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Abstract
This study offered a detailed review of data sciences and machine learning (ML) roles in different petroleum engineering 
and geosciences segments such as petroleum exploration, reservoir characterization, oil well drilling, production, and well 
stimulation, emphasizing the newly emerging field of unconventional reservoirs. The future of data science and ML in the 
oil and gas industry, highlighting what is required from ML for better prediction, is also discussed. This study also provides 
a comprehensive comparison of different ML techniques used in the oil and gas industry. With the arrival of powerful 
computers, advanced ML algorithms, and extensive data generation from different industry tools, we see a bright future in 
developing solutions to the complex problems in the oil and gas industry that were previously beyond the grip of analytical 
solutions or numerical simulation. ML tools can incorporate every detail in the log data and every information connected 
to the target data. Despite their limitations, they are not constrained by limiting assumptions of analytical solutions or by 
particular data and/or power processing requirements of numerical simulators. This detailed and comprehensive study can 
serve as an exclusive reference for ML applications in the industry. Based on the review conducted, it was found that ML 
techniques offer a great potential in solving problems in almost all areas of the oil and gas industry involving prediction, 
classification, and clustering. With the generation of huge data in everyday oil and gas industry activates, machine learning 
and big data handling techniques are becoming a necessity toward a more efficient industry.

Keywords Oil and gas industry · Systematic review · Machine learning · Future of data science in oil and gas

Introduction

Artificial Intelligence (AI) is the field that integrates com-
putational power with human intelligence to produce smart 
and reliable solutions to extremely nonlinear and highly 
complicated problems. AI is the field of science that allows 
computers to think and decide on their own. Machine learn-
ing (ML) is a subset of AI that provides statistical tools to 
explore and analyze big data. ML is comprised of further 
subsets such as supervised, unsupervised, and reinforced 
learning. Supervised learning is the data learning technique 
applied when some past or labeled data is available for future 
forecasting by function approximation. The unsupervised 
learning technique is the machine learning technique when 

the past labeled data is unavailable and is usually used for 
clustering purposes. Reinforced learning is the combination 
of supervised and unsupervised learning techniques in which 
some part of the data is labeled and some part is not.

In the last two decades, engineering journals have 
reported numerous articles utilizing ML for regression, 
function approximation, and classification problems. With 
the development of intelligent oilfields and big data technol-
ogy, the adoption of the ML method has gained new vital-
ity for the study of problems in the oilfield development 
process. With the advent of computing techniques, several 
correlations utilizing ML have come to the fore, especially 
in reservoir characterization (Anifowose 2012; Fatai A Ani-
fowose et al. 2013a, b), reservoir engineering (Al-Marhoun 
and Osman 2002; Gharbi et al. 1999; Gharbi and Elsharkawy 
1999); and reservoir geomechanics (Tariq et al. 2017a, b) 
and many other areas in petroleum engineering applications.

The most repeated question that ML petroleum research-
ers faced in their everyday life is that ML models are usually 
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limited to the data set tested, so how to globalize this and 
produce more general correlations? ML applications have 
common limitations and challenges that hinder the globali-
zation of the created models, such as overfitting, coinci-
dence, excessive training, lack of interpretability of results, 
and bias. Besides, these models require a large amount of 
data that is not available in many cases.

Overfitting is considered the most common problem in 
ML applications. This is due to the lack of an appropriate 
amount of data to be used for training. To overcome this 
issue, the ratio of data points to the total number of weights 
used by the connections (ρ) was used to lessen the effect of 
insufficient data. The coincidence effect is another issue that 
accompanies the AI supervised learning models as they try 
to match a specific dataset, so there is a probability of get-
ting a good match by coincidence. This also can happen in 
other regression analysis techniques, which require working 
on methods to minimize that occurrence (Livingstone et al. 
1997). Overtraining can happen when there is no clear stop-
ping stage for the training. The error may stay decreasing 
by updating the model structure, including the weights. The 
real risk, in that case, is that the model can be more complex 
to fit a specific dataset, becoming impossible to generalize 
after that. A training methodology named “early stopping” 
uses a control set that monitors the training process to over-
come this. If error begins to rise, the early stopping will 
end the training process. Other techniques are being used to 
save time and effort, such as reinforcement learning with in-
stream supervision, such as generative adversarial networks 
that monitor the learning of two competing networks to bet-
ter understand the model concept (Hossain 2018).

The availability of large datasets is also a concern, which 
affects the training accuracy and goodness of the model. 
If the gathered data is limited, a methodology like single-
shot learning is implemented, in which the AI model is pre-
trained on a similar dataset and is enhanced with experience.

Interpretability is the key to data analysis. AI models are 
not that simple, and even in some cases, it is impossible to 
interpret the results even in modeling small linear problems. 
The single connections in the models do not alone affect 
results, but the whole combined connections do. One of the 
methods developed to help in that regard is the local inter-
pretable model and its agnostic explanations, which try to 
detect which parts of the raw data the model depends on 
mostly for estimations. In the generalized additive models’ 
method, the separation between model features enhances 
each feature's interpretation.

The lack of AI models' generalization ability is a major 
limitation that delays the widespread of AI in the oil and gas 
industry. It is hard for many models to be used in circum-
stances different from those used in building the original 
model (Virginia 2018). Additional resources are to be uti-
lized each time for training new datasets, even if they were 

similar to previous cases (Ramamoorthy and Yampolskiy 
2018). The reusability of the ML models is also quite chal-
lenging. Usually, the trained models on one geological field 
are less reliable when applied to other geological fields. It is 
highly recommended to implement the model when the input 
parameters of the given dataset lay within the range of the 
input parameters on which the model is to be implemented 
(Mohaghegh 2017).

Lastly, the effect of bias cannot be ignored and sometimes 
is hard to be detected and mitigated. Many researchers are 
solving the issues related to AI bias by understanding the 
model's objective and its associated results. Using model-
independent perturbations by substituting the inputs with 
random values obtained from a normal distribution will help 
avoid biases (Samek et al. 2018). Table 1 provides a sum-
mary of all limitations of AI and ML models.

Covering all AI and ML application content to the oil and 
gas industry in a single article is a challenge, so we focused 
this article on the application of AI and ML in petroleum 
exploration, drilling, production, stimulation, and reser-
voir characterization. The issues highlighted in this article 
include comparing commonly used AI techniques, how AI 
can be used as a standalone technique, and how to make the 
AI model generalized. Furthermore, this review highlights 
the present status of data-driven machine learning predic-
tive models. It also addresses the commonly asked questions 
related to machine learning and future research.

AI applications challenges

AI as a standalone predictive tool

Should AI be a standalone predictive tool? Or it can be com-
bined with analytical models, numerical models, statistical 
and probabilistic approaches, numerical simulation soft-
ware’s, imaging software’s, etc. AI applications are recently 
getting more attraction as an enabler of state-of-the-art tech-
nologies for digitalization among industries, including digi-
tal twins (data and physics). Because physics-based models 
are based on simplifying assumptions to formulate the prob-
lem, the models lack the physics controlling the processes 
(Rasheed et al. 2018). However, artificial intelligence is like 
a black box, which does not explain the model outcomes. 
Since data contains the known and unknown part of physics, 
constructing data-driven models incorporate the full phys-
ics behind it. However, the black box nature inhibited these 
models from prevailing in critical systems, which have a 
culture of zero error tolerance, such as what oil and gas have 
in field operations. However, with the increased number of 
applications with proved concepts in oil and gas, the indus-
try leaders are now emphasizing these applications' potential 
in optimizing operations like predictive maintenance.
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AI algorithms and statistical models have advanced sig-
nificantly, leading to computers overtaking creative tasks 
such as art drawings, summarizing texts, translation, and 
even interpreting languages. Deep learning or deep neural 
networks were used for image classification. Restricted 
Boltzmann machines are utilized as stochastic networks 
that understand the distribution of inputs in the supervised 
and unsupervised way; thus, they can be used as powerful 
tools in detecting anomalies (Evangelatosorn and Payne 
2016). Table 2 provides a summary of the comparison 
between physics-based and data-driven models.

To benefit from the advantages of physics-based and 
AI models', hybrid models that engage the interpretabil-
ity and reliable mathematical concepts of physics-based 
models are proposed. Rasheed et al. (2020) explained the 
“digital twin” models and gave an example of Kongsberg's 
dynamical digital twin for oil and gas. The model linked 
process schematics and virtual 3D graphics of an oil and 
gas production facility connected to real-time data from 
sensors where the data-driven models are used. It could 
also be provided with synthetic data generated from simu-
lators, representing the physics part. Humans can interact 
with the model using an avatar to give expert opinions. 
Finally, the model can also do “what if?” scenarios using 
digital siblings, which are copies of the physical asset. Al-
Hajri et al. (2020) suggested a coupled machine learning 
and probabilistic models to predict the scale prediction and 
plan for inhibition. The coupled model was able to predict 
the scale and quantify the data-driven models' goodness, 
then quantify the savings. Sun et al. (2019) used a coupled 
model of ML image processing techniques and reservoir 
simulation to achieve better reservoir characterization and 
overcome classical methods' drawbacks. Shahkarami et al. 
(2014) used a Surrogate Reservoir Model (SRM) to assist 
the reservoir history matching process. Table 3 shows a 
summary of the hybrid models applied to the oil and gas 
industry.

Based on the review of the coupled models, it is evident 
that coupling with other methods such as analytical models, 
numerical models, statistical and probabilistic approaches, 
and imaging software is beneficial for more robust, accurate, 
and unbiased models. Figure 1 shows how the different mod-
els should interact to achieve the desired goals.

What is needed from AI in the oil and gas industry?

Many oil and gas industry giants are currently applying AI 
in oil and gas operations. AI advances made it suitable for 
several applications such as precision in drilling and automa-
tion, saving oil and gas producers' time and money. These 
advances are going to serve different aspects of the oil and 
gas industry, such as:Ta
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Precise drilling

Drilling activities are always accompanied by high risk and 
a high level of uncertainty. AI techniques coupled with the 
big data recorded by the smart sensors mounted on drilling 
strings such as pressure, temperature, and seismic surveys in 
real time can be used to overcome these challenges. Precise 
drilling using AI can enhance the control level of the rate of 
penetration and identify risks in advance.

Production optimization

Every oil and gas company focuses on production opti-
mization and efficiency, which eventually increases prof-
its with the help of AI, automated pattern recognition, 
and classification to prepare production data for gener-
ating analytics. Estimation and prediction models can 
then be built based on the refined data. It can also isolate 
the effects of the reservoir from the production control 

Table 2  Physics-based against data-driven models

Models Advantages Disadvantages References

Physics driven Strong basics, based on existing 
solid knowledge

Easy to interpret
Can detect errors and uncertain-

ties and avoid them
Lower probability of bias
Easy to be generalized to other 

problems
Fundamental relationships give 

insight and help in understand-
ing

Valid prediction at a full range of 
model coverage

Hard to integrate historical or archived data with the models
Prone to numerical instability as a result of having complex bound-

ary conditions and inputs uncertainties
Vast physics knowledge in the domain is required
High computational power requirement, so it suffers if used for real 

time
Assumptions need to be set in advance

Rasheed 
et al. 
(2020)

Boschert 
and Rosen 
(2016)

Data-driven Considers the historical data and 
experiences into the model

Able to stably make predictions 
after training

Does not require knowledge 
of the domain as it depends 
mainly on data

Deals with heterogeneous data
Able to enhance performance 

over time
Can detect complicated relation-

ships and patterns

Black box nature and interpretability issues
Cannot detect errors or uncertainties
Affected by bias in data
Not easy to generalize
Data availability is the main concern
It is an approximation
Lower performance outside the scope of the training data
Hard to predict critical conditions or extremes

Table 3  A summary of selected hybrid models in the oil and gas industry

Model Application Components Reference

Digital twin Drilling engineering Sensor data in near-real time (Data).Synthetic 
data generated from simulators (Physics)

Humans to interact using avatar (Expert)
Digital siblings for “what if?” scenarios

Rasheed et al. (2020)

ML & probabilistic approach Oil and gas production Calculated input parameters using existing 
principles (Physics)

Classification using ML models (Data)
A probabilistic model to quantify the uncer-

tainty associated with each method
Cost model to predict financial impact

Al-Hajri et al. (2020)

ML & digital rock analysis (DRA) Reservoir characterization Rock image acquisition
Image processing using ML models (Data)
Numerical simulation (Physics)
Result Analysis

Sun et al. (2019)

Surrogate reservoir model
(SRM)

Reservoir characterization Multiple neuro-fuzzy systems
Numerical simulation model
Spatiotemporal database

Shahkarami et al. (2014)
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responses such as gas lift rates, choke openings, network 
routing, and artificial lift methods.

Reservoir management

Multiple teams from several aspects such as seismic, geol-
ogy, reservoir, and production engineering are required to 
collaborate to achieve better reservoir management. The AI 
models can be trained with historical data of seismic sur-
veys, geological descriptions, and production methodologies 
and then can be applied in the characterization or modeling 
of reservoirs and field monitoring.

Inspections

Frequent inspections are scheduled for detecting abnormal 
equipment performance to prevent failures of the equipment 
and potential accidents. That is why companies are look-
ing for automated and smart detective approaches. Robots 
driven by AI models can help investigate abnormal equip-
ment behavior by identifying anomalies using techniques 
such as pattern recognition. Besides, drones can inspect 
pipelines and offshore facilities that can detect, in real time, 
cracks or leaks in pipelines. They can also help in case of 
an emergency, such as gas leaks. In certain situations, these 
robots can intervene in emergency cases and use the pro-
cedure, which applies to that case, which will elevate the 
company's safety measures.

Chatbots

AI-powered chatbots can help engineers and scientists by 
digging in a database or archive of historical data, suggest-
ing possible solutions to problems, providing correct stand-
ards of job execution, or help in teaching junior staff using 

natural language processing. Jacobs (2019) discussed three 
newly released chatbots in the oil and gas industry: Sandy, 
Nesh, and Ralphie. They are designed intentionally to pro-
vide answers to oil and gas professionals’ complex ques-
tions. These are also named virtual assistants that use arti-
ficial intelligence (AI) natural language processing (NLP), 
which has quickly entered the market through the tech giants 
Amazon, Apple, and Google, which enabled many millions 
of people to engage in dialogue with laptops, smartphones, 
and speakers.

Facilities monitoring

Intelligent cameras can reduce potential damage by detect-
ing hazardous activities such as smoking in dangerous areas. 
They can be trained using photos and recordings of danger-
ous activities to alert the staff or take predefined actions. 
Moreover, they can detect if the employees are watering 
their protective PPE or not. Using this approach will help 
enhance safety management.

Commonly used machine learning techniques in oil 
and gas industry

Several ML techniques such as ANN, FL, SVM, DT, RF, 
KNN, RNN, CNN, and fuzzy C-means clusters are widely 
used in different applications of oil and gas. Table 4 sum-
marizes some of the algorithms with their advantages and 
disadvantages.

Exploration and geosciences

The applications discussed here include fault and salt-body 
delineation, Petrofacies classification, and well correlation. 
We also discuss potential further development in emerging 
applications.

Fault and salt‑body delineation

Accurate fault detection and delineation of the salt-body 
boundary from 3D seismic data are essential for build-
ing a realistic 3D reservoir model (Bahorich and Farmer 
1995, b; Melville and Guruswamy 2002). Seismic attrib-
utes analysis has been traditionally used to map faults and 
salt bodies. Some examples of such attributes include the 
semblance (Marfurt et al. 1998), coherence (Bahorich 
and Farmer 1995a, b; Qi et al. 2017), edge detection (Di 
and Gao 2014), and seismic curvature (Di and Gao 2016; 
Somasundaram et al. 2017). Due to the complex geology 
and the noise level frequently encountered in 3D seismic 
data, the use of multiple seismic attributes is frequently 
needed to detect faults or salt-body geometry (Berthelot 

•"what if?" senarios
•Regression
•Classification
•Dimension 
Reduction

•Reservoir Simulation
•Production Modeling
•PTA•Inherit physics.

Analytical Numerical

ProbabilisticStatistical & 
Data Driven

Fig. 1  A figure shows how different models interact to achieve objec-
tives
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et al. 2013; Hale 2013). Several studies have then used 
machine learning techniques to integrate multiple seismic 
attributes for better detection accuracy and faster operation 
(Di and Gao 2014; Huang et al. 2017; Zhao et al. 2015). 
Support vector machine (SVM) is one common algorithm 
that has been used by several studies, particularly for fault 
detection (Guitton et al. 2017). In this case, correlation 
and cluster analysis are used to select the suitable seismic 
attributes that can best identify fault from seismic. The 
use of SVM could successfully improve the accuracy and 
efficiency of fault detection, especially in large-scale faults 
(Zou et al. 2019). Nevertheless, some researchers pointed 
out two main shortcomings of the SVM attributes-based 
approach (Xiong et al. 2018). Firstly, it requires precom-
puted attributes by experienced interpreters to map the 
faults, which can be labor-intensive as this step has to be 
repeated for each data set. Secondly, the SVM attributes-
based approach can fail in zones of weak reflections, 

as highlighted in Fig. 2. This can be critical for heavily 
faulted zones and salt-body delineation due to the fre-
quently weak signal associated. Recent studies (Di and 
Gao 2016, 2014; Tschannen et al. 2020; Xiong et al. 2018) 
have shown that deep learning technologies such as con-
volutional neural networks (CNN) can help overcome the 
previous two shortcomings and to map complex geological 
structures/features. An example of improved performance 
of CNN versus SVM is demonstrated in Fig. 2. In the 
CNN approach, the network is trained based on annotated 
seismic images where faults or salt-body boundaries are 
labeled, relying more on the reflection patterns and reduc-
ing the effect of seismic noises or processing artifacts (Di 
and Gao 2016; Xiong et al. 2018). Additionally, the rela-
tionship between seismic reflection patterns and the target 
fault or salt bodies is constructed based on the original 
seismic amplitude, eliminating the need for precomputed 
attributes (Di and Gao 2014).

Reference

SVM

CNN

Fig. 2  Comparison of salt-body boundaries delineation using the tra-
ditional multi-attribute-based support vector machine (SVM; second 
row) and convolutional neural network (CNN; third row) in three dif-
ferent inline sections (modified after Di et  al. 2018). The reference 

manually labeled sections are shown in the first row. The seismic 
sections were extracted from the synthetic SEG-SEAM dataset. Poor 
detection of the boundary from the SVM results is highlighted by red 
circles
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Petrofacies classification and fractures 
identification

Reservoir rocks can be classified and grouped based on 
their reservoir quality. Such classification can be done 
based on petrophysical rock properties (e.g., porosity, per-
meability, and pore size) and geological features (e.g., tex-
tures, diagenetic overprints, and pore types). Petrofacies 
are usually defined based on combining both petrophysi-
cal and geological attributes, which can be an essential 
tool for reservoir characterization (Avseth and Mukerji 
2002). Petrofacies classification is frequently done using 
both core samples and wireline log data. Cores are not 
frequently available from all wells due to the time and 
cost associated, and thus several studies (Bhattacharya and 
Mishra 2018; Qi and Carr 2006; Sebtosheikh and Salehi 
2015) have examined how machine learning algorithms 
can be trained on data obtained from certain cored well 
and then used to perform petrofacies classification in other 
un-cored wells. Petrofacies labels, defined as a function 
of depth based on the integration of well-log and core 
data, are used to train the models (Sebtosheikh and Salehi 
2015; Silva et al. 2015). The utilized logs for facies iden-
tification are usually Gama Ray (GR), resistivity (Rt), 
neutron (NPHI), density (RHOB), and lithology (PEF). 
In addition, other features could be extracted from these 
logs to improve the prediction, such as total organic matter 
(TOC), matrix grain density (RHOMAA), and apparent 
volumetric cross-section (UMA).

Earlier studies have used ANN, SVM, and RF to classify 
petrofacies from well logs in both sandstone and carbon-
ate reservoirs (Silva et al. 2015; Al-Anazi and Gates 2010; 
Martinelli et al. 2013; Salehi and Honarvar 2014). Never-
theless, more recent studies have suggested that Gradient 
Boosting (GB) algorithm outperforms ANN and SVM, espe-
cially when a limited number of features are available (Silva 
et al. 2015). Another algorithm that has shown success is the 
Random Forest (RF), which reduces the computational time 
for the training phase compared to GB (Bhattacharya and 
Mishra 2018). Based on the existing literature, it seems that 
there is no consensus regarding the most suitable machine 
learning technique for petrofacies classification. This could 
be due to several factors, including the wide variations in 
the features selected or available data, as well as differences 
in terms of complex geology and reservoir heterogeneity. 
Indeed, as pointed out by Silva et al. (Silva et al. 2015), the 
applicability of various algorithms has to be tested for each 
training/testing data set to be used. One major challenge that 
remains for the success of machine learning in this applica-
tion is to have/select the right petrophysical and geological 
attributes/features to distinguish between facies. Such tasks 
remain mainly subjective and far from being automated or 
objective.

Fractures and facies identification are usually made 
through personal judgments based on field log and labo-
ratory core analysis data. Recently, AI has been used to 
identify fractures and facies in unconventional formations. 
Tian and Daigle (2019) could identify micro-fractures and 
organic matter in siliceous and carbonate-rich shale samples 
and find the association between them using AI. That was 
to automate the process of understanding micro-fractures 
in shale samples to make it fast and avoid personal evalua-
tions. SEM and EDS images were used to find fractures and 
organic matters in intact and deformed samples. The single-
shot detector (SSD) deep learning approach was used to train 
the data obtained from the images. Around 97% of fractures 
in intact samples and 92% in deformed ones were identified 
using SSD. Also, detected organic matter images were over-
lapped over detected fractures to find the associations. It was 
found the clear majority of micro-fractures penetrated the 
OM and clay minerals. It seems that the combination of the 
soft OM and clay and brittle materials (quartz and calcite) 
enhances the fracability according to the study.

Well correlation

Correlating different reservoir units and formation tops 
across different wells is essential in reservoir characteriza-
tion and modeling. Such a task may require significant time 
from experienced geologists, especially in large fields with 
hundreds of wells. The use of machine learning to handle 
this issue has been recognized many years back (Luthi and 
Bryant 1997). An interpreter has first to pick formation tops 
and perform well correlations in several wells, which will 
be used as a training dataset to perform interpretation in tens 
to hundreds of other wells. An increasing body of studies 
(Maniar et al. 2018; Zheng et al. 2019) has demonstrated 
that a deep convolutional neural network (CNN) can provide 
an accurate and efficient approach for well-log correlations. 
The most common log data used for the correlation includes 
gamma ray and resistivity, although any other geophysical 
well-log data with sufficient log character can be used. One 
crucial observation documented by Zheng et al. (2019) was 
the drastic reduction in prediction accuracy as the num-
ber and percentage of the training dataset decreases. This 
might be explained by the complexity of geology that would 
require wells covering different depositional environments 
and stratigraphic sequences throughout a field.

To produce a “universal” model for well correlation, Bra-
zell et al. (2019) developed a deep CNN architecture trained 
based on five million data points derived from thousands of 
well-log and experienced interpreter correlations. The data 
was obtained from various depositional environments and 
basins within the USA. The authors have implemented a 3D 
search logic to determine the marker propagation pathway 
and the optimum correlation. The model does require some 
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interpreted-top examples to be provided from the specific 
dataset to account for particular complexity within the geol-
ogy of a given area. Nevertheless, no need for extensive 
training data set from the specific field due to the rich dataset 
used to build the model. The model could provide an accu-
racy of around 96% on the testing dataset. It is important to 
note that more interpreted examples might be needed for the 
training if the model is to be applied to a dataset outside the 
US with very different regional complex geology. Another 
potential consideration is incorporating seismic sequence 
stratigraphy into the workflow, which currently relies only 
on well-log data. This can be important, especially in bench-
ing out strata and faulted reservoirs where the spatial con-
tinuation of a given unit might be heterogonous.

Reservoir characterization

Machine learning has an increasing number of applications 
in the field of geosciences. Still, we focus here on applica-
tions directly related to reservoir characterization in the oil/
gas industry. The areas discussed are petrophysical proper-
ties prediction from the seismic, core, and well-log data. 
Other properties such as water saturation, petroleum geo-
chemical parameters, and reservoir geomechanics will be 
predicted.

Petrophysical properties prediction

Reservoir characterization plays a critical role in the oil and 
gas industry, such as developing optimal production and 
reservoir management strategies. Permeability, which deter-
mines the ability and direction of oil flow, is central in reser-
voir characterization. An accurate permeability determina-
tion is essential for material balance calculations, reservoir 
flow simulation, estimating oil production rate, stimulation 
strategies, and enhancing oil recovery. However, permeabil-
ity is very difficult to determine due to its complexity and 
highly nonlinear nature. Therefore, machine learning tech-
niques are widely used to predict petrophysical parameters 
such as porosity, permeability, capillary pressure, relative 
permeability, and bulk density. Table 5 shows a summary of 
the studies used to predict porosity and permeability.

Water saturation prediction

Water saturation defines a fraction of pore space occupied by 
water. A good estimation of water saturation is considered a 
difficult task in petroleum engineering. In fact, there are very 
few empirical models that existed to predict water satura-
tion directly from the petrophysical well logs. Nevertheless, 
water saturation is an essential parameter in petrophysics and 
reservoir engineering calculations such as material balance 

calculations, simulation model optimizations, history match-
ing, and oil and gas reserves estimation. In 1942, Archie was 
the first to present an equation to determine water saturation 
in a clean, non-clay reservoir. Several researchers have tried 
to deconvolute the water distribution in composite forma-
tions by formulating empirical correlations that depend on 
log-derived data, which is not a very precise representation. 
Hence, no consensus exists among log analysts about which 
model can be universally used. The most commonly utilized 
models/correlations are Simandoux (Simandoux 1963), Fertl 
and Hammack (Fertl and Hammack 1971), and Waxman 
and Smith models; however, the variables involved in each 
contain inherent uncertainties and eventually lead to miscon-
strued results. Determining water saturation in the labora-
tory is a time-consuming and challenging task. Therefore, AI 
and ML techniques have widely been used to predict water 
saturation. Table 6 provides some of the insight on how to 
predict water saturation using machine learning algorithms. 
Most of the presented research integrates well-log and core 
data to predict water saturation.

Geomechanics

A better estimation of the reservoir rock elastic and failure 
properties is instrumental to minimizing wellbore instabil-
ity problems, avoiding differential sticking, improving hole 
cleaning, improving casing placement, improving hydrau-
lic fracturing operations, minimizing subsidence, and many 
more (Khamidy et al. 2019). Carrying out mechanical rock 
tests such as triaxial compression, uniaxial compression, 
scratch, and impulse hammer is an accurate way to deter-
mine these properties (Elkatatny et al. 2019). These tests 
are usually carried out on the downhole samples retrieved 
from some depth of interest. In the absence of core samples 
and well-log data, analytical and empirical models deter-
mine rock mechanical properties. In the last two decades, 
predicting the mechanical rock properties using AI tools was 
thoroughly investigated. Table 7 lists the summary of the 
selected work done to relate core mechanical properties with 
well-log data using ML tools. Most of the work has utilized 
ANN, ANFIS, SVR, DT, and RF.

Drilling and completions

Drilling operations for oil and gas reservoirs are usu-
ally expensive. Hence, several approaches are utilized 
to reduce the operational cost, mainly by improving the 
drilling efficacy and reduce the drilling time. Usually, 
the drilling performance is improved by selecting proper 
drilling fluids, improving cementing jobs, maximizing 
the drilling rate of penetrations, and minimizing the 
required drilling energy (Bilgesu et al. 1997; Dupriest 
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and Koederitz 2005; Hegde and Gray 2018). Therefore, 
accurate prediction of the drilling f luid parameters, 
cement strength, and rate of penetrations (ROP) is an 
essential element for evaluating or improving the drill-
ing performance.

Drilling performance prediction

Several analytical models were developed to evaluate 
and optimize the drilling performance; however, most of 
these models were developed based on weak assumptions, 

Table 6  Summary of the researches related to the application of AI in predicting water saturation

K permeability, h* cementation factor, n* saturation exponent, h* height above free water level, DT* decision tree forest, RBF-ANN radial based 
function artificial neural network, MAE mean absolute error, MSE meansquare error

References Target parameter Method tech-
niques

Input parameters No. of 
data 
points

Lithology Geological for-
mation studied

Accuracy

Error R2

Helle and Bhatt 
(2002)

Sw Committee neu-
ral networks

RT, NPHI, DT, 
and RHOB

150 – – – 0.98

Shokir (2004) Sw ANN GR, SP, RT, 
NPHI, and 
RHOB

– Shale Egyptian field – 0.996

Kamalyar et al. 
(2012)

Sw ANN Porosity and 
K from core, 
and h*

263 Carbonate Iran 6.4% 0.985

Mardi et al. 
(2012)

Sw , m*, and n* ANN RT, NPHI, 
RHOB, DT, 
and core 
porosity

– Carbonate Azadegan 
oilfield, sarvak 
formation, Iran

0.969

Al-Bulushi et al. 
(2012)

Sw ANN RHOB, NPHI, 
resistivity, and 
PE

14 Sandstone Gharif and hardh 
formations of 
Oman

2.5 0.91

Kenari and 
Masho-
hor(2013)

Sw ANN, FL,and 
ANFIS

SP, RT, NPHI, 
RHOB, PE, 
and effective 
PHI

– Carbonate Khark oilfields, 
Iran

0.89–0.95 0.95

Mollajan et al. 
(2013)

Sw ANN and SVR RT, NPHI, 
RHOB, and 
DT

– Carbonate Sarvak forma-
tion, Iran

0.21 MAE* 0.81

Amiri et al. 
(2014)

Sw ICA-ANN GR, RT, NPHI, 
RHOB, and 
effective NPHI 
DP

– Shaly gas sand-
stone

– – –

Amiri et al. 
(2015)

Sw Progressive 
quasi—Static 
(PQS) algo-
rithm

Well-log data – Tight shaly gas 
sandstones

– – –

Bageri et al. 
(2015)

Sw ANN and FL Resistivity logs 
and core data

378 Carbonate Middle eastern 
carbonate 
reservoir

0.95

Gholanlo et al. 
(2016)

Sw RBF ANN NPHI, DT, 
RHOB, and 
core data

– Carbonate Sarvak forma-
tion, Iran

0.027 MSE* 0.870

Khan et al. 
(2018)

Sw ANN and 
ANFIS

GR, RT, Rxo, 
NPHI, RHOB, 
and caliper log

150 Carbonate Middle eastern 
carbonate 
reservoir

5% 0.94

Tariq et al. 
(2020a)

Sw FN GR, RHOB, 
NPHI, 15FR, 
LLS, and LLD

150 Carbonate Middle eastern 
carbonate 
reservoir

AAPE = 4.3 0.92
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reducing their reliability (Aadnoy et al. 2010; Reiber et al. 
1999). Besides, numerical approaches such as finite element 
methods were also utilized for evaluating the drilling perfor-
mance by estimating the ROP (Yang et al. 2008). Usually, 
the depth is divided into individual sections, mainly based 
on rock lithology. Thereafter, the drilling performance is 
estimated based on the affected forces in each section (Bour-
goyne and Young 1999; Murray and Cunningham 1955). 
Thus, the numerical approaches improved the prediction 
performance, but the main issue is the computational speed, 
limiting the applications of these numerical approaches, 
especially for real-time operations.

In the last decade, artificial intelligence (AI) techniques 
present practical tools for prediction purposes, and therefore, 
have been widely applied in the oil and gas industry (Bar-
bosa et al. 2019; Rolon et al. 2009; Sun and Ertekin 2020; 
Van Si and Chon 2018). ANN is the most used AI technique 
among all AI methods because an empirical correlation can 
be extracted from the optimized ANN model. Hence, numer-
ous ANN models were developed for real-time applications, 
such as estimating the RPO and the drilling performance 
(Ahmed et al. 2019; Arabjamaloei and Shadizadeh 2011).

Gidh et al. (2012) improved the drilling performance by 
predicting and managing the bit wear utilizing an artificial 
neural network technique. A new ANN-based system was 
developed to predict the bit performance at different ROP 
values. They mentioned that the developed approach could 
be used to determine the optimum range for the surface 
drilling parameters (such as revolutions per minute (RPM), 
torque, and WOB) to extend the lifetime of the drilling bit. 
Their developed approach was tested in several field opera-
tions, and successful results were reported.

Evangelatos and Payne (2016) presented an advanced 
model to describe the motion and dynamics of the bottom-
hole assembly (BHA). The developed BHA model was cou-
pled with neural network analysis to estimate the drilling 
performance for different conditions of WOB and RPM. 
They reported that the coupled model could consider the 
acting forces on the BHA and thereby provide very accurate 
predictions for the ROP profile at the wide range of BHA 
conditions.

Barbosa et al. (2019) presented extensive reviews on 
ROP modeling and prediction using machine learning tech-
niques. They classified the ROP models into conventional 
(physics-based) models, statistical (regression) models, 
and machine learning (data-driven) models. Based on their 
reviews, machine learning techniques can outperform all 
ROP models and provide very reasonable ROP predictions. 
However, the reliability of ROP prediction depends mostly 
on two factors; the type of AI method and the inputs used 
for ROP predictions. However, they concluded that there is a 
lack of field implementations of AI techniques in the oil and 
gas industry. They attributed these limited field applications 

to the difficulties of selecting the input parameters and the 
suitable AI models. Figures 3 and 4 show the most com-
mon AI techniques and input parameters used to predict 
the ROP, respectively. ANN is the most AI technique for 
developing ROP models among the reviewed works, while 
the most common inputs are the weight on bit (WOB) and 
RPM. ANN tends to be the most common machine learn-
ing method when it comes to dealing with large data sets. 
The main reason behind that is the availability and the rel-
atively simple structure and layout of ANN models when 
compared with other machine learning models. Besides, 
they mentioned that humans are usually resistant to change, 
which leads to limited field applications. Finally, they rec-
ommended that downhole parameters such as nozzle size, 
drill bit wear, and rock strength should be considered inputs 
for predicting the ROP profiles.

Ahmed et al. (2019) presented a comparative study of 
predicting ROP using several intelligence techniques. ROP 
was predicted for two wells using an extreme learning 
machine, ANN, and SVR techniques. They selected the input 

Fig. 3  The common machine learning techniques used for ROP pre-
dictions, considering 53 ROP studies (Barbosa et al. 2019)

Fig. 4  The common inputs used for predicting the ROP based on 
machine learning techniques, considering 53 ROP works (Barbosa 
et al. 2019)
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parameters for the ROP models based on the specific energy 
concept. The ROP was predicted for more than 8800 data 
points based on the RPM, WOB, torque, depth, mud weight, 
flow rate, nozzle sizes, and standpipe pressure (SPP). They 
reported that all ROP models showed acceptable prediction 
performance with a correlation coefficient higher than 0.70 
for the testing data. However, among all tested techniques, 
support vector regression showed the best ROP estimation 
with a correlation coefficient of 0.94.

Mehrad et al. (2020) used a machine learning approach 
to develop a rigorous ROP model for vertical wells. They 
used different parameters to determine the ROP, including 
logging, drilling, and geomechanical parameters. They found 
that the best ROP prediction can be obtained by using the 
uniaxial compressive strength (UCS), mudflow rate, weight 
on bit (WOB), Depth, mud density (MD), and revolutions 
per minute (RPM) as input parameters. After that, they com-
bined the least-squares support vector machines (LSSVM) 
with different optimization algorithms to estimate the ROP 
profile. The examined optimization algorithms are genetic 
algorithms (GA), particle swarm optimization (PSO), 
and cuckoo optimization algorithm (COA). LSSVM-GA, 
LSSVM-PSO, and LSSVM-COA hybrid algorithms were 
used to predict the ROP for two vertical wells, and more than 
2000 data points were used to train and tests the hybrid mod-
els. LSSVM-COA showed the best prediction performance 
for training and testing wells among all tested algorithms, 
and an R-square of around 0.802 was achieved.

Artificial intelligence showed an effective approach for 
estimating the drilling performance, and accurate profiles of 
ROP can be predicted. However, it is noticeable that there is 
a lack of implementation of those techniques for real-time 
operations, especially for gas wells. Also, most of the avail-
able ANN-based models were developed to predict the ROP 
for a certain section, usually for the reservoir section. No 
attempt was reported for predicting the full profile of ROP 
using the ANN technique. Predicting the complete profile 
of ROP in real time can significantly improve the drilling 
performance and reduce the operational time and cost.

Furthermore, the coupling of different drilling efficiency 
indicators can help in improving the drilling operations by 
considering more than one parameter. For example, the ROP 
models can be coupled with the MSE concept to determine 
the best drilling conditions in drilling time (ROP) and 
required drilling energy (MSE). Hassan et al. (2018) coupled 
the torque modeling with the mechanical specific energy 
(MSE) to optimize the drilling performance. First, artificial 
intelligent techniques were used to predict the torque and 
ROP profiles for around 18000 ft. Then, the MSE was calcu-
lated for the whole drilling section using the surface drilling 
parameters. After that, the MSE was coupled with the torque 
and ROP profiles to identify the optimum drilling conditions 
that will result in maximizing the ROP and minimizing the 

required drilling energy (MSE). They mentioned that the 
developed approach would enable the drilling engineers to 
evaluate and optimize the drilling performance in real-time 
applications; hence, the surface drilling parameters can be 
controlled to maintain the drilling operations within the opti-
mum conditions.

Besides, AI techniques were used to estimate several 
drilling problems, such as loss of circulation, one of the most 
common drilling problems that can increase the overall drill-
ing cost by around 25–40%. Solomon et al. (2017) developed 
a new ANN model to estimate the loss circulation zones. 
The developed model can also recommend the suitable sizes 
of loss circulation materials based on the characteristics 
of the depleted zones. They used 30 case studies to train 
and validate the developed ANN model. They mentioned 
that the ANN model showed a very acceptable prediction 
performance, and a coefficient of determination of 0.8 was 
obtained. Besides, they compared the reliability of the devel-
oped model with different fracture predictive models, and 
they concluded that the developed ANN model could reduce 
the estimation error from around 26% to less than 16%.

Manshad et al. (2017) used an SVM and radial basis 
function to assess the loss of circulation problems for 30 oil 
wells. They reported that SVM showed high performance in 
predicting the amount of loss circulation material required 
to overcome the thief zones. A coefficient of determination 
of 0.8 was obtained between the predicted results and actual 
field data. In comparison, the radial basis function was able 
to estimate the mitigation of loss of circulation problems 
with an accuracy of 78.3%.

Al-Hameedi et al. (2018) estimated the volume of lost cir-
culation materials for 500 wells using the machine learning 
technique. They predicted the volume of fluid losses based 
on the profiles of mud weight, bit nozzle sizes, ROP, equiva-
lent circulation density (ECD), plastic viscosity (PV), and 
WOB. They reported that the machine learning models were 
able to predict the volume of fluid losses with very accept-
able error for different types of mud loss, including partial, 
seepage, severe, and total mud losses.

Alkinani et al. (2020) used an ANN technique to predict 
the volume of drilling fluids losses during drilling fractured 
zones. They developed and validated the ANN model using 
1500 wells. Also, the lost circulation volume was determined 
based on the profiles of mudflow rate, yield point (YP), PV, 
ECD, bit nozzle sizes, RPM, and WOB. They reported that 
the ANN model was able to predict the loss of circulation 
with a coefficient of determination higher than 0.92.

Abbas et al. (2019) applied SVM and ANN techniques 
to estimate the severity of loss of circulation while drilling. 
They used 1120 case studies from 385 wells to train and 
validate the new AI models for different types of mud losses 
such as seepage, partial, severe, and total fluids losses. They 
used the rock lithology, mud properties, and drilling surface 
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parameters to predict the severity of loss of circulation. They 
reported that the developed ANN model was able to esti-
mate the fluids loss with a correlation coefficient higher than 
0.82. While the SVM model showed better prediction perfor-
mance compared to the ANN model, a correlation coefficient 
higher than 0.91 was obtained.

Overall, different AI techniques were utilized to estimate 
the loss of circulation problems. ANN and SVM methods 
are the common AI tools that are used for this purpose. The 
very practical performance was reported for predicting the 
loss circulation based on the mud properties, rock lithology, 
and drilling parameters. However, the application of these 
models in real-time operation might be restricted due to the 
huge drilling data, leading to misleading results or delaying 
the model prediction. Therefore, proper data cleaning could 
be required to improve the data quality and reduce the data 
size for problems in real-time applications (Elkatatny et al. 
2016).

Drilling fluids

Drilling is one of the most critical tasks, with challenges 
including lost circulation, clogged pipes, wellbore instabil-
ity, and kicks occurring regularly. Drilling fluid, sometimes 
known as the "blood of the drill," is a direct or indirect 
remedy to the challenges stated above during the drilling 
process. It helps to keep the wellbore clean and retain the 
wellbore's integrity. For instance, high mud weight controls 
the high wellbore pressures and prevents kicks. On the other 
hand, high mud weight has a tendency to frack the forma-
tion. Similarly, low mud weight prevents fractures but can 
cause kick or blowout. Further drilling fluids prevent the 
pipe from sticking during drilling by building thin filter cake 
on the wellbore wall as well as by removing drilling cut-
tings out the wellbore. The drilling fluid works as an archi-
tect for the wellbore. The operation's success or failure is 
largely determined by the drilling fluid's performance and 
compatibility (Agwu et al. 2018). Many drilling issues can 
be avoided by using the proper drilling fluids. Drilling flu-
ids are always chosen based on data analysis and expertise 
gained from previously drilled wells in the area. Each well 
design includes a drilling fluid program that specifies drill-
ing fluid, additives, rheology, density, filtration, and other 
drilling fluid parameters. Combating wellbore difficulties 
involves comprehensive analysis and decision-making to 
build the drilling fluid to satisfy specific needs that suit dis-
tinct formation features.

The majority of drilling fluid design is done in the labo-
ratory through trial and error. Hence, a system that can use 
existing data and provide a deeper knowledge of drilling 
fluid is required. Machine learning models are created using 
the parameters of drilling fluids and the downhole circum-
stances. These models aid in forecasting changes in drilling 

fluid parameters and recommend the optimum course of 
action. Rheological models express a mathematical relation-
ship between the shear rate and the shear stress to describe 
the fluid flow behavior. This relationship is complicated in 
the case of drilling fluids. However, no single rheological 
model can accurately fit all drilling fluids' shear stress-shear 
rate data across all shear rate ranges. Instead, a plethora of 
mathematical models with varying degrees of relevance has 
been utilized. These mathematical models do not precisely 
capture the behavior of non-Newtonian fluids. For instance, 
the Bingham plastic model does not describe the drilling 
fluid flow behavior at a low shear rate. Further, it overes-
timates the yield point of the drilling fluid. The power-law 
model does not account for the yield point of drilling fluids. 
There are challenges in performing hydraulic calculations 
due to many rheological parameters involved in the case of 
the Herschel-Bulkley model (Huang et al. 2020).

Regression approaches are utilized to predict rheologi-
cal proficiencies such as an ANN. For greater accuracy, the 
ANN model can be trained continuously with more data sets. 
It gives a more comprehensive view of how to comprehend 
the drilling performance. For example, if there is a reduc-
tion in pump pressure during the drilling operation, which 
happens for several reasons, including thinning effect on the 
drilling fluid, quick transport of the cuttings to the surface, 
reservoir fluid influx in the wellbore, and lost circulation, 
etc. Here AI interlinks different parameters, improves the 
decision-making process, and brings back the engineers on 
the right track within a short time.

Tables 8 and 9 outlines several studies of artificial intel-
ligence in drilling fluids. The tables summarize the drilling 
fluids properties investigated and the AI technique used. 
They also show the input and output parameters and accu-
racy of a performance evaluation using correlation coeffi-
cient (R2), mean square error (MSE), average absolute per-
cent relative error (AAPE), etc.

Oil well cementing

The main objective of the oil well cement is to prevent the 
movement of fluid between the geological formation and 
behind the casing string (Murtaza et al. 2020; Tariq et al. 
2020b). A slurry of cement is pumped down into the annulus 
between the casing and the geological formation. A cement 
slurry is a mixture of various additives such as strength 
enhancers, friction reducers, fluid loss agents, and expanding 
agents, etc. In the field of oil well cementing, AI is mostly 
used for the prediction of cement strength development and 
rheological properties. Table 10 provides some of the appli-
cations of AI in the field of oil well cement. Compressive 
strength development is one of the most critical parameters 
which significantly affects the drilling operation. Accurate 
prediction of compressive strength development can save 
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millions of dollars by reducing the wait on the cement after 
cementing operation. In cement design, various additives 
are mixed with the cement, and each additive impacts the 
performance of cement slurry. The AI models can predict 
these impacts on cement performance without conducting 
detailed laboratory investigations.

Reservoir and production

PVT properties curves prediction

Pressure–Volume-Temperature (PVT) crude oil properties 
are considered essential in petroleum engineering for res-
ervoir and production calculations. Determination of these 
properties in the laboratory is the most accurate and expen-
sive way to obtain representative values (Tariq et al. 2021). 
In the absence of such facilities, other approaches such as 
analytical solutions and empirical correlations are used. 
Some of these correlations can be seen in the works of Al-
Shammasi (2001) and Osman et al. (2001), who used ANN 
to predict the bubble point ( P

b
 ). Al-Marhoun and Osman 

(2002) used ANN to predict P
b
 for crude oils in Saudi Ara-

bia. Their model was developed using 283 data sets with 
an AAPE of 5.8% and R2 of 0.996. SVM and ANFIS were 
also used to predict the P

b
 by several authors (El-Sebakhy 

2009; Baarimah et al. 2014; Ganji-Azad et al. 2014; Shojaei 
et al. 2014). Numbere et al. (2013) used ANN to predict 
the P

b
 for the Niger Delta crude oil. Their model utilized 

1248 data sets with an AAPE of 17.17%, and R2 of 0.96. 
From the literature survey, it was revealed that most of the 
previous work utilizing AI and Machine Learning (ML) to 
predict PVT properties used black-box approach (Ahmadi 
et al. 2015; Cheshmeh Sefidi and Ajorkaran 2019; Hemmati-
Sarapardeh et al. 2014; Ramirez et al. 2017; Seyyedattar 
et al. 2020; Shokrollahi et al. 2015).

Production in the reservoir

Predicting Well performance prediction is one of the key 
parameters in developing and managing oil and gas fields. 
Several approaches are used to determine productivity, 
such as conducting deliverability tests or using mathemati-
cal models. Deliverability tests are usually time-consum-
ing and costly operations, while the available correlations 
showed considerable deviations between the actual and 
predicted values. Data-driven models present a promis-
ing approach for estimating production based on reservoir 
properties and well configurations. The common AI tech-
niques are an artificial neural network (ANN), SVM, and 
fuzzy logic system. ANN is the most applicable technique 
among all AI methods that showed a very effective perfor-
mance in several applications. Several ANN models were 

developed to evaluate the hydrocarbon productivity for 
several well types and operations (Alarifi et al. 2015; Has-
san et al. 2017; Sun and Ertekin 2020). The performance 
of several enhanced oil recovery (EOR) treatments was 
also evaluated using ANN models such as CO2 injection 
and miscible gas flooding (Le Van and Chon 2017a; Van 
and Chon 2017b).

Alarifi et al. (2015) applied three AI tools to estimate the 
productivity index of horizontal wells producing from oil 
reservoirs. FL, ANN, and FN were used to determine the 
well production rate for more than 100 wells. They reported 
that the developed AI models provided very good perditions 
and outperformed the industry's well-known correlations. 
Chen et al. (2015) and Feifei et al. (2015) determined the 
productivity index for horizontal wells using AFL, ANN, 
and FN. They mentioned that the developed models inves-
tigate the influences of reservoir parameters (such as res-
ervoir size, thickness, and reservoir permeability) on well 
performance. Also, they reported that the AI models showed 
very acceptable predictions and reduced the estimation error 
compared to the available correlations. Buhulaigah et al. 
(2017) estimated the productivity of multilateral wells uti-
lizing artificial neural networks (ANN). They presented an 
ANN model to determine the oil production rate for multilat-
eral wells based on the reservoir and well parameters. They 
compared the developed model with analytical models and 
correlations. The ANN model showed good performance; 
strong matching between the actual and predicted flow rates 
was achieved, with an overall error of 7.9%.

Hassan et al. (2017, 2020) applied different artificial 
intelligence techniques to predict the well performance for 
fishbone well types. FL, radial basis network, and ANN were 
used to determine the well production rate from more than 
250 cases of different reservoir properties and wellbore con-
ditions. The developed models were able to estimate the well 
productivity of fishbone with an absolute error of 7.23%. 
Furthermore, a new correlation was presented utilizing 
the optimized ANN model. The developed correlation was 
validated using actual field data with an estimation error of 
6.92%. They mentioned that the suggested correlation could 
be inserted into the commercial production software, which 
will reduce the deviations between the simulated results and 
the actual field measurements.

Ariturk (2019) used artificial intelligence to optimize 
the flow rates for injection and production wells operated 
in geothermal Fields. The flow rates were predicted based 
on the wellhead pressure, wellhead temperature, and valve 
positions. The injection and production rates were forecasted 
for around 500 days. It was mentioned that AI models could 
provide a very acceptable prediction for the geothermal res-
ervoirs since the models were developed based on the field 
data/measurements. Also, it was concluded that AI presents 
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a reliable approach that can minimize the complexity and 
uncertainties associated with geothermal reservoirs.

Sagheer and Kotb (2019) have used the LSTM to predict 
the productivity of unconventional shale reservoirs. They 
have found that LSTM models have resulted in comparable 
results with the physics-driven reservoir simulation. Aulia 
et al. (2014) have used RF to predict several wells' bottom-
hole pressure (BHP). They have built the reservoir simu-
lation model by tuning several input parameters. Through 
simulation, they have generated the BHP values and used 
them for the model training.

Reservoir simulation and field development 
optimization

Reservoir simulation plays an essential role in modern oil 
and gas exploration and production. ML methods have been 
used to accelerate oil reservoir simulations and achieve 
higher accuracy as well. Navrátil et al. (2019) developed a 
model using deep learning methods to accelerate the simu-
lations of oil reservoirs by three orders of magnitude com-
pared to industry-strength physics-based partial differential 
equations (PDE) solvers.

Mohaghegh (2011) discussed the AI-based reservoir 
model which can be developed using pattern recognition 
capabilities of AI to build relationships between fluid pro-
duction, reservoir characteristics and operational constraints. 
Masoudi et al. (2020) showed how AI and ML are used to 
build a purely data-driven reservoir simulation model that 
successfully history match all the dynamic variables for all 
the wells in a field and used to forecast production. They 
tested the model with a highly complex mature field with 
large number of wells and years of production. They found 
out that time, efforts and resources required for the devel-
opment of the dynamic reservoir simulation models using 
AI and ML is considerably less than time and resources 
required using commercial numerical simulators.

ML techniques are being implemented in many areas 
related to field development optimization. ML can be used to 
predict production and the potential field productivity which 
mainly done by conducting history matching models and 
using them to forecast. Alarifi and Miskimins (2021) devel-
oped and new approach using ANN to predict the ultimate 
recovery of several unconventional oil and gas wells using 
historical production data along with completion data. They 
developed and tested using actual production and completion 
data from 989 multistage hydraulically fractured horizontal 
wells from four different formations. The models developed 
can be used to optimize future field development plan by 
optimizing the well completion and stimulation procedures. 
Using ANN to forecast the production of several wells using 
limited production history can potentially help identify the 

expected productivity of new wells and therefore optimize 
the field development.

Khazaeni and Mohaghegh (2011) developed production 
data analysis method with AI techniques using production 
history data to build a field-wide performance prediction 
model. In their work, production history is paired with field 
geological information to build datasets containing the spati-
otemporal dependencies among different wells. They formed 
intelligent time-successive production-modeling (ITSPM) 
system using data from 165 wells. Input data includes data 
from the well itself and offset wells’ static data. Dynamic 
data includes ultimate drainage area and initial production 
rate for offset wells.

He et al. (2021) developed a methodology to optimize 
the field development plans (FDPs). This includes optimiz-
ing well counts, well locations and the drilling sequence. 
They used deep reinforcement learning method (DRL) in 
which the AI model would provide an optimized FDPs. They 
showed that starting from no reservoir engineering knowl-
edge, the AI model can learn basic reservoir engineering 
principles, such as placing optimized well locations with 
high porosity and permeability, choosing a reasonable num-
ber of wells and maintaining good well spacing. They also 
showed an example of how the resulted AI model has been 
used to obtain FDPs for a real field that is better than the one 
initially designed by human engineers.

Stimulation

In the past two decades, the development of unconventional 
formations was the focus of oil and gas industry operations 
and scientific research. The invention of horizontal drill-
ing combined with multistage hydraulic fracturing (MSF) 
made it possible to produce economically from these oil and 
gas reservoirs. Nevertheless, the understanding of fracture 
propagation and production thereafter from such complex 
systems is still in its infancy. Millions of stages were per-
formed in unconventional formations generating a tremen-
dous amount of data that cannot be handled conventionally. 
Advancement of AI methods made it possible to utilize these 
data to understand the formation response to stimulation and 
optimize the MSF completion design. Moreover, AI methods 
were used to improve the computational efficiency of such 
complex models that are frequently used in the simulation 
of fracture propagation or reservoir production. Running 
these intensive models could take long time which makes 
it a challenge to optimize the design based on simulations. 
This section intends to review the utilization of AI algo-
rithms to tackle unconventional formations from stimulation 
and production perspectives. Also, fracture propagation and 
conductivity estimation, in general, were reviewed.
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Fracture propagation models were developed to under-
stand the growth mechanism of a hydraulic fracture in a 
complex system containing different minerals and natural 
fractures. Early studies of fracture propagating were based 
on simple two-dimensional (2D) (i.e., PKN, KGD) or 
pseudo-three-dimensional planar models. These models usu-
ally oversimply the problem and do not provide good accu-
racy if natural fractures dominate the behavior of hydraulic 
fracture propagation which usually occurs in unconventional 
formations. Advanced computational methods such as dis-
placement discontinuity method (DDM), discrete element 
method (DEM), finite-discrete element method (FDEM), 
and extended finite element method (XFEM) are usually 
applied (Lecampion et al. 2018). These methods are com-
putationally expensive especially if high accuracy is required 
in a heterogeneous system.

Accurate fracture propagation modeling even at a small 
scale can be computationally intensive. Zapico et al. (2008) 
ANN to fine-tune a finite element model (FEM) to predict 
experimental fracture propagation outcomes. Neverthe-
less, the methodology is computationally expensive as 
FEM should be utilized for the estimations. Moore et al. 
(2018) built an efficient machine learning model from a 

physics-based finite-discrete element model (FDEM) to 
predict the fracture growth in brittle materials containing 
pre-existing fractures. Modeling fracture propagation at 
the microscale is computationally expensive while running 
that model at field-scale is prohibitively expensive. Hence, 
a machine learning model was trained to reduce the compu-
tational cost between 2 and 5 orders of magnitudes. Around 
200 data set of 2D simulations were obtained which were 
performed on 2 m × 3 m domain containing 20 random frac-
tures each has 30 cm length. The features of two neighbor 
fractures were studied and used as input to the model. These 
features were the length of the fractures, orientation, the 
distance between two fractures, and the minimum distance 
to the domain boundary. Labels were given to the features 
indicating if they coalesce and the time for that to take place. 
Figure 5 shows the methodology implemented where an 
FDEM model was first performed to produce the outcomes. 
Features are then extracted to train the AI algorithms which 
were used to provide similar outcomes to the FDEM. Deci-
sion Tree (DT), Random Forest (RF), and Artificial Neural 
Network (ANN) were implemented by the study. From the 
20 fractures, 190 pairs were generated containing a total of 
5200 data points. The first outcome of their work was to 

Fig. 5  Flow chart showing the methodology implemented to train AI-based algorithms to predict fracture propagation in a domain contains ran-
dom natural fractures (Moore et al. 2018)
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classify if two fracture pairs will coalesce and then a regres-
sion model was implemented to estimate the time for that 
to happen (see the lower right part of the figure). The suc-
cess of the model was based on the ability to track the frac-
ture path until the domain splits. Also, the time of rupture 
(domain split) was used as an indication of the model accu-
racy. The correlation coefficient for ANN as compared to the 
FDEM simulations was 0.68 while DT and RF gave lower 
accuracy. One of the challenges (in terms of classification) 
was the class imbalance (coalesce) as only 5–9 pairs out of 
possible 190 pairs coalesce. The issue was partially resolved 
by giving more weights to the imbalanced class. Five orders 
of magnitudes in simulation time were reduced by using AI 
methods. Such a methodology is feasible to utilize at field-
scale to predict fracture propagation in a formation contain-
ing micro and macro-scale natural features.

Fluid flow through a fracture network is challenging to 
simulate because of the structural complexity. Srinivasan 
et al. (2018) built a machine learning tool to predict the 
solute flow through a fractured network. A discrete fracture 
network (DFN) methodology was used to simulate fluid flow 
in fracture networks. Solute flow through the fracture net-
work is usually taking the shortest path. Graph theory was 
used to reduce the number of fractures to those that only 
contribute to flow. Then, SVM and RF were used to identify 
the backbone of the fracture network that contributes to flow. 
This significantly reduced the computational power when 
simulating flow using the DNF model. The trained model 
could capture the early solute breakthrough precisely; nev-
ertheless, it was not as useful in predicting late time flow.

Proppant distribution in a hydraulic fracture is crucial 
information as it could be used to optimize MSF design. 
Maity et al. (2019) identified proppant particles from cored 
samples based on imaging processes supported by machine 
learning classification tools. The goal was to understand the 
proppant distribution after an MSF job. This helps iden-
tify the location of the new infill wells to be drilled and 
the completion spacing as proppant distribution can tell the 
length of popped fracture and which clusters were propped. 
Images were taken for the particles obtained from a 600 
ft cored interval using a dedicated slanted well to obtain 
these cores. Training ANN classification, the particles were 
divided into proppant, calcite, and others. The following 
attributes of particles were used as input: hue, roundness, 
size, darkness, roughness, translucence, and entropy. K-fold 
cross-validation was used for hidden layer size optimization 
for ANN. It was benchmarked against other classifiers such 
as SVM. It was concluded that the proppant is limited within 
30 ft vertical distance in the studied formation. It was vali-
dated against field data using other classification techniques.

AI is also an active area in hydraulic fracture design opti-
mization such as the number of horizontal wells, number 
of stages, volume of proppant and fluids, type of chemical 

additives, and sweet spot identification (Awoleke and Lane 
2011; Lolon et al. 2016). Most of the AI developed models 
ignore important geological and reservoir properties such 
as porosity, permeability, saturation, and pressure. These 
data are challenging to obtain especially along the hori-
zontal sections of the wellbore. Some researchers replaced 
these data with the location of the well (i.e., coordinates) 
as the mentioned properties are spatially changing (Mishra 
et al. 2015; Wang and Chen 2019). Wang and Chen (2019) 
trained machine learning algorithms (RF, SVM, ANN, 
and AdaBoost) on 3160 horizontal well data of Montney 
unconventional formation to predict the first-year produc-
tion and optimize the fracture design. Features such as prop-
pant mass, well location, lateral length, fluids treatment size 
and type, completion type, number of stages were used for 
training. Recursive feature elimination with cross-valida-
tion (RFECV) was used to find the most significant features 
where RF was used for prediction. Then, algorithms were 
trained based on the most important features to predict the 
production rate from a fractured well. Using RFECV showed 
that the most important parameter in enhancing production 
is the mass of proppant pumped for the case of Montney 
formation and the location of the well. It was found that 
using more than the four features (proppant mass, latitude, 
longitude, and TVD) will not improve the correlation coef-
ficient. It was also observed that the RF results in the best 
performance in terms of prediction accuracy. One drawback 
of the trained model is its lack of reservoir properties such 
as permeability, porosity, and pressure.

Optimization of hydraulic fracture stages using gradient-
free (i.e., AI) methods has been applied by many researchers 
(Iino et al. 2020; Yu and Sepehrnoori 2013). The objective 
function that is usually optimized is the net present value 
(NPV) or cumulative production. Features such as fracture 
half-length, spacing, porosity, permeability, the distance 
between laterals, and fracture conductivity were used for 
the optimization. Different AI algorithms were tried such as 
covariance matrix adaptation evolution strategy (CMA-ES), 
simultaneous perturbation stochastic approximation (SPSA), 
genetic algorithm (GA), and non-dominated sorting genetic 
algorithm (NSGA-II). Rahmanifard and Plaksina (2018) 
aimed to optimize hydraulic fracture stages in unconven-
tional gas formation based on cumulative production or NPV 
using AI-based optimization tools such as GA, Differential 
Evolution (DE), and Particle Swarm Optimization (PSO). 
Gradient-based methods are usually used for optimization 
purposes. However, they suffer from being trapped in local 
optima which means that the absolute optima could not be 
found. Also, many functions could not be differentiated at a 
certain value or range. Hence, this study was utilizing AI-
based optimization tools that are gradient-free. The authors 
used Wattenbarger et al. (1998) analytical slap model to 
estimate gas cumulative flow within a certain production 
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period. The optimization function is the NPV which is a 
function of the cumulative gas production, water cumula-
tive production, and cost of hydraulic fracturing and waste 
disposal. The objective is to find the optimum number of 
hydraulic fractures (NHFs) that will maximize NPV. The 
PSO outperformed the other AI methods such as DE and GA 
as it required much fewer iteration for convergence.

Du et al. (2017) utilized embedded discrete fracture mod-
eling (EDFM) to train an AI-based algorithm to estimate 
productivity in the Permian Basin. Authors used EDFM for 
fracture representation in a reservoir simulator; a method 
that reduces the need for using fine grids. The EDFM com-
poses of two elements: matrix and fracture that can be repre-
sented separately. Mangrove which is a commercial software 
was used for hydraulic fracture network generation. AI was 
implemented to remove unnecessary fracture complexity 
that would not contribute to productivity. Using AI methods 
to reduce the complexity of the fracture and then implement 
it in EDFM resulted in significant simulation time reduction 
as compared only to using Mangrove. It enabled doing sen-
sitivity analysis as it was feasible. However, the simplified 
structure resulted because the AI should be history matched 
to tune parameters such as reservoir permeability otherwise 
an error up 40% could be the outcome.

Bhattacharya et al. (2019) used machine learning algo-
rithms to predict production in fractured Marcellus shale. 
The authors used the data of one well with 28 stages of 
hydraulic fractures in Marcellus shale to predict the produc-
tion rate. The data used were petrophysical and geomechani-
cal data (GR, sonic), pressure data (surface, casing, tubing), 
and fiber optics data such as distributed acoustic sensing 
(DAS) and distributed temperature sensing (DTS) while 
missing are hydraulic fracturing data and design. Ghah-
farokhi et al. (2018) also implemented DAS and two years 
of DTS data for estimating production from Marcellus shale 
well. Bhattacharya et al. (2019) implemented the following 
machine learning tools: RF, ANN, and SVM. Feature engi-
neering was implemented to find secondary attributes from 
the row data such as the brittleness index (BI). Collinearity 
analysis was implemented to find the most suitable features 
which reduced them from 34 originally to 18. All models 
could predict the production rate to good accuracy. However, 
SVM provided less accuracy with more computation time. 
Including hydraulic fracturing, reservoir, and PVT proper-
ties should improve accuracy. The model's lack of these data 
is a major limitation of their approach. Figure 6 shows that 
the Poisson ratio (PR) and brittleness index (BI) were the 
most important while DAS and DTS were not as significant.

Fig. 6  Importance of attributes to production estimation of Marcellus shale (Bhattacharya et al. 2019)
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Similar concepts were applied to other shale formations 
such as Bakken shale. Luo et al. (2019) investigated the 
possibility of predicting the productivity of horizontally 
drilled wells in Bakken shale based on completion and 
geological parameters. Geology and completion data of 
2061 horizontal wells in the Bakken were used. These 
include vertical depth, amount of proppant, water satu-
ration, porosity, permeability thickness…etc. Spearman 
correlation, RF, and joint mutual information (JMI) were 
used for feature selection. Deep learning (ANN) was used 
as a predictive model based on one-year production data. 
Based on feature selection, it was found that the formation 
thickness, depth, and amount of proppant are the most 
important parameters to predict the production in the first 
year. It was also observed that less porous spots require 
more proppant to increase productivity which agrees with 
the physics of unconventional. Wang et al. (2011) applied 
AI on 2780 MSF and 139 vertical wells in the Bakken to 
predict productivity. A deep neural network was used in 
the study with k-fold cross-validation to check the predic-
tiveness of the model. The number of hidden layers and 
neurons was optimized to give the best prediction for 6 and 
18 months. The model showed that the amount of prop-
pant placed in each stage is the most important parameter 
in predicting productivity. The trained model resulted in 
a small root mean square error (RMSE) when predicting 
the 6 and 18 months of production.

Sweet spots identification in unconventional formation is 
an important process as horizontal drilling combined with 
MSF is an expensive process that should be justified by good 
productivity. Also, unconventional formations cover large 
areas, and hence, finding the right location to complete the 
well is critical. Tahmasebi et al. (2017) defined the sweet 
spots as the ones having high TOC and fracability index 
(FI). They used multiple linear regression (MLR) to train 
log data from shale formation to predict the TOC and FI. 
Nonlinear models such as FL, hybrid neural networks (NN)/
FL, GA were also implemented. For variable selection, step-
wise selection was implemented. Mineralogy composition 
was used to assess the fracability where quartz is the brittle 
mineral. MLR failed to predict FI where the correlation coef-
ficient was 0.44 which is an unsatisfactory value. The pre-
diction of TOC was better where the correlation coefficient 
was around 0.88. The hybrid (NN + FL) machine learning, 
among nonlinear models, (HML) could provide better accu-
racy and remove the weakly correlated variables.

Rastogi and Sharma (2019) used machine learning tools 
to find the impact of fracturing chemicals on production 
using one-year production data. Different algorithms were 
used for feature selection such as F-Regression, Decision 
tree-based regressions, recursive feature elimination … etc. 
The data were obtained from different fracture jobs in the 
Powder River Basin. Chemicals additives were found to be 

in the top 5 parameters that impact productivity out of 11 
selected features.

AI has also been applied to the area of acid fracturing in 
terms of conductivity prediction. Acid self-prop the fracture 
by generating peaks and valleys that act as a conduit for the 
fluids to follow. Akbari et al. (2017) used a 106 data point 
generated experimentally to develop a conductivity correla-
tion based on GA. The developed correlation resulted in bet-
ter accuracy as compared to the popular correlations for acid 
fracture conductivity. Eleibide et al. (2018) applied ANN 
and adaptive network-based fuzzy inference systems on the 
same data set. The authors showed that the model accuracy 
was improved as compared to Akbari et al.'s model. Desouky 
et al. (2020a, 2020b) utilized more than 500 data points to 
generate a more accurate acid fracture conductivity correla-
tion that considers rock type and etching pattern.

Future and challenges

The utilization of ML techniques to handle a large data set 
and to predict several parameters in many aspects of the oil 
and gas industry is rapidly growing. The main reason behind 
that is the generation of large data in everyday activates of 
the oil and gas industry. To be able to process the large data 
and make it useful, a careful data processing and handling 
has to take place and ML techniques are a great tool to do 
that. Furthermore, due to the complexity of the different 
relationships between the many factors controlling the pro-
ductivity of an oil or gas well, ML techniques are widely 
used to figure out these complex relationships and build a 
multilayered correlation to relate the different factors. With-
out ML, the classical liner/nonlinear regression methods do 
not have the capability to handle high complexity as ML 
models do. Also, the high uncertainty of the many oil and 
gas industry activates is a major concern given the capital-
intensive nature of these activities, building a reliable fore-
cast and prediction models are necessary to navigate through 
these challenges while optimizing the outcomes.

ML techniques have provided many solutions to the oil 
and gas industry to thrive. At the same time, there are many 
disadvantages of these models that are sometimes ignored 
or rarely mentioned. One of the main disadvantages of using 
ML in building a relationship between several parameters is 
whenever there is a high correlation, it does not necessary 
imply causation (“correlation does not imply causation”). 
Building a high correlation model linking several parameters 
together based on the data used should not be taken as indi-
cation that these parameters are truly having a cause/effect 
relationship unless there is a proven physical or scientific 
relationship between them. Many developed models in the 
literature fail to address this fact and tend to associate corre-
lation with causation. Another common challenge facing the 
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applicability of ML techniques is the availability and accu-
racy of data used to build and test these models. The data has 
to be accurate in order to produce a useful model. Otherwise, 
the model developed will never be useful no matter its high 
accuracy. Conducting data collection quality assurance is 
highly recommended to avoid this issue.

A common criticism of ML models is that they require 
a large and diverse data set to train the model. Any model 
needs a sufficient representative data in order to capture the 
underlying structure that allows it to generalize to new simi-
lar cases. For instance, a ML model built to predict produc-
tion of a certain formation would only be applicable for that 
formation and under the same conditions when the training 
data it collected. Generalizing the predictive models has to 
be done with careful consideration of the constrain of these 
models and the diversity and inclusivity of the data used to 
build them. This is a major disadvantage of ML techniques 
as they tend to be generalized without careful consideration 
of this limitation.

Surly, ML cannot be used to predict anything related to oil 
and gas industry or build a correlation between any two or 
more parameters. Before undergoing building the relation-
ships between the different factors, a scientific and factual 
explanation of the actual “physical” relationship between 
these parameters has to be addressed first. Also, using ML 
to predict and forecast based on historical data has to be 
done carefully by addressing and assuring that the future 
conditions are similar to the historical events. ML tend to 
be a very useful tool to deal with big data and to build the 
complex relationships between the different parameters that 
linear/nonlinear regression models cannot handle. Many of 
the correlation that has been established based on regression 
analysis of laboratory data are being replaced with correla-
tion developed using ML methods that are more case spe-
cific rather than general correlations.

Deep learning which is a subset of ML based on ANN 
is very efficient for many tasks but it is not the solution to 
every problem as it faces many challenges. Deep learning 
algorithms need to be trained with large sets of data and the 
access and availability of accurate data is not always pos-
sible in many aspects of the oil and gas industry. Therefore, 
overfitting is considered the most common problem in ML 
applications which is mainly due to the lack of an appropri-
ate amount of data to be used for training. Also, overtrain-
ing can happen when there is no clear stopping stage for 
the training and the error keeps decreasing by updating the 
model structure and the model become more complex to fit 
a specific dataset. Even when dealing with large data sets, 
a major challenge is the training cost. In many situations, 
supercomputers are needed to handle large oil and gas data 
sets to build and run ML models.

The future trend of ML applications in the oil and gas 
industry looks promising. With the arrival of the internet of 

things and the automation of many of the oil and gas acti-
vates and the high reliance on data, it is possible to minimize 
risks and enhance productivity by integrating ML algorithms 
that are continuously trained and enhanced using the con-
tinuous flow of data. With the generation of large data in 
oil and gas industry, petroleum engineers and geoscientists 
must be exposed to big data handling techniques that are 
being developed in the AI domain. Making the most of the 
availability of data is something being addressed nowadays 
and will continue to be the trend for the future. Optimization 
cannot be reached without the utilization of the powerful 
capabilities of AI.

Concluding remarks

Based on the review of the literature and the authors’ work 
on the applications of AI in petroleum engineering, the fol-
lowing remarks can be made:

• AI offers a huge potential in solving problems in almost 
all areas of the oil and gas industry involving prediction, 
classification, and clustering. Compared to other areas 
of engineering, petroleum engineering and geosciences 
have special relevance because of two important factors. 
Firstly, we deal with nature rather than man-made materi-
als and processes. Variation in rocks, oil, and brine can-
not be easily handled by any closed-form solution. The 
employment of numerical methods in such a situation 
is too cumbersome as well as unrealistic. Secondly, the 
amount of data produced every day from cores, logs, and 
seismic exploration in conventional reservoirs to multi-
stage hydraulic fracturing in unconventional reservoirs 
is too huge to be interpreted properly using classical 
approaches.

• The biggest challenge for researchers is to have access to 
laboratory and/or field data. Oil companies should come 
forward to share data in whatever secured form accept-
able to benefit the literature from the enormous potential 
that AI is ready to offer.

• With the arrival of the internet of things and the live 
relay of data from drilling and production facilities, it is 
possible to minimize risks and enhance production by 
integrating AI algorithms trained based on past data.

• There is a degree of uncertainty in the data coming out 
from the laboratories, logs, or seismic data. The depth 
record of the samples on which the measurements are 
taken may not be exact due to depth shifts, and the log 
data may not exactly represent the property correspond-
ing to that depth point as it involves the averaging of the 
properties of layers that are intersected within the log-
ging sensors such as transmitters and receivers. Seismic 
data also averages vast volumes of rocks in a given block. 
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As a result, a significant amount of data collected during 
the drilling operation is unreliable. Consequently, data 
cleaning and uncertainty quantification is another huge 
area that needs to be integrated with AI to develop real-
istic solutions to the problems.

• The solution to a problem using AI is rarely guaranteed 
if one attempts to relate the input with the target data 
without a thorough understanding of the physics of the 
problem. The major challenge in this approach is setting 
up the problem so that the algorithm can easily connect 
input and the target data. Wherever possible, informa-
tion from analytical models should be suitably used in 
the input data to help the AI model arrive at the solution 
efficiently and more quickly.

• Problems involving the prediction of curves such as in 
viscosity-pressure curve in PVT data require extensive 
exploration of algebraic equations in addition to the 
understanding of the physics of the problem.

• Challenges remain in AI tools, too, in overfitting, coinci-
dence effect, overtraining, etc. It is hoped that researchers 
in soft computing will develop modified and/or new AI 
tools.

• With the generation of huge data in petroleum engi-
neering from cores to logs to seismic exploration, the 
petroleum engineers and geoscientists must be exposed 
to normal as well as big data handling techniques that are 
being developed in the AI domain. Exposure to AI tools 
should start right from their undergraduate education.
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