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Abstract
Seismic velocity modeling is a crucial step in seismic processing that enables the use of velocity information from both 
seismic and wells to map the depth and thickness of subsurface layers interpreted from seismic images. The velocity can be 
obtained in the form of normal moveout (NMO) velocity or by an inversion (optimization) process such as in full-waveform 
inversion (FWI). These methods have several limitations. These limitations include enormous time consumption in the case 
of NMO due to manual and heavy human involvement in the picking. As an optimization problem, it incurs high cost and suf-
fers from nonlinearity issues. Researchers have proposed various machine learning (ML) techniques including unsupervised, 
supervised, and semi-supervised learning methods to model the velocity more efficiently. The focus of the studies is mostly 
to automate the NMO velocity picking, improve the convergence in FWI, and apply FWI using ML directly from the data. 
In the purview of the digital transformation roadmap of the petroleum industry, this paper presents a chronologic review of 
these studies, appraises the progress made so far, and concludes with a set of recommendations to overcome the prevailing 
challenges through the implementation of more advanced ML methodologies. We hope that this work will benefit experts, 
young professionals, and ML enthusiasts to help push forward their research efforts to achieving complete automation of the 
NMO velocity and further enhancing the performance of ML applications used in the FWI framework.

Keywords  Machine learning · Digital transformation · Velocity analysis · NMO velocity · Velocity inversion · Full-
waveform inversion

Introduction

The velocity of a medium is a crucial step to obtain an accu-
rate seismic image. Inaccurate velocity typically leads to 
incorrect positioning of the reflectors and hence causes a 
discrepancy in the image. Many techniques have been devel-
oped over the years to ensure a good velocity estimate of 
the subsurface. A common practice in seismic processing 
is to obtain the normal moveout (NMO) velocity from the 
common midpoint (CMP) gathers. The NMO velocity flat-
tens the hyperbola in the data. Velocity search by semblance 
analysis (Yilmaz 1987) is the most common method used 
to estimate NMO velocity. Since it depends on manually 

picking the maximum energy semblance of the stacking 
velocity, this technique requires extensive human interven-
tion. Hence, it is time-consuming, especially for large 3D 
volumes. Besides that, NMO velocity is often not accurate as 
it is based on the assumption of lateral homogeneity and fails 
to estimate complex structures. It provides a smooth veloc-
ity courtesy of the interpolation between the CMP gathers.

Velocity inversion is often implemented to obtain a more 
accurate velocity model. Full-waveform inversion (Taran-
tola 1984) is a common inversion method that provides 
a high-resolution velocity model by minimizing the least 
square misfit between observed data from the field and the 
modeled version. It is an ill-posed nonlinear optimization 
problem. Starting from an initial velocity model such as an 
NMO velocity, FWI updates the velocity iteratively until it 
converges to hopefully global minimum. However, due to the 
lack of low frequencies in the data, it often converges to a 
local minimum, especially with a poor starting model. Regu-
larizing the inversion with constraints and prior information 

 *	 Abdullah AlAli 
	 abdullah.alali.1@kaust.edu.sa

1	 King Abdullah University of Science and Technology, 
Thuwal, Saudi Arabia

2	 Saudi Aramco, Dhahran, Saudi Arabia

http://orcid.org/0000-0003-2706-2474
http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-021-01304-0&domain=pdf


22	 Journal of Petroleum Exploration and Production Technology (2022) 12:21–34

1 3

has been proven to achieve better convergence (Asnaashari 
et al. 2013; Kalita et al. 2019).

Recently and due to the advancements in computational 
resources and the availability of state-of-the-art algorithms, 
there has been a wide interest in machine learning (ML) 
applications within the geoscience community. These appli-
cations include formation tops identification using unsu-
pervised learning techniques (Xuan and Murphy 2007) and 
seismic facies analysis using artificial neural network (ANN) 
(Wrona et al. 2018) and formation tops identification using 
supervised learning techniques (Maniar et al. 2018). Others 
are fault detection (Xiong et al. 2018; Wu et al. 2019) and 
salt interpretation (Zeng et al. 2019) using convolutional 
neural networks (CNN), and seismic attributes selection 
using ANN (Qi et al. 2020). Additional contributions were 
made to overcome the limitations of the current velocity 
building techniques. Most of these efforts were aimed at 
automating the picking process in the semblance related 
approaches while assisting FWI by low-frequency extrapo-
lation, gradient manipulation, and regularization by using 
ML to converge faster. Some other attempts have been made 
to estimate the NMO or FWI velocity directly from the pre-
stack shots/CMP gathers.

In this paper, we track and review the progressive efforts 
in the development of velocity models from the traditional 
empirical and analytical approaches to the use of machine 
learning techniques. First, we present an overview of some 
of the ML techniques that were applied in the studies that we 
reviewed in this paper. These include unsupervised learning 
technique such as clustering, supervised learning techniques 
such as deep neural networks, and semi-supervised learn-
ing technique such as meta-learning. Then, we discuss the 
ML applications in estimating NMO velocity. After that, we 
review the ML applications in the more advanced velocity 
modeling method, FWI. Finally, we conclude by making 
recommendations for potential future applications in view 
of contributing to the digital transformation effort of the 
petroleum industry.

Common machine learning techniques 
applied in the reviewed literature

There are three basic machine learning paradigms, namely 
supervised, unsupervised, and reinforcement learning 
(Bishop 2006). In the case of supervised learning, a train-
ing set, X, is used in the model function, f(X), to build and 
optimize its relationship with a known target, T. T could be 
composed of labels (in case of classification) or continu-
ous values (in the case of regression). Using a metric (loss) 
to estimate the similarity between the model prediction, 
T � = f (X) , and the actual target, T, the model is optimally 

tuned to predict the desired output. This can be expressed 
mathematically by

The goal of the tuning process is to keep the loss within a 
certain threshold or as low as practically possible. Common 
examples of losses used in training include mean squared 
error for regression problem and cross entropy for classifica-
tion. Updating the model during the tuning process is often 
performed by gradient descent and back-propagation meth-
ods. Examples of techniques utilizing this type of learning 
methods include support vector machine (SVM), decision 
trees, and artificial neural network (ANN). For the unsu-
pervised techniques, a corresponding target value of T is 
not available for a set of inputs, X. Rather, the learning goal 
typically involves discovering optimal groups with similar 
features in the data (e.g., clustering methods), reducing the 
dimension of the data (e.g., principle component analysis) 
or density estimation. Reinforcement learning is learning 
actions through trial and error based on rewards and pun-
ishments system in which the learning algorithm seeks to 
maximize the reward. An analogy of this type of learning 
is teaching a dog to sit. We emulate a situation, and the dog 
will respond in various ways. The dog will be rewarded with 
food if he sits. Next time when we emulate the same situa-
tion, the dog will sit expecting the reward.

A more recent ML technique known as meta-learning or 
“learning to learn” can be classified as a semi-supervised 
learning (Maclaurin et al. 2015; Andrychowicz et al. 2016). 
In meta-learning, the goal is to find the optimal hyperpa-
rameters such as loss, learning rate, regularization param-
eter, initial weights, and activation functions. Depending on 
the problem, one may choose whichever hyperparameters 
to optimize as desired and these hyperparameters will be 
referred to as “meta-variable.” A loss, referred to as meta-
loss, measures the performance of the network or model in 
terms of the degree of similarities of the model prediction 
and the actual target values. The algorithm starts by run-
ning series of training instances using some ML models. 
The meta-loss measures how well the ML model has suc-
ceeded in predicting the target. It would then propagate the 
error to update the network parameters. This type of learn-
ing is often implemented in nested loops. An inner loop to 
perform several training steps and an outer loop to optimize 
the meta-variables. Therefore, meta-learning requires high 
computational cost compared to a normal training process. 
Another requirement is that the network parameter should 
have higher-order derivatives such as the “gradient of the 
gradient.”

The following subsections discuss in more detail some of 
the techniques used by geoscientists in velocity modeling, 
specifically clustering methods and ANN.

(1)Min loss
(

T
′, T

)



23Journal of Petroleum Exploration and Production Technology (2022) 12:21–34	

1 3

K‑means and DBSCAN clustering

Clustering, a type of unsupervised learning, is a technique 
that identifies groups (or clusters) with similar features in the 
data (Gan et al. 2007). The goal for clustering algorithm is 
to partition the dataset into clusters (i.e., groups). Research-
ers have suggested different methods to choose the optimal 
number of clusters (e.g., Maclaurin et al. 2015; Salvador 
and Chan 2004). The user often determines that by trial 
and error. Various clustering algorithms such as K-means, 
expectation maximization, density-based spatial cluster-
ing (DBSCAN), and fuzzy clustering have been developed 
(Bradley et al. 1998; Rokach and Maimon 2005; De Oliveira 
and Pedrycz 2007). This section focuses on only the algo-
rithms for K-means clustering and DBSCAN since they are 
applied in velocity applications.

K-means, where K represents the number of clusters, is 
one of the most commonly used clustering methods (Bishop 
2006). It is implemented in the following steps:

1.	 Initialize cluster centroids.
2.	 Assign the data points to the closest clusters based on 

their proximity to the centroids.
3.	 Update the cluster centroids based on the mean of the 

data points within the cluster.

4.	 Repeat steps 2 and 3 until the centroids converge, that 
is, when the difference between the new and the current 
centroids is zero or less than some tolerance.

Figure 1 shows an example of this iterative process with 
three clusters from input data (a) to the last iteration.

DBSCAN is a density-based clustering algorithm (Ahmed 
and Razak 2016). By defining a radius, � , and a minimum 
number, minPts, of points, DBSCAN classifies the points 
into three categories:

1.	 Core points: the points that contain more than minPts 
within the radius, �.

2.	 Border points: the points that contain less than minPts 
within the radius, � , and they are neighbor of core points.

3.	 Noise (outlier) points: the points that belong to neither 
core points nor border points.

Figure 2 shows an example of this classification using 
three as minimum number of points (minPts).

The workflow for the method is shown in Fig. 3 and com-
posed of the following steps:

1.	 Select random points that are not assigned to a cluster or 
noise.

Fig. 1   K-means clustering process with K = 3. ‘ × ’ mark indicates the centroid and different colors indicate different clusters
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2.	 Compute the neighborhood points within the distance, 
�.

3.	 Assign the points using the following conditions:

a.	 If the number of points within � is larger than 
minPts, it becomes a core point.

b.	 If the number of points within � is less than minPts 
and it is in the neighborhood of a core point, it is a 
border point.

c.	 Identify the point as noise if none of the above con-
ditions is satisfied.

4.	 Assign the class of the core point to its border point.
5.	 The process is repeated until all data are assigned to a 

cluster or identified as outlier.

Artificial neural network

ANN is a powerful learning tool to approximate nonlinear 
functions. It is considered a supervised learning technique 

as it requires providing the true outcome for each point in 
the training data (Bishop 2006). The simplest form of the 
ANN is the fully connected layers (FC). FC is composed of 
three main layers: an input layer, which receives the input 
features; one or more hidden layers, which perform all the 
computations; and an output layer, which produces the final 
results. Each of the hidden layers consists of neurons, which 
are connected to the previous and next layers by weights. 
Inside a single neuron, the input vector is multiplied by the 
weights and a summation task is performed. To produce a 
final output of the neuron, an activation function is applied 
to the summation. Figure 4 shows a typical FC structure with 
three hidden layer for illustration.

Recently, more advanced ANN algorithms have been 
developed. These include convolutional neural network 
(CNN) (LeCun et al. 1995) and recurrent neural network 
(RNN) (Hochreiter and Schmidhuber 1997). CNN uses local 
convolutional filters to extract the spatial features from the 
inputs. It is widely used in image processing, object detec-
tion, image segmentation, and classification problems. 
RNN uses a memory variable that stores information from 
previous inputs in the new prediction. It is widely used for 
time series problems. Some of the common applications for 
RNN are natural language processing, language translation, 
and time series forecasting. RNN suffers from vanishing 
or exploding gradient problem. The structure of a version 
of the RNN algorithm, known as long short-term memory 
(LSTM), addressed this issue and has been commonly used 
(Hochreiter and Schmidhuber 1997).

Machine learning techniques applied 
to velocity estimation

This section discusses two major types of velocity models: 
NMO and velocity models obtained by FWI. The NMO 
velocity flattens the hyperbolas in the CMP gathers. NMO 
velocity is not accurate in most cases, as it is based on lateral 
homogeneity of the subsurface. Despite this, it is used for an 

Fig. 2   Classification of core, border, and noise points with 
minPts = 3. The red points indicate core points. The blue point is bor-
der point and the green point is noise

Fig. 3   Flowchart for the DBSCAN clustering algorithm

Fig. 4   Fully connected layers structures with three hidden layers. 
Each circle represents a single neuron
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initial estimate for the subsurface model. FWI used iterative 
method to update the velocity model and obtain more accu-
rate and higher resolution velocity. However, it should start 
from a good initial model. FWI is usually implemented by 
inverting for the low frequencies of the data and gradually 
progressing to the higher ones to ensure convergence. How-
ever, these low frequencies are often missing which make it 
challenging to FWI to converge to global minimum.

NMO velocity analysis

Traditionally, NMO velocity is obtained by creating sem-
blance spectrum panels for several CMP gathers. The sem-
blance panel consists of a range of velocities in one axis 
and the two-way travel time in the other. The highest energy 
semblance, which indicates the velocity at a particular time, 
is typically picked manually. With the help of machine learn-
ing, the picking process has been partially automated. Dif-
ferent strategies have been implemented with unsupervised 
learning such as clustering and supervised learning with 
ANN. Using ANN for automatic velocity picking is not new. 
Schmidt and Hadsell (1992) and Fish and Kusuma (1994) 
are few of the pioneers that used ANN for velocity analysis. 

The networks at that time were shallow and only able to 
extract some local information of the velocity semblance.

Several researchers suggested the use of K-means clus-
tering as an auto-picking method for velocity analysis. 
Since seismic data are often contaminated with noise, 
Smith (2017) suggested using different attributes such as 
semblance, AVO auto-picking, and continuity of the gath-
ers across offsets for clustering. This ensures more robust-
ness. To further ensure that only the points around the high 
semblance are considered, Wei et al. (2018) proposed using 
some constraints such as adding a few manually picked sem-
blances as a guide. Chen (2018) applied a threshold to keep 
the high-energy points. He implemented the K-means algo-
rithm on the Gulf of Mexico (GOM) data. He achieved good 
picking except at some deeper parts where the spectrum is 
diffused. Bin Waheed et al. (2019) later compared the perfor-
mance of K-means with the DBSCAN clustering algorithm. 
Their findings suggested that the lower value of K in the 
K-means algorithm would result in no picks, while the larger 
value is likely to lead to error (Fig. 5a). For DBSCAN, the 
values of the picks for the tested radii are similar as shown 
in Fig. 5b. They made a comparison between the picks for 
K-means (K = 5), DBSCAN ( � = 0.02) and the true velocity 
(Fig. 5c).

Fig. 5   a k-mean picking for k = 5, 10 and 15 (from top to bottom). b is the DBSCAN picking for five minPts and radius 0f 0.02, 0.04 and 006. c 
is the comparison between k-mean with k = 5, DBSCAN with radius 0.02 and the true velocity (bin Waheed et al. 2019)



26	 Journal of Petroleum Exploration and Production Technology (2022) 12:21–34

1 3

Using an alternative approach, Ma et al. (2018) formu-
lated the problem as a regression type rather than using the 
semblance picks. To achieve the regression objective, they 
used CNN to estimate the NMO velocity from the pre-stack 
CMP gathers directly. A predefined range of velocities were 
applied to the CMP gathers to flatten them. They trained the 
CNN model by taking mini-batches from the CMP gathers 
and outputting a number indicating the velocity errors. For 
example, the output is 1 if the CMP is flat, 0.9 for over-
correction, and 1.1 for under-correction. The velocities cor-
responding to an output equal to 1 were selected for the 
velocity model. The method produced promising result when 
it was applied to the Marmousi model using velocities in the 
range of 0.9 and 1.1 of the true velocity.

Biswas et al. (2019b) suggested using RNN to obtain the 
velocity semblance picks from pre-stacked CMP gathers 
as a regression problem. The velocity governed the spread 
of the hyperbolas in time and offset. This means that the 
information needed to estimate the velocity at a particular 
time step is the neighboring temporal and spatial informa-
tion. Therefore, they considered windows of offset size NX 
and time 2 N as illustrated in Fig. 6. On the left is the CMP 
gather with offset NX. The blocks of data from the CMP 
gather was used for creating a single instance of a mini-batch 
(multiple sequences). The right panel is the corresponding 
NMO velocity pick. The velocity was estimated at the centre 
of the window shown in magenta color. RNN took the input 
X sequentially from Xi to Xp where i represents the time-step 
index and p is the number of time-steps. A fully connected 
(FC) layer was applied after the RNN for projecting the out-
put to the desired dimension. It is worth mentioning that 
during the training, mini-batches were used to update the 
weights in a single iteration. The method was implemented 
on pre-stacked 2D data provided by Geofizyka Torun Sp Z 

o.o. in Poland and available in the public domain (https://​
wiki.​seg.​org/​wiki/​2D_​Vibro​seis_​Line_​001). The training 
data were on 10% of the CMPs, which was about 80 gath-
ers. Figure 7 shows a comparison of a hand-picked NMO 
with the predicted NMO by the RNN network.

In a similar fashion to Biswas et al. (2019b), Zhang et al. 
(2019a, 2019b) tested LSTM to automate the picking. How-
ever, they combined the LSTM with a CNN model known as 
YOLO (You Only Look Once) and considered the problem 
as an object detection problem.

More recently, Park and Sacchi (2020) utilized CNN 
to automatically pick the semblance. They formulated the 
task to be a classification problem. The network’s input was 
defined as a pair of a guide image, G, which represents the 
velocity semblance. The target images, T, contained the 
semblance image at a specific range, τ, where τ is the zero-
offset two-way travel time. This is illustrated in Fig. 8. Each 
image, T, represents the velocity in the middle of the range, 
τ. To reduce the computational cost, the semblance images 
were down sampled to 50 × 50 pixels. The output class was 
defined by dividing the velocity axis in the semblance panel 
into velocity ranges such that each range was considered 
as a class. They tested the method with common network 
structures such as LeNet-5, AlexNet, and VGG16. They 
concluded that VGG16 was the best choice for their imple-
mentation. The network was trained using seven synthetic 
quazi-horizontal models. However, with the help of trans-
fer learning, the application was extended to more complex 
models.

Transfer learning is defined as follows:

Let A and B be two similar tasks. By using few sam-
ples from B to tune a pre-trained model on A, a good 
network that predicts from B can be achieved.

Park and Sacchi (2020) used six semblance panels out 
of 1400 from GOM data to perform transfer learning on a 
pre-trained network. The predicted model is similar to the 
NMO velocity with manual picking except at a part in the 
middle as shown in Fig. 9. The reason for that was explained 
as being due to the lack of samples on which to perform the 
transfer learning. This is a proof that transfer learning is vital 
when the model is not quazi-horizontal.

We summarize the reviewed studies on using machine 
learning in modeling NMO velocity in Table 1.

Velocity inversion

This section discusses some of the applications to invert 
for seismic velocity using ANN. These studies differ from 
those discussed in the previous section in that they provide 
a more accurate velocity that mimic the ones obtained from 
FWI. Some of the attempts implemented a direct inversion, 
which implies inputting the data and outputting the velocity Fig. 6   Illustration of the RNN input (Biswas et al. 2019b)

https://wiki.seg.org/wiki/2D_Vibroseis_Line_001
https://wiki.seg.org/wiki/2D_Vibroseis_Line_001


27Journal of Petroleum Exploration and Production Technology (2022) 12:21–34	

1 3

Fig. 7   a Hand-picked NMO velocity for Geofizyka Torun S.A, data. b Predicted NMO velocity by RNN. c is the difference between a and b. 
The dotted lines indicate the training area, which covers 80 CMP gather (Biswas et al. 2019b)

Fig. 8   Illustration of the input 
for the CNN network used in 
Park and Sacchi (2020). The 
guide image G(n) containing 
the semblance is paired with 
the target image T(n,t), which 
contained the semblance at a 
specific range τ. n is the number 
of the CMP gather and t, which 
ranges from 1 to 45, is the index 
of the range τ which is. I(n,t) is 
the final input data
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model. Examples of this method are found in Araya-Polo 
et al. (2018), Yang and Ma (2019), Biswas et al. (2019b), 
and Sun and Alkhalifah (2020). Others utilized ANN for 
regularization, manipulating the gradients, extrapolating 
to low frequency, and adding prior based on ML. Exam-
ples of this approach are found in Jin et al. (2018), Hu et al. 
(2019), Lewis and Vigh (2017), Sun and Demanet (2018), 
Ovcharenko et al. (2019), Sun and Alkhalifah (2019a), Haber 
and Tenorio (2003), and Zhang and Alkhalifah (2019). The 
later type is referred to in this paper as ML-assisted velocity 
inversion. Each of these is discussed in more details.

Direct inversion

Araya-Polo et al. (2018) proposed an FC layer of ANN to 
predict the velocity directly from the shot gathers. They sug-
gested extracting features from the shot gathers as doing so 
helped the training to converge faster and more accurate. To 
achieve that, they converted the data to a semblance cube 

and used it as features since the semblance contains pat-
terns related to the velocity. The label for the network was 
the ground truth velocity. They further used three FC layers 
with dropout and batch normalization to test the approach. 
They conducted two experiments to test this method. In the 
first experiment, the output was a continuous-valued image 
and the label was composed of discrete values containing 
velocities. This case needed a post-processing procedure 
such as K-means segmentation to be applied to the output 
velocity images. In the second experiment, the actual labels 
and the predicted velocities were of continuous values. In 
addition, salt-bodies were included in some of the models. 
The two experiments performed similarly for layered veloc-
ity models. It did not perform well in the cases containing 
salt bodies. Salt bodies are typically challenging to invert for 
even in conventional approaches.

Without using any features, Wu et al. (2018) and Yang 
and Ma (2019) inverted for the velocity directly from the 
raw data. They recommended the use of CNN. While the 

Fig. 9   a is the hand-picked NMO velocity model for GOM data. b is the predicted velocity using CNN. c is the difference between a and b. 
Transfer learning is implemented using 6 CMP gathers indicated by the dotted lines (Park and Sacchi 2020)

Table 1   Summary of the reviewed work in ML applications for modeling NMO velocity

Authors ML Type Proposed method Notes

Smith (2017) Unsupervised K-means Used different attributes besides the semblance
Wei et al. (2018) Unsupervised K-means Used few picked semblances as a guide
Chen (2018) Unsupervised K-means Applied a threshold to keep the high energy points
Bin Waheed et al. (2019) Unsupervised K-means + DBSCAN Compared K-means and DBSCAN
Ma et al. (2018) Supervised CNN Used CMP gathers to learn the NMO velocity
Biswas et al. (2019b) Supervised RNN Used CMP gathers to learn the NMO velocity
Zhang et al. (2019a, 2019b) Supervised RNN + CNN Used CMP gathers to learn the NMO velocity
Park and Sacchi (2020) Supervised CNN Automated the picking from the semblance
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former focused on inverting for models containing faults, the 
latter inverted for models containing salt bodies. Yang and 
Ma (2019) used a modified U-net architecture. In a typical 
U-net (Ronneberger et al. 2015), the input and the output 
are in the same dimension. In this work, the input was in 
space–time (x, t) while the output was in space-depth (x, z) 
dimension. The samples used for training are 2D synthetic 
velocity containing salt bodies. They used different shots 
generated from the same model as channels for the input. 
Therefore, the number of channels for each input was the 
same as the number of shots. The labels were the veloc-
ity models used to generate the data. The results showed 
promising capability of obtaining the velocity model directly 
from the raw data. The trained network was then used as an 
initial network for a different training set from SEG/EAGE 
salt models (Aminzadeh et al. 1996). The prediction of the 
network was not as good. According to Yang and Ma (2019), 
this may be due to the lack of training models.

In FWI, the governing equation for the problem, which 
is mainly the wave equation, is well known. It would be 
desirable to take advantage of that and use a physics-guided 
machine learning approach. Biswas et al. (2019a) inverted 
for the velocity based on the physics using an encoder-
decoder CNN network. In this technique, the input dimen-
sion, which is the seismic data, was reduced in the encoder 
part and then restored back in the decoder part. The output 
model was then used in the wave equation to generate a syn-
thetic model, and the difference between the input and the 
generated data was used to compute the gradient. It should 
be noted that this is an unsupervised approach as there was 
no label. Rather, the physics was used to compute the gradi-
ent and update the network.

Several researchers in the area of FWI such as Van Leeu-
wen and Herrmann (2013), Alkhalifah and Song (2019), and 
Sun and Alkhalifah (2019b) proposed using robust misfit 
functions to overcome the limitations of the conventional 
least-squared objective functions. In line with this, Sun and 
Alkhalifah (2020) proposed to learn a more robust objective 
function using the concept of meta-learning. They formu-
lated the problem to find the optimal objective (minimum 
loss) by replacing the conventional L2 norm with an ANN 
model. They formulated the meta-loss such that the net-
work mimicked the behavior of the optimal transport of the 
matching filter misfit function (Sun and Alkhalifah 2019b). 
As a simple test, they applied the method on a simplified 
FWI by inverting only for a travel time shift between two 
traces. They plotted the learned misfit function at the first 
epoch and after 250 epochs and then compared it with the 
L2 misfit. The ML-misfit after 250 epochs showed better 
convexity than the L2 objective. They then learned the 
objective function using random 2D horizontal layers and 
inferred on the Marmousi model. Since the low frequencies 
were missing from the data, they introduced the well-known 

cycle-skipping problem. Because of this, the conventional 
FWI result was cycle-skipped while the ML-misfit inversion 
was not. This suggested that the learned misfit was more 
robust than the L2 objective.

Velocity inversion assisted by machine learning

In the theory of FWI, the multi-scale approach (Bunks et al. 
1995) suggested starting the inversion from low frequencies 
and progressively including the high frequencies until the 
whole bandwidth of the data has been used. Despite this 
guarantee a stable convergence, the data often lack the low 
frequencies. Many researchers have attempted to extrapo-
late the missing low frequencies from the high frequencies 
(Hu et al. 2019; Wu et al. 2014). The effort had been lim-
ited to the single scattering assumption, known as the Born 
approximation, and the acquisition. Ovcharenko et al. (2018) 
used a feed-forward ANN model to extrapolate the low fre-
quencies. Thereafter, and for computational efficiency for 
large inputs, they suggested using CNN for the extrapolation 
(Ovcharenko et al. 2019). They formulated the CNN such 
that the input is the high-frequency contents of a shot gather. 
The output was a single low frequency.

The network used in this approach consisted of four con-
volutional blocks, followed by pooling layers, and then two 
FC layers. The data used for training were generated with 
random models. The network could only extrapolate to a sin-
gle frequency, implying that there were individual CNNs for 
each target frequency. They tested the network on the cen-
tral BP 2004 model, which contained a large salt body. The 
available frequency bandwidth in the seismic data ranged 
from 2 to 4.5 Hz. They extrapolated the frequencies to 0.25, 
0.5 and 1 Hz. The error of extrapolation increased at higher 
frequencies. This was possibly caused by the introduction of 
more complex contributions of subsurface features into the 
total misfit (Ovcharenko et al. 2019). For FWI applications, 
the extrapolated low frequencies data are typically first used 
in inversion. Then, the final inversion result was used as 
input for the subsequent higher frequency until all the band-
width was covered. They used this approach to invert for 
the BP velocity model. The final result successfully recon-
structed the salt body, which would have been difficult using 
the available frequency that started from 2 Hz.

There is a lot of information that can be used to impose 
constraints and regularize FWI. Such constraints include 
geological information. The equation currently used to con-
nect different data information is based on some surface 
assumptions. To better connect the data, statistical principles 
have been effectively used to merge different information by 
using deep learning. Zhang and Alkhalifah (2019) learned 
the probabilities of the facies for each P-velocity (Vp) and 
S-velocity (Vs) from a nearby well. They then mapped the 
probabilities into the whole estimated model by using a 
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weighted sum, 
∑

pivi , where p is the probability of the indi-
vidual facies, i. They used a network with four hidden layers, 
64 neurons in each layer, and three input features, namely 
Vp, Vs and Vs/Vp, to output the facies. The algorithm is sum-
marized below, and the flowchart is presented in Fig. 10:

1.	 Perform elastic FWI.

2.	 Extract facies information from a well log or any other 
sources.

3.	 Choose vertical profiles near the well from the estimated 
model in step 1. Then build the connection between 
these estimates and the interpreted facies by training a 
feed-forward ANN.

4.	 Use the trained network to predict the facies for the 
whole model and use a weighted summation to gener-
ate the P-velocity (Vp) and S-velocity (Vs).

5.	 Use the converted Vp and Vs velocities as input or regu-
larization for another cycle of FWI.

6.	 Repeat the process if apparent error estimation exists.

They tested the above methodology on the BigSky field 
data. They manually interpreted 11 facies from a well log 
to obtain the initial model for the FWI by smoothening the 
velocity. They found that the inversion results along with 
facies were more accurate and higher in resolution than the 
conventional FWI. Figure 11 shows their inversion result. 
The yellow arrow points to high-resolution anomaly that 
was not capture by the conventional inversion.

The results of the literature survey discussed above are 
summarized in Table 2.

Fig. 10   Workflow to regularize FWI using facies from a well log 
(Zhang and Alkhalifah 2019)

Fig. 11   Vp velocity of BigSky data for a initial model, b the estimated FWI without facies and c with facies. Yellow arrow indicates lateral 
anomaly predicted by the network (Zhang and Alkhalifah 2019)

Table 2   Summary of the reviewed ML applications to invert for the velocity

Authors ML type Proposed Method Notes

Direct Inversion Araya-Polo et al (2018) Supervised Fully connected Converted data to semblance cube
Wu et al. (2018) Supervised Convolutional neural network Used raw data to predict models with faults
Yang and Ma (2019) Supervised Convolutional neural network Used raw data to predict models with salts
Biswas et al. (2019a) Supervised Convolutional neural network Unsupervised learning by using the physics
Sun and Alkhalifah (2020) Semi-supervised Meta-learning Learned the objective function for the 

inversion
ML-Assisted Ovcharenko et al. (2018) Supervised Fully connected Extrapolated to low frequency

Ovcharenko et al. (2019) Supervised Convolutional neural network Extrapolated to low frequency
Zhang and Alkhalifah (2019) Supervised Fully connected Mapped a well-log facies to velocity model
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Remaining gaps in the current level 
of machine learning applications in seismic 
velocity modeling

Most of the work reviewed in this paper used insufficient 
data to train the models. It is well known that the perfor-
mance of machine learning methods usually improves with 
the addition of more data in terms of quantity, quality, and 
relevance of the features. The data used often belonged to 
the same velocity model, which would adversely affect the 
generalization of the models. Transfer learning could be a 
solution to use the network in different velocity models. It 
does not guarantee good estimation if it did not capture the 
new features in the new model. In most of the ML veloc-
ity applications discussed above, the training is usually 
performed on random synthetic models, which may not be 
realistic. A typical case is holding some assumption such 
as invariant lateral velocity like in Park and Sacchi (2020). 
Testing the application on real data set can be very differ-
ent as the real data are contaminated with noise. The ML 
applications discussed above only considered simple cases 
where the medium is isotropic and acoustic. For example, 
NMO applications will surely fail to flatten the hyperbola 
in an anisotropic medium, as they do not account for the 
η parameter (Alkhalifah and Tsvankin 1995). It would be 
noted that in the inversion applications, a network is often 
trained to obtain only the acoustic model from the data.

The goal of NMO is to obtain an initial estimate of 
the velocity model, which is an approximation process. 
Hence, all the methods discussed under this gave promis-
ing results with different shades of limitations. There are 
apparently ample rooms for improvement. In the case of 
the clustering method, the small variations in the data due 
to noise or in the diffused deep region of the semblance 
might lead to inaccurate predictions as observed Chen 
(2018) and Bin Waheed et al. (2019). In using CNN for 
classifying the velocity based on the semblance (Park and 
Sacchi 2020), the semblance panel does not account for 
the surrounding semblance and the lateral continuity as 
expected of a good processor. The network only trained 
on the lateral homogeneous models. This imposes some 
limitations on it.

One of the major limitations in the application of 
machine learning in velocity inversion (FWI or traveltime 
tomography) is that the network is only valid for the spe-
cific dataset that was used to train it. Different models 
have different structures yielding different signatures in 
the data. For example, Yang and Ma (2019) trained a CNN 
model to capture the salts. When tested on models that 
contains salt bodies with layers of sediments, it failed to 
recover the layers. Besides, when the input of the network 
was shot gathers from raw data, the network was restricted 

to take a fixed number of channels (shots from the same 
velocity model). Including more shots from different loca-
tions would add more information and improve the gener-
alization capability of the velocity model. However, this 
would be limited by the memory of the GPU. An alterna-
tive approach would be to extract features from the data. 
For example, Araya-Polo et al. (2018) only used one fea-
ture. From the theory of ML, extracting more features will 
definitely help the model to be more accurate. In addition, 
if the ML method used for inversion is guided by the phys-
ics rather than being completely driven by data such as in 
(Biswas et al. 2019a), then it would be prone to the cycle 
skipping problem like in the conventional FWI method.

Recommendations for future improvements

In this paper, we have presented a comprehensive review 
of some significant machine learning applications in veloc-
ity model building. We tracked and critically reviewed the 
evolution of various efforts directed toward automating 
the velocity picking for NMO velocity. The review exer-
cise revealed that most efforts directed toward applying ML 
techniques in velocity modeling are limited to the traditional 
single-instance supervised learning techniques namely the 
families of ANN (feed-forward back-propagation, RNN, and 
CNN). Traditional clustering techniques, namely k-mean 
and DBSCAN, are also used to apply unsupervised learn-
ing. The review also revealed that some of the efforts used 
ML techniques either as the main engine for the inversion 
or to assist the traditional methods. We identified some gaps 
that remain to be filled as well as limitations that need to be 
improved on.

Based on the identified gaps and limitations, and in view 
of the need to accelerate the digital transformation agenda of 
the petroleum industry, we present the following recommen-
dations to improve future applications of machine learning 
in seismic velocity modeling and estimation:

1.	 Since most of the reviewed applications of machine 
learning techniques used very limited amount of data 
for training, it might be useful as a guide to refer to 
the recommendations of Anifowose and Abdulraheem 
(2010) and Anifowose et al. (2017a, 2017b) on the mini-
mum amount of data considered sufficient for shallow 
networks and models.

2.	 Going beyond using only the semblance for NMO veloc-
ity with clustering methods, the feasibility of using other 
features such as coherency and some measures of conti-
nuity for input could be investigated.

3.	 Using big data from different velocity models is a neces-
sary requirement for achieving better generalization of 
the ANN and CNN models.



32	 Journal of Petroleum Exploration and Production Technology (2022) 12:21–34

1 3

4.	 Using a 3D semblance cube instead of 2D and applying 
a semantic segmentation rather than classification might 
better account for continuity and obtain more accurate 
velocity.

5.	 For velocity inversion methods that use the raw shot 
gathers as input, dimensionality reduction can be used 
as a pre-processing step to utilize only the most signifi-
cant shots for better accuracy and to minimize memory 
utilization. Principal component analysis, discrete cosine 
transform, and auto-encoders are examples of such 
dimensionality reduction tools. Doing this will not only 
minimize memory utilization but will also reduce the 
computational cost and increase the efficiency.

6.	 Since problem formulation is more of art than sci-
ence, solutions to different problems are formulated 
in different ways. These include using different input 
features and target variables, different learning types 
(regression or classification), and different learning 
methods (supervised or unsupervised). This suggests 
that more advanced, robust, and state-of-the-art ML 
techniques such as SVM, random forest, light gradient 
boosted machine (LightGBM), extreme gradient boosted 
machine (XGBoost), and extreme learning machines 
(ELM) can be utilized with evidently more effective 
formulations.

7.	 Most of the work done so far has been with ANN. Other 
techniques such as those mentioned above are more 
robust and powerful in classification problem and can 
be used in place of ANN. Despite this, they have been 
largely underutilized in seismic velocity modeling. 
SVM, in particular, may not require large dataset unlike 
in the case of ANN (Shao and Lunetta 2012). Random 
forest and ELM have been presented to be robust and 
have the capability to avoid overfitting (Zhu et al. 2005; 
Bernard et al. 2012; Liu et al. 2013). LightGBM (Zhang 
et al. 2019a, 2019b) and XGBoost (Song et al. 2019) 
have proved to be robust and powerful in other fields.

8.	 The applications should be very explicit on how the 
models used for training are generated. Realistic mod-
els should contain some earth structures such as faults, 
anticlines, and salt bodies. Oftentimes, machine learning 
methodologies are validated on specific models contain-
ing one structure such as salt body. Generating more 
realistic models that combine more earth structures in a 
single model is a huge-demand and much-desired area of 
research that will not only benefit training the machine 
learning models but also prove to be useful to validate 
any general theory on the generated models.

9.	 The ML techniques applied so far in seismic velocity 
modeling are single-instance models. Since these tech-
niques have their respective areas of strengths and weak-
nesses, we recommend the application of hybrid and 
ensemble learning algorithms (Anifowose et al. 2017a, 

2017b). These new algorithms have the capability to 
combine the respective benefits of existing techniques by 
complementing the weaknesses of some by the strengths 
of the others.

Conclusions

We reviewed some machine learning applications in veloc-
ity modeling. These applications include automation of 
semblance picking for NMO velocity, obtaining the veloc-
ity directly from seismic data, and assist in inverting the 
velocity. Various machine learning technique are used in 
these applications, namely unsupervised, supervised, and 
semi-supervised methods. We also provided some recom-
mendation that can be used for the future.

The field of artificial intelligence is evolving very fast, 
which raise the potential of improving the applications fur-
ther. We hope that this paper will be of benefit, especially to 
young professionals to understand the evolution of machine 
learning applications in seismic velocity modeling from the 
inception to the current development. It will also benefit 
researchers in this field to direct their efforts toward provid-
ing complete automation of and more robust solutions to 
various seismic velocity estimation challenges.
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