm, presented by (Li 
et al. 2020). It simulates the behavior of initializing negative 
and positive feedback of the slime mould propagation waves 
of slime mould depending on bio-oscillator to form optimal 
paths to connect foods using efficient exploitation ability 
and valued exploratory propensity. Due to its competitive 
performance in solving complex optimization problems, it 
has been adopted in different applications.

The modified ANFIS is improved using an enhanced ver-
sion of the SMA using the OLB; thus, it is named SMAOLB-
ANFIS. It works by initializing a set of solutions; each solu-
tion represents the configuration from ANFIS parameters. 
We evaluate each solution using 70% of the samples as a 
training set. The solution that has the smallest fitness value is 
considered the best solution. Thereafter, the OLB operators 
are employed to boost the current population, and then SMA 
operators are used to improve current solutions till meeting 
terminal conditions. The best ANFIS configuration ( the best 
solution) is estimated using 30% of the samples as a testing 
set. The data used in this study are real-datasets for Masila 
oilfields in Yemen, and Tahe oilfields in China, provided by 
local partners. The proposed forecasting approach achieved 
significant performance using several evaluation metrics 
with comparisons to other methods.

The main contribution of the current study is:

–	 Present an efficient forecasting model for oil production 
based on a new improved ANFIS model.

–	 Propose an enhanced SMA algorithm to optimize ANFIS 
parameters using the OBL intelligence search technique.

–	 We evaluate the proposed forecasting model with two 
real-world datasets from two different oilfields in Yemen 
and China. Also, we compare the SMAOLB to several 
optimization methods to verify its performance.

Backgrounds

In this section, we give a brief description to the applied 
methods, as follows.

ANFIS

The ANFIS approach was established by Jang (1993) as a 
new artificial network (ANN). The ANFIS model’s structure 
is considered incorporation of ANN and Fuzzy Inference 
Systems (FIS). Furthermore, “IF-THEN rules” are applied 
to generate a mapping for inputs and outputs, identified as 
the “Takagi–Sugeno inference model”. This renders to sub-
stantiate that the ANFIS approach is more convenient and 
reliable to process data as it has a robust learning capability. 
As stated by these characteristics, the ANFIS approach has 
been implemented in many applications.

In the common ANFIS workflow, as drawn in Fig. 1, the 
Layer 1 input is represented by x and y, where L1i indicates 
the outputs of i node. The ANFIS mathematical model is 
expressed as follows:

where � indicates the generalized Gaussian membership 
function. The membership values of � are defined by Ai and 
Bi , and �i and �i refer to premise parameter set.

(1)L1i =�Ai
(x), i = 1, 2, L1i = �Bi−2

(y), i = 3, 4

(2)�(x) =e
−(

x−�i
�i

)2

;

Fig. 1   The basic ANFIS 
structure
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More so, Eq. (3) can be utilized for the second layer:

The output of the third Layer is calculated as :

In which wi represents ith output from the layer 2.
Furthermore, the output of layer is generated by Eq.5.

In which f indicates a function which use input and param-
eters of the network as inputs. ri , pi , and qi indicate i conse-
quent parameters.

Finally, layer 5 generates the output that is computed as 
in Eq. (6).

Slime mould algorithm

In 2020, SMA was proposed by (Li et al. 2020) as an alter-
native natural-inspired optimization technique that can be 
implemented to solve different optimization issues. It mim-
ics the performances of slime mould’s Oscillation and their 
propagation wave feedback depending on the bio-oscillator, 
and generates the optimum routes to connect food. It has 
three primary phases: 

1.	 Phase 1(Approach food): This phase can be presented as 
in Eq. 7, to define approaching behavior of slime mould. 

 in which vb ∈ [−a, a] represents random value, vc indi-
cates t random value that is reduced from 1 to 0, and t is 
the current iteration number. Moreover, Zb represents the 

(3)L2i = �Ai
(x) × �Bi−2

(y)

(4)L3i = wi =
�i∑2

(i=1)
�i

,

(5)L4,i = wifi = wi(pix + qiy + ri)

(6)L5 =
∑
i

wifi

(7)Zt+1 =

{
Zb(t) + vb.

(
W.ZA(t) − ZB(t)

)
r < p

vc.Zt r ≥ p

best solution. The solutions of the Slime are indicated by 
X. ZA and ZB are two random selected solutions. Addi-
tionally, W represents the slime mould weight. Whereas 
p is calculated using Eq. 8: 

 in which S(i) indicates the fitness value of i-th solution, 
and DF is the best fitness value.

	   The vb is computed using Eq.9: 

W is computed as follows: 

 here, condition indicates that S(i) is ranked in first half 
of X, where r is randomly generated in [0,1]. More so, 
bF indicates the best local fitness value, and wF is the 
worst local fitness value. SmellIndex stores the sorted 
fitness value.

2.	 Phase 2 (Wrap food): This phase is emplyed to simulates 
the updating position process of the slime mould. It can 
be represented as in Eq.13: 

 in which LB and UB indicate the limits of search space, 
whereas rand and r ∈ [0, 1] can be randomly generated.

3.	 Phase 3 (Oscillation): during this stage, the vb is oscil-
lating in [−a, a] , whereas vc is oscillating in [−1, 1].

	   Algorithm 1 presented the entire steps of the SMA.

(8)p = tanh |S(i) − DF| , i = 1, 2, ..., n

(9)vb =[−a, a]

(10)a =arctanh

(
−

(
t

maxt

)
+ 1

)

(11)

W(SmellIndex(i)) =

{
1 + r log((b

F
− S(i))∕(b

F
− w

F
) + 1) condition

1 − r log((b
F
− S(i))∕(b

F
− w

F
) + 1) others

(12)SmellIndex =sort(S)

(13)Z∗ =

⎧
⎪⎨⎪⎩

rand(UB − LB) + LB rand < z

Zb(t) + vb(WZA(t) − ZB(t)) r < p

vcZ(t) r ≥ p
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Opposition‑based learning

The OBL (Tizhoosh 2005) is an artificial intelligence tech-
nique that can be utilized to improve various methods of 
optimization (Ewees et al. 2018). The OBL strategy is based 
on the current approach to creating new opposition solutions 
for the given issue. This approach aims to select the optimal 
candidate solution by achieving the optimum fitness score 
to obtain the ideal solution (Abd Elaziz et al. 2017). The 
X opposite value for the real value, where X ∈ [UB,LB], is 
computed as shown in Eq. (14).

Opposite point: Suppose X = ( x − 1 , x − 2,..., x − n ) is a 
multi-dimensional space point, in which x − 1 , x − 2,..., 
x − Dim ∈ R and x − j [ UB − j,LB − j ], j ∈ 1, 2,..., Dim. 
Thus, This formulation is utilized by adding Equation (15) 
to resolve n-dimensions.

Furthermore, two solutions are given (x and xold ) and com-
pared in the optimization process based on their fitness func-
tions. Then the best solution is saved, whereas other solu-
tions are removed. If f(x) ≥ f(xold ) is stored for maximization, 
then x is stored; otherwise, xold is stored.

Proposed SMAOLB‑ANFIS model

The developed forecasting oil production model is discussed 
in this section. The proposed model depends on improving 
the performance of ANFIS based on enhanced SMA accord-
ing to the value OBL. The main target of using SMAOBL is 
to the parameters of ANFIS as in Fig. 2.

The first step in the developed model, named SMAOLB-
ANFIS, is to split the oil production dataset into training and 
testing sets, then using the training set during the learning 
stage. In this stage, the developed SMAOLB-ANFIS con-
structs a population X, which has a set of N solutions; each 
of one refers to one configuration from the parameters of 
ANFIS. The next step is to assess the performance of con-
structed ANFIS according to the current configuration Xi by 
using the following fitness function.

(14)X = UB + LB − X

(15)��⃗xj = UBj + LBj − xj, where j = 1....D.

where T and P denote the targets and predicted outputs, 
respectively. Na indicates the total number of samples of 
the training set.

The next process is to update the current population X 
by applying the modified SMAOBL. This is achieved by 
using the operators of SMA as discussed in Algorithm 1. 
Followed by applying the OBL operator as discussed in Eq. 
(15). Because OBL needs more computational time, so the 
developed SMAOBL uses OBL only during the exploration 
phase. The next step is to check the terminal condition and 
if it is not satisfied, then repeat the updating steps; Oth-
erwise, return the best configuration which represents Xb . 
Thereafter, apply the testing set to the best configuration 
Xb and evaluate its quality by predicting the oil production. 
The description of the developed ANFIS is presented in 
Algorithm 2. 

(16)MSE =
1

Na

Ns∑
i=1

(Ti − Pi)
2

Fig. 2   The steps of the SMAOBL-ANFIS
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Fig. 3   First Study area, Masila Basin oilfield, Yemen
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Fig. 4   Geological setting of the 
first study area



390	 Journal of Petroleum Exploration and Production Technology (2022) 12:383–395

1 3

Fig. 5   Second Study area (Tahe 
oilfield, Block 9, China)

Table 1   Performance Metrics

Performance measure Formula

Mean Square Error (MSE) MSE =
1

N

∑Ns

i=1
(Pyi − Yi)

2

Mean Absolute Error (MAE) MAE =
1

N

∑Ns

i=1
�Pyi − Yi�

Mean Absolute Percentage Error (MAPE) MAPE =
1

N

∑N

i=1
� Pyi−Yi

YPi

�
Coefficient of Determination ( R2) R2 = 1 −

∑n

i=1
(Yi−Pyi)

2

∑n

i=1
(Yi−Yi)

2

Standard deviation (Std)
Std =

�
1

N

N∑
k=1

(Yk − Y)
2

Evaluation experiments

First study area

The first case study or study area is the Masila Basin, 
Yemen. It is one of the onshore basins located in Hadram-
mot governorate. It occupied about 1250 km2 , and it can 
be considered as one of the Mesozoic sedimentary basins. 
It was generated as a rift-basin associated with the Meso-
zoic breakup of Gondwanaland and its development in the 
Indian Ocean throughout the Jurassic and Cretaceous. The 
Mesozoic and Cenozoic sequence in Yemen sedimentary 
basins are widely exposed. Many researchers have studied 
the lithostratigraphic structure in the Masila Basin includes 
Sunah oilfield (Hakimi et al. 2014, 2017; Al-Areeq and 

Maky 2015). Block 14 in the Masila basin comprised 20 
producing fields, as illustrated in Figure 3. The Sunah oil-
field is located in the northwest portion of the Masila block. 
The S1A formation is made up of shelf sands with tidal and 
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longshore impacts that range in thickness from 25 to 40 feet. 
Figure 3 presents the study area of the Masila basin - Block 
14, Sunah oilfield.

Geological setting

The geological characteristic of Masila oilfield has a sub-
stantial role in determining the hydrocarbon zones through-
out Masila oilfield. The hydrocarbon occurrence and 
movement were mainly monitoring by several attributes, 
including petrophysical properties, facies, faults, folding, 
and fractures. The Masila block is located in Hadhramaut 
city and ranks as the most active oilfields (Figure 4) (Hakimi 
et al. 2011).. The lithostratigraphic unit is varied in the era 
from Proterozoic to Tertiary. It is divided into different mega 
sequences, such as pre-rift, post-rift, and syn-rift. The S1A 
formation (Madbi Formation) is formed in the Upper Juras-
sic. Structurally, the Masila block was influenced by several 
fault trends northwest and southeast as a consequence of 
the red sea and Aden’s Gulf rifting throughout the tertiary 
time Masila basin. More so, the Jurassic and Lower Cre-
taceous strata reflect post-Pangaea separated in Yemen’s 
southern part, particularly in the Masila block. The block 
development was generated by cracking during the Early 
Cretaceous and Late Jurassic. Yemen was encountered rift-
ing twice in the Mesozoic and three times in the Tertiary 

time. The Mesozoic rifting basin trends from west to east, 
Sayun- Masila, and Jiza Qamar basin.

Second study area

Taha oilfield was discovered in 1990s with total proven 
reserves of approximately 600 × 106 tones. Taha oilfield 
is situated in Luntai County, Xinxiang province (Höök 
et al. 2010; Tian et al. 2017). Triassic Oil Formation in the 
Block-9 of Tahe Oilfield is located about 60 kilometers(km) 
away from the Luntai country, and its eastern longitude lies 
between 84◦ 13� 9}} − 84◦ 18� 52�� and northing latitude 
41◦ 15� 56}} − 41◦ 16� 4�� . Triassic reservoir block-9 was 
discovered in 2002. Triassic reservoir, block-9 is a sand-
stone reservoir, which is considered a favorable place for 
Hydrocarbon accumulations. The oil production was started 
in 2002, divided into four stages of development, including 
the pre-production phase, upper-middle-class, stable produc-
tion phase, and regressive phase (Li and Pan 2017; Yu et al. 
2017). Figure 5 shows the location of this oilfield.

Geological setting

Geologically, block 9 in the Taha oilfield is a sandstone res-
ervoir that belongs to the Triassic era. Block 9 consists of 10 
normal faults, three large normal faults are extended from 
the north to the east direction, and the others are secondary 

Table 2   Results of Yemen Oil 
fields

Alg. RMSE MAE MAPE R
2 Std Time

SMAOLB 18.2429 15.773 0.03754 0.99600 0.062 5.225
ANFIS 30.9510 27.698 0.06574 0.99558 2.365 -
SMA 24.8025 21.510 0.05115 0.99540 9.285 5.173
PSO 18.3333 15.778 0.03755 0.99517 0.079 2.872
GA 18.3410 15.785 0.03757 0.99517 0.145 3.152
SCA 174.1140 172.580 0.40997 0.99535 113.315 2.848
GWO 30.6688 26.820 0.06375 0.99540 14.751 2.778

Fig. 6   Results of the SMAOLB-
ANFIS and the compared model
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normal faults. The reservoir traps are anticline and are asym-
metrical on both sides. The sedimentary lithofacies is com-
posed of four types of lithological units including channel 
sand, levee sand, channel margin, and clay. Block 9 has good 
petrophysical properties including porosity and permeabil-
ity with an average proportion of 16.95% and 330.25 mD 
respectively. The detailed description of the geological set-
ting of this oilfield was described by (Lin et al. 2012).

Evaluation metrics

To validate the ability of the developed method to pre-
dict the oil production, a set of performance metrics is 
employed. These measures are the Standard deviation (std), 
Mean Square Error, Mean Absolute Percentage Error, Mean 
Absolute Error, and Coefficient of Determination. and their 
formulations are given in Table 1.

Results

The experiment results are calculated based on four real 
datasets to forecast oil products for Yemen and China (one 
dataset for Yemen and three for China). The Yemen dataset 
consists 341 records collected yearly between 1993 - 2015, 

whereas the China datasets, namely TK905H, TK906H, and 
TK907H, contain 4108, 4143, and 3838 records, respectively 
collected daily from 2003 to 2014. The averages of each 
dataset are as following: Yemen = 31946.95, TK905H = 
29.06, TK906H = 33.53, and TK907H = 38.04. These data 
vectors are formatted to be used in time-series forecasting 
by applying the auto-correlation function (ACF). Therefore, 
7-lags are applied in preparing the China data to be used 
in the forecasting process whereas, 2-lags are applied for 
Yemen data. In addition, the dataset is divided into training 
and testing sets using 10-cross-validation.

Yemen oil field

To evaluate the proposed SMAOLB-ANFIS as a time series 
forecasting model, we used real datasets collected from 
Masila oilfields, Yemen. Additionally, we compared the 
SMAOLB to other models, including the traditional ANFIS, 
and several ANFIS improved versions using several optimi-
zation techniques, namely, SMA, genetic algorithm(GA), 
particle swarm optimization algorithm (PSO), and whale 
optimization algorithm (GWO), and sine cosine algorithm 
(SCA).

Table 3   RMSE of three oil 
wells in Tahe oil Field, China

RMSE ANFIS SMA SMAOBL PSO GA SCA

TK905H 3.28086 2.49788 2.31342 2.31673 2.31725 2.63118
TK906H 1.84751 1.13141 1.12591 1.12736 1.12754 1.89347
TK907H 1.82949 1.76135 1.74782 1.75519 1.76201 2.16795

Table 4   MAE of three oil wells 
in Tahe oil Field, China

MAE ANFIS SMA SMAOBL PSO GA SCA

TK905H 2.01827 1.27891 1.13691 1.13795 1.14554 1.45180
TK906H 1.13836 0.70205 0.69289 0.69851 0.70003 1.32258
TK907H 0.89436 0.80083 0.75259 0.78672 0.79756 1.19983

Table 5   R2 of three oil wells in 
Tahe oil Field, China

R
2 ANFIS SMA SMAOBL PSO GA SCA

TK905H 0.85207 0.88392 0.89842 0.89776 0.89794 0.88185
TK906H 0.96028 0.98083 0.98094 0.98092 0.98090 0.96538
TK907H 0.91711 0.92205 0.92225 0.92182 0.92166 0.90438

Table 6   The results of the 
Friedman test

ANFIS SMA SMAOBL PSO GA SCA GWO

MAE 5.462 3.769 2.077 2.462 2.231 6.923 5.077
RMSE 5.385 4.000 1.462 2.462 2.615 7.000 5.077
MAPE 5.462 3.923 2.000 2.385 2.231 7.000 5.000
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Table 2 shows the evaluation results of all compared 
algorithms in terms of RMSE, MAE, MAPE, R2 , STD, and 
computational time (CPU time). For RMSE, the proposed 
SMAOLB obtained the best results, followed by PSO, GA, 
SMA, GWO, ANFIS, and SCA, respectively. It is clear 
that SMAOLB outperforms the traditional SMA and tra-
ditional ANFIS, which confirmed the advancements of the 
proposed method, which is improved by using the opera-
tors of the OLB. In case of MAE, The proposed SMAOLB 
also achieved the best results, followed by PSO, GA, SMA, 
ANFIS, GWO, SCA, respectively. For R2 , it is clear that the 
proposed SMAOLB achieved the best results with 99.6%. 
The PSO obtained the second rank, where PSO and GA 
obtained the third rank. The ANFIS and GWO obtained 
the fourth rank, and finally, SCA came in the last rank. For 
STD, SMAOLB also obtained the best rank, followed by 
PSO, GA, ANFIS, SMA, GWO, and SCA, respectively. In 
contrast to previous records, for computational time, GWO 
obtained the shortest time, followed by SCA, PSO, GA, 
SMA, and SMAOLB. This is because the applications of 
OLB enhanced the search process of the SMA to obtain 
optimal solutions Table .

Additionally, Figures 6 illustrates the forecasting results 
of the SMAOLB-ANFIS and the compared models. As 
shown from this figure, the proposed SMAOLB obtained 
the nearest values of the target (real value).

Tahe oil field, China

For further evaluation of our proposed model, we use another 
data for three wells in the Tahe oilfield, China. Tables 3-5 
show the results of all algorithms for Tahe oilfield, China. 
As illustrated in Table 3, for the well TK905H, the pro-
posed SMAOLB obtained the best RMSE value. Then, the 
PSO came in the second rank, where the GA obtained the 
third rank. More so, the traditional SMA obtained the fourth 
rank, where the SCA and traditional ANFIS recorded the 
fifth and sixth ranks, respectively. For the TK906H and 
TK907H wells, SMAOLB also came in the first rank, fol-
lowed by PSO, GA, SMA, ANFIS, and SCA. From Table 4, 
for TK905H and TK906, we see that the SMAOLB achieved 
the best MAE values, followed by PSO, GA, SMA, SCA, 
and ANFIS. For TK907, SMAOLB is also the best, followed 
by PSO, GA, SMA, ANFIS, and SCA. Furthermore, Table 5 
indicates that the developed SMAOLB obtained the best R2 
value for the three wells.

Statistical tests

For further analysis, in this section, the Friedman test is 
employed to test the robustness of the SMAOLB and other 
compared algorithms depending on all applied evalua-
tion measures. This test assumes there is no significant 

differences between the results of the control method (i.e., 
SMAOBL) and other compared methods. This assumption 
is named null hypothesis, and it is accepted if the value of 
p-value is greater than 0.05. Otherwise (i.e., p-value less 
than 0.05), it was rejected, and this confirms that the differ-
ence between SMAOBL and other methods is significant.

As indicated in Table 6, the proposed SMAOLB recorded 
the best Friedman’s value in terms of RSME, MAE, and 
MAPE. The GA obtained the second rank for both MAE and 
MAPE, followed by PSO, SMA, GWO, ANFIS, and SCA. 
For RMSE, the PSO obtained the second rank, followed by 
GA, SMA, GWO, ANFIS, and SCA.

In summary, the above-mentioned results ensured the 
competitive performance of the developed SMAOLB-
ANFIS over the traditional ANFIS and the modified ANFIS 
using SMA. More so, it outperformed several optimizers that 
are applied to improve the ANFIS model, such as PSO, GA, 
SCA, and GWO. Since the developed SMAOBL combined 
the strength of the SMA and the OBL strategy that aims to 
support SMA with a suitable mechanism to avoid stuck in 
local optima, this has been performed during the explora-
tion phase, and this leads to increase the convergence rates 
towards the feasible regions which contain the optimal solu-
tions (parameters of ANFIS).

Conclusion

This study proposed a developed variant of the ANFIS 
model, as a time-series forecasting method for oil produc-
tion using real-world datasets. The traditional ANFIS was 
enhanced using an intelligence optimization method called 
SMAOLB. This method was developed by applying the 
intelligence OLB technique to improve the search process 
of the slime mould algorithm (SMA). Thus, the proposed 
forecasting model called ANFIS-SMAOLB was applied to 
forecast oil production using different datasets from two 
real-world oilfields in Yemen and China. We implemented 
several experiments considering several evaluation metrics 
and statistical tests to evaluate the performance of the devel-
oped ANFIS-SMAOLB. Additionally, we compared it to the 
original structure of the ANFIS and several modified ANFIS 
using other optimization mechanisms, such as traditional 
SMA, SCA, PSO, GA, and GWO. We concluded that the 
SMAOLB showed better performance than the traditional 
ANFIS, SMA, and other ANFIS versions in all performance 
measures, except the computational time (CPU time). There-
fore, the main limitation of the developed SMAOLB is the 
computational time, which can be neglected compared to 
other performance measures that have more important roles 
in time series prediction and forecasting, such as R2 , RMSE, 
MAE, MAPE, and STD. For future work, there are other 
applications that could be addressed using the SMAOLB, 
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such as feature selection, multi-optimization tasks, and 
scheduling tasks (i.e., cloud computing, machine job sched-
uling in manufacturers).
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