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Abstract
This study focuses on constructing a 3D geo-cellular model by using well-log data and other geological information to enable 
a deep investigation of the reservoir characteristics and estimation of the hydrocarbon potential in the clastic reservoir of the 
marginal field in offshore Vietnam. In this study, Petrel software was adopted for geostatistical modeling. First, a sequential 
indicator simulation (SIS) was adopted for facies modeling. Next, sequential Gaussian simulation (SGS) and co-kriging 
approaches were utilized for petrophysical modeling. Furthermore, the results of the petrophysical models were verified by 
a quality control process before determining the in-place oil for each reservoir in the field. Multiple geological realizations 
were generated to reduce the geological uncertainty of the model assessment for the facies and porosity model. The most 
consistent one would then be the best candidate for further evaluation. The porosity distribution ranged from 9 to 22%. The 
original oil place of clastic reservoirs in the marginal field was 50.28 MMbbl. Ultimately, this research found that the marginal 
field could be considered a potential candidate for future oil and gas development in offshore Vietnam.

Keywords 3D geo-cellular · Marginal field · Offshore Vietnam · Petrophysical modeling

Abbreviations
BRV  Volume reservoir of rock
RQI  Reservoir quality index
Bo  Volume factor
NTG  Ratio between effective thickness and total 

thickness
J_fu  J_function
OIIP  Oil initial in place
PHIE  Effective porosity
Sw  Water saturation
C  Covert coefficient from  m3 to bbl
OWC_H  Oil water contact height
Pc  Capillary pressure
Vcl  Volume of clay
Pow  Power
Perm_E10  E10 permeability
Perm_E20  E20 permeability

Introduction

The Cuu Long Basin is a well-known source for exploring 
and producing hydrocarbons in Vietnam (Thanh et al. 2019). 
However, oil and gas have been extracted from this basin for 
a long time. As a result, the large reserve oil fields have been 
depleted in the Cuu Long Basin (Thanh and Sugai 2021). In 
this basin, the marginal field is a potential candidate for new 
resources in Vietnam. However, high cost is a significant 
issue for us when attempting to develop a strategy to explore 
and develop the marginal field. To address this, 3D geo-
cellular modeling has been adapted to deeply understand 
possible reserves (Islam et al. 2021). Furthermore, this mod-
eling technique provides the target reservoir's better manner, 
such as faults, sub-layers, and the amount of oil reserves in 
the field (Mike 2009).

Moreover, 3D geo-cellular modeling was used to 
develop a new method by integrating artificial neural net-
works (ANNs) and geostatistical methods for static and 
dynamic  CO2 storage in the Nam Vang field, offshore Viet-
nam (Thanh et al. 2020). Therefore, this study adopts 3D 
geo-cellular modeling to explore the oil reserve in one of 
the marginal fields in offshore Vietnam. The geological 
model of the Lower Oligocene reservoirs of this field was 
constructed in this study using the interpretation of 3D 
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seismic acquisition and data from wells drilled in the field, 
such as L-1X, L-2X, and L-3X. The present geological 
model aims to gather all available data to build a compre-
hensive geostatic representation of the Lower Oligocene 
reservoirs for a marginal field in offshore Vietnam. For the 
study, the marginal field was divided into two main zones 
based on two defined reservoir units (Thanh et al. 2020). 
They are zone E10 from top E10 to base E10 and zone E20 
from top E20 to base E20. Generally, structural maps and 
faults from acquired 3D seismic data are used to gener-
ate structural and stratigraphic frameworks. Due to data 
availability, the stochastic approach was used to model 
facies and petrophysical properties (Al-khalifa et al. 2007; 
Cherpeau et al. 2010). Stochastic algorithms use random 
seed and input data and provide details of the results with 
differences (Xin et al. 2016).

Moreover, stochastic modeling is more complex than 
deterministic modeling and takes much longer to run. This 
indicates more aspects of the input data, specifically its vari-
ability (Thornton et al. 2018). This means that particular 
cells will appear in the results that are not driven by the 
input data and whose location is purely an artifact of the 
random seed used (Perevertailo et al. 2015). Therefore, the 
results will have a distribution that is more typical of the real 
case, although the specific variations are unlikely to match 
(Ailleres et al. 2019). This can be useful, particularly when 
taking the model to the simulation stage, as the variability of 
a property is likely to be just as important as it is the average 
value (Kamali et al. 2013). The disadvantage is that some 
crucial aspects of the model may be random. Therefore, a 
proper uncertainty analysis is performed with several reali-
zations of the same property (Matias et al. 2015).

Furthermore, it is necessary to model the lithology before 
distributing the petrophysical properties of the 3D model. 
Several methods can be used for facies modeling. However, 
SIS has been recognized as the most valuable and flexible 
method for lithofacies modeling. In addition, SIS can predict 
the facies characteristics using well-log information to pro-
vide the facies distribution in uncore wells. This advantage 
is supported by stochastic facies modeling (Al-mudhafar 
2017a).

Moreover, SIS has also been used to quantify geologi-
cal uncertainties in modeling the architecture of complex 
reservoirs (Seifert and Jensen 1999). In addition, the SIS 
technique was employed to model the facies in sand-
rich turbidite systems (Jordan and Goggin 1995). Most 
recently, SIS has been successfully adapted for lithofa-
cies modeling in the Luhais oilfield in southern Iraq (Al-
mudhafar 2021). In a similar study, SIS was considered in 
the development of an innovative carbonate facies mod-
eling workflow in one of the UAE fields (Aidarbayev et al. 
2020). A previous study demonstrated the advantage of 
SIS for lithofacies modeling. Therefore, in this study, SIS 

was used to capture the depositional environment for clas-
tic reservoirs in the marginal field regarding the lithofacies 
modeling.

The organization of this study is as follows: the field and 
geological description of the marginal field is outlined in 
Sect. 2, while Sect. 3 highlights the modeling framework for 
the paper. Section 4 presents the results and discussion of 
the modeling process. Finally, Sect. 5 presents the conclu-
sions of the study.

Field and geological description

Field description

The Cuu Long Basin constitutes a Paleogene rift basin 
located off the southeast coast of Vietnam, covering approxi-
mately 150,000  km2. It is separated from the Nam Con Son 
basin by the Con Son Swell in the southeast (Lee et al. 
2001).

In the current tectonic sketch (Fig. 1), the Cuu Long Basin 
is situated southeast of the intra-continental plate that devel-
oped on the Eurasian continental crust. The Cuu Long Basin 
is a rift type, a subsided trough in the Paleogene that was 
founded on the cretaceous regressive continental crust. The 
Cuu Long Basin was filled with Neogene  (N12-Q) passive 
continental margin sediments. During the Cretaceous (J3-K), 
the region was occupied in the central part of a magmatic arc 
of a NE–SW trending from the adjacent continental area—
from the Da Lat zone to Hainan Island in China. The Cuu 
Long Basin basement consists mainly of igneous magmatic 
arc (volcanic and intrusive) rocks (Dang et al. 2011b).

The tectonic evolution of the Cuu Long Basin can be 
divided into several main stages (Thanh and Sugai 2021):

1. Late Cretaceous–Eocene: Pre-rift uplift/initial rifting 
phase.

2. Late Eocene–Oligocene: Main rifting phase/initial ocean 
floor spreading phase. This led to the development of 
the main structural features within the basin, following 
extensional and transtensional deformations.

3. Early–Middle Miocene: Regional subsidence/renewed 
rifting. A change marked this from fault-controlled sub-
sidence to thermally controlled, high-rate subsidence.

4. Late Miocene: Partial inversion/regional subsidence. 
During this stage, the entire area was dominated by com-
pression in combination with the dextral strike–slip fault 
system in eastern offshore Vietnam, which probably gen-
erated basin uplift/partial inversion.

5. Pliocene–Pleistocene: Regional subsidence/renewed 
rifting. Diverse tectonic activity, from low to moderate 
amplitude differential uplift, acted across the basin.
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Structurally, the Cuu Long rift basin is an elongated 
depression that is made up of a series of alternating horst, 
graben, and half-graben structural features arranged along 
the strike (the main strike is NE-SW) of the basin (Dang 
et al. 2011a). The location of the study area is shown in 
Fig. 1.

Facies and depositional environment

The facies and depositional environment analyses along the 
wells in the marginal field are based on petrographical analy-
sis, core/cutting description, and log forms. The results of 
the sequence analyses are shown in Fig. 2. The details of the 
subsequence are summarized below.

Intra E20‑basement subsequence

In this subsequence, the facies association is comprised 
of fine-grained facies—mudstone of lacustrine/floodplain, 
minor of very fine to fine sand facies of sheet flood and 
distal bar, and fine- to medium-grained sand facies of small 
channels. Regarding the depositional environment, this sub-
sequence is a lacustrine, alluvial plain, and braided channel 
system. Fine-grained facies: mudstone is mainly deposited 
by suspension. Coarse-grained sediments were dominantly 

divided from weathered granitoid provenance and rapidly 
deposited, close to the provenance.

Top E20‑intra E20 subsequence

The main facies of this subsequence is dominated by 
medium- to coarse-grained sand. Sand stacks of differ-
ent facies, with various thicknesses, are often alternated 
and separated by thin mud beds or mud drapes. Individual 
sand bodies within the sand stacks are often separated by 
thin mud beds or mud drapes. These sand facies combined 
to form stacked sequences of 5 m up to 50 m thick, with 
gamma-ray logs representing a subtle cylinder shape. This 
subsequence was deposited in lacustrine and braided plains.

Top E10–Top E20 subsequence

This subsequence has very fine to fine sand facies, minor 
of very fine to fine sand facies, and low sand/shale ratio. 
In addition, fine-grained facies—mudstone—was mainly 
deposited by the suspension. Coarser-grained sediments 
were dominantly divided from weathered granitoid prov-
enance and transported over a long distance and slowly 
deposited in a low-energy environment.

Fig. 1  The study area is located in Cuu Long Basin modified from Thanh et al. 2020
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Methodology

The data used for this research are the well-log data (poros-
ity, permeability, and volume of clay), depth fault stick, 
depth surfaces, well markers, and oil–water contact data; 
more details will be introduced on each data type later. First, 
structural modeling was conducted for fault modeling, pillar 
girding, vertical layering, and contacts (Caumon et al. 2009). 
Property modeling is the process of filling the cells of the 
grid with petrophysical properties such as facies, porosity, 
permeability, and water saturation (Ali et al. 2020). Multi-
ple geological realizations were conducted in the modeling 
process to reduce the geological uncertainty of the facies 
model (Al-mudhafar 2018). Thus, petrophysical models have 
also been generated according to each lithofacies realization 
(Al-mudhafar 2017b). Finally, the volumetric calculations 
for all realizations were calculated and ranked to determine 
the potential of oil reserves in the marginal field of the Cuu 
Long Basin, offshore Vietnam. Figure 3 illustrates the mod-
eling loop used in this research.

Structural modeling

First, fault modeling is the initial step in the structure model 
process. Fault sticks were interpreted and imported into a 
geological package (Petrel Version 2012). Twelve fault stick 
sets were used for the fault modeling. In general, the Lower 
Oligocene faults were simple. Almost all fault systems are 
normal faults and fault orients in the NE–SW direction. Gen-
erally, fault modeling generates fault pillars, known as key 

pillars, which define the slope and shape of the fault. There 
are up to five so-called shape points along each of these 
lines to adjust the form of the fault to match the input data 
perfectly. The key pillars are generated based on input data, 
such as depth fault sticks and structural maps (Islam et al. 
2021).

Pillar girding was the next step in the structure model 
process. This process generates a 3D grid from the fault 
model. The grid is represented by pillars (coordinate lines) 
that define the possible positions for the grid block corner 
points. Thus, we can define directions along faults and bor-
ders to guide the girding process. The result from the pillar 
girding is the “Skeleton Framework”. The skeleton is a grid 
consisting of a top, middle, and base skeleton grid. The grid 
has no layers and only a set of pillars with the user given X 
and Y increments. For example, in the marginal Oligocene 
model, X and Y were set at 50 m × 50 m, and fault systems 
were made under force grid cells to be equally spaced along 
the faults. An illustration of the fault modeling and pillar 
girding is shown in Fig. 4.

The next step in 3D geo-cellular modeling is to create 
horizons and layering. The make-horizon process step is the 
first step in defining the vertical layering of the 3D grid in 
Petrel software version 2012 (Fig. 5). The vertical layering 
of the 3D grid is defined in two process steps: make the main 
reservoir layers (from seismic data) and make a vertical reso-
lution (determined by cell thickness or several cell layers).

The depth surface data of the top E10, base E10, top E20, 
and base E20 in surface type were transferred to Petrel with 
well tops data. Using the Petrel Make Horizon module, these 

Fig. 2  The facies and deposi-
tional environment are high-
lighted for this study
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surfaces were used to create three zones, which combine 
with the fault system to construct a raw structural model or 
structural framework as “house of properties”. The geologi-
cal horizon Top E10 is regarded as an erosion, while Base 
E10 and Top E20 are conformable. Base E20 is regarded as 
the base of the model.

The layering process is the last step in defining the verti-
cal resolution of a 3D grid. The number of layers in each 
zone was considered to optimize the number of cells but 
was thin enough to capture the thinnest sand body. The 
layer modeling was focused on the main potential produc-
tive zones such as Zone E10 (Top E10 to Base E10) and 
Zone E20 (Top E20 to Base E20); the thickness of layers is 
0.5 m. Under the scale of geological nature to be realized 
and runtime of the multiple simulations required, the grid 

configuration was designed to optimize the number of cells 
and computing speed concerning reservoir heterogeneities. 
In general, the grid size and layering for the fine model are 
reasonable for representing the geometry and geological het-
erogeneities of the Oligocene reservoirs. Table 1 describes 
the information of the modeling parameters.

Property modeling

Property modeling involves filling grid cells with petro-
physical properties such as facies, porosity, permeability, 
and water saturation. Therefore, these processes are depend-
ent on the geometry of the existing grid. When interpolat-
ing between data points, the geological modeling process 
propagates property values along with the grid layers. The 

Fig. 3.  3D geo-cellular mod-
eling workflow is applied for 
this research (Thanh et al. 2020)

Fig. 4  The result of structural modeling is comprised of fault modeling (a) and pillar girding (b)
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second period in building geological models is property 
modeling (He et al. 2020). The data input for property mod-
eling includes well-log data (facies, porosity, permeability, 
volume of clay) and seismic trend maps. Property modeling 
in the marginal field is split into three separate stages (Zhong 
and Carr 2019):

• Scale-up well logs: The process of sampling values from 
well logs into the grid, ready for use as input to facies 
modeling and petrophysical modeling.

• Data analysis: The process of applying transformations 
to input data (normally upscaled well logs) identifies 

trends and defines variograms describing the data. This 
is then used in the facies and petrophysical modeling to 
ensure that the same trends appear in the results.

• Facies modeling: Interpolation of discrete data, e.g., 
lithofacies.

• Petrophysical modeling: Interpolation of continuous 
data, for example, porosity, permeability, net to gross, 
and saturation.

Results and discussion

Scale‑up well log

The facies was defined on base cases (such as reservoir/
non-reservoir) as codes 1 and 0, respectively. These facies 
codes were created and applied for three wells based on 
volume shale and effective porosity cutoff of 0.35 and 
0.09, respectively. Figures 6 and 7 illustrate the scale-up 
results of this study. Figure 6 presents the scale-up for dif-
ferent layer thicknesses for the E10 and E20 zones.

Fig. 5  The results of making horizon is based on Top E10 (a) and Base E20 (b)

Table 1  The variables of the modeling process

Parameters Value

Cell size 50 m × 50 m
Zone 3 zones
Layer thickness 0.5 m
Number of layers 614 layers
Number of faults 12
Number of cells (I × J × K) 53 × 89 × 614 = 2,896,238
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The layer thickness of 0.45 m is the best for both E10 and 
E20 reservoirs. Thus, this type of thickness will be utilized 
for the entire modeling process.

In addition, Fig. 7 illustrates the correlation between 
zones (E10, E20) and facies classification. As shown in this 

figure, the reservoir facies are yellow, and the non-facies are 
represented by the brown color.

Fig. 6  Scale-up well-log facies is applied for modeling process

Fig. 7  Well cross section is mainly illustration with zones and facies
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Data analysis

The data analysis process (DAP) of applying transforma-
tions to input data (normally upscaled well logs) identifies 
trends and defines variograms describing the data (Gringar-
ten and Deutsch 1999). The DAP can be accessed from the 
process diagram and performs a detailed property analysis. 
In addition, depending on whether a property is discrete 
(e.g., facies) or continuous (e.g., porosity and permeability), 
we can analyze the facies proportion, thickness, calibration 
between continuous properties (e.g., sampled seismic), and 
facies within each zone and create a variogram of the dis-
crete property. The DAP settings defined for discrete prop-
erties are saved for the current property and are accessed 
directly during facies modeling. Moreover, the continuous 
property can be defined by data transformations and gener-
ate variograms in the main, minor, and vertical directions.

In addition, data transformation enables the user to 
make the data stationary and standard normally distributed, 
which are requirements of many of the standard geostatis-
tical algorithms (Gringarten and Deutsch 1999). After the 
scale-up well-log process, the data analysis tool was applied 
to analyze the facies proportion and thickness and create a 
variogram model (Gringarten and Deutsch 1999). Owing to 
constraints on the number of exploration/appraisal wells in 
the marginal field, the variogram model was created only 
for the vertical direction. The horizontal variogram was cre-
ated based on the compressional wave velocity to shear wave 
velocity (Vp/Vs) variogram maps. The results of the facies 

and porosity data analysis are shown in Figs. 8, 9, 10, and 
11.

Facies model

Facies modeling is a means of distributing discrete facies 
throughout the model grid (Radwan 2021). We usually have 
upscaled well logs with discrete properties into the model 
grid and possibly defined trends within the reservoir by 
analyzing this data analysis process. In this research, the 
“Sequence Indicator Simulation” (SIS) method was applied 
to build the facies model (Seifert and Jensen 1999). The SIS 
method allows a stochastic distribution of the property using 
a predefined histogram. In addition, directional settings such 
as variograms and extensional trends were also honored. 
Based on the facies analysis results in Fig. 12, these results 
provide the facies volume proportion (histogram analysis), 
facies thickness distribution, and variation.

In the volume proportion, the probability curves were 
fitted from the original facies proportion at the well. The 
variogram was also checked carefully for each zone in the 
primary, minor, and vertical directions. To evaluate the 
geological uncertainty of the facies model, 20 geologi-
cal realizations of facies distributions were created for the 
facies model. Then, the best one was selected to capture 
reservoir heterogeneity. Figure 13 represents the genera-
tion realizations and cross sections for the facies model 
of the E10 reservoirs. As shown in Fig. 12a, the effects of 
geological realizations were explored in this study. The 

Fig. 8  Vp/Vs variogram map is utilized for E10 reservoirs
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consistent case of facies was chosen to capture the char-
acterization of the geosystem. Uncertainty would occur in 
geological modeling because the subsurface data are not 
easy to obtain. Nevertheless, geological modeling is an 

excellent tool for deeply understanding the geology aspect. 
For better visualization, Fig. 12b depicts the cross section 
of the best facies model for E10 reservoir.

Fig. 9  Vp/Vs variogram map is utilized for E20 reservoirs

Fig. 10  Data analysis is considered for facies in E10 (a) and E20 (b) reservoirs
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Similarly, the generation of facies realizations and cross 
sections for the E20 zone is shown in Fig. 13. As can be 
observed in this figure, the amount of sand distribution is 
higher than that in the E10 zone. Therefore, it seems that 
the E20 zone has more potential reserves than the E10 zone. 
In addition, the thickness of E20 is greater than that of the 
E10 reservoir. However, this is just a facies distribution that 
cannot determine which area is of interest for future develop-
ment. Thus, the petrophysical modeling and volume calcula-
tion will be discussed in the next section.

Petrophysical modeling

Petrophysical results can be achieved in several ways, such 
as well-log interpolation (Attia et al. 2015; Abudeif et al. 
2016a), petrographic image (Abudeif et al. 2016b), and 
petrophysical fingerprint techniques (Radwan et al. 2020). 
These techniques are useful for hydrocarbon-type detection 
in oilfields (Abudeif et al. 2018). Petrophysical interpre-
tation is also helpful for classifying rock types during the 
waterflooding process in reservoirs (Radwan et al. 2021). 
However, petrophysical modeling is missing from these 
interesting works. Petrophysical modeling provides the dis-
tribution of porosity and permeability properties in the target 
field. Several steps to populate the model are required for 
the porosity (PHIE) modeling. First, the PHIE of each well-
bore is derived from the log analysis result. Then, the PHIE 
was scaled up from the well log within the zones using the 
arithmetic average method. Next, the facies model is used 
as a filter to define the reservoir/non-reservoir in the PHIE 
model. The porosity values for all non-reservoir cells were 
always lower than the porosity cutoff value, whereas the 
porosity of all reservoir cells cannot be less than the cutoff 
value. Finally, PHIE modeling is run utilizing the sequential 
Gaussian simulation (SGS) method, variogram from data 
analysis, and standard distribution method from the upscaled 

log distribution (Pyrcz and Deutsch 2014). In addition, SGS 
could provide an understanding of the geometry and conti-
nuity of petrophysical properties that have a direct impact on 
the reservoir flow behavior (Al-mudhafar 2021).

In this work, PHIE was upscaled bias to the chosen facies 
distribution, and 20 realizations were run.

Assuming that the porosity at well is the best and the 
well, the decreasing porosity so that the porosity distribution 
for the best case is chosen based on this assumption.

Figure 14 illustrates the porosity selection after the geo-
logical realizations. The best case is selected for the E10 
reservoirs. The observation of this process shows that the 
porosity is consistent after the 17th realization. After this 
realization, the porosity distribution remains the same as 
in the 17th realizations. Regarding the E20 reservoirs, the 
selection of realization is similar to that of the E10 zone. The 
best-case porosity was achieved at the 20th realization. This 
scenario is shown to be the most consistent when compared 
to other realizations. Consequently, a deterministic method 
was applied to build the permeability model. Based on the 
porosity–permeability relationship provided from the core 
data of TL-3X, the permeability model is generated using 
the following equation:

The J function was applied to gather the water saturation 
spatial distribution within the reservoir grid for water satu-
ration modeling. The J function was obtained from the core 
data of TL-3X. The functions are as follows:

(1)Perm_E10 = 2E − 05 ∗ pow(PHIE, 5.0849)

(2)Perm_E20 = 3E − 08 ∗ pow(PHIE, 7.8243)

(3)RQI_10 = Sqrt(perm_10∕PHIE_E10)

Fig. 11  Data analysis tool for E10 (a) and E20 (b) reservoirs
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Fig. 12  The facies result is illustrated for E10 reservoirs. (a) Geological realizations generated to pick the consistent one. (b) Cross section of 
E10 facies model
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Fig. 13  The facies result is illustrated for E20 reservoirs. (a) Geological realizations generated to pick the consistent one. (b) Cross section of 
E20 facies model



13Journal of Petroleum Exploration and Production Technology (2021) 12:1–19 

1 3

Fig. 14  Final porosity model is selected for E10 (a) and E20 (b) reservoirs
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(4)RQI_20 = Sqrt(perm_20∕PHIE_E20)

(5)Pc_10 = (3.281 ∗ (62.4 − 52.9) ∗ OWC_H)∕144

(6)Pc_20 = (3.281 ∗ (62.4 − 49.1) ∗ OWC_H)∕144

(7)J_fun_10 = (Pc_10∕26.3) ∗ RQI_10
Figure  15a illustrates the permeability model using 

Eqs.  (1) and (2). The co-kriging technique was used to 

(8)J_fun_20 = (Pc_20∕26.3) ∗ RQI_20

(9)Sw_10 = 1.5975 ∗ pow(J_fun_10, −0.383)

(10)Sw_20 = 2.0544 ∗ pow(J_fun_20, −0.417)

Fig. 15  The result modeling is highlighted for permeability (a) and water saturation (b) model for E10 and E20 reservoirs
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distribute the 3D permeability model. Co-kriging could 
support the limitation of well data during the petrophysi-
cal modeling process (Thanh et al. 2020). This technique 
is a correlation factor between the primary and secondary 
data to calculate the distribution of the secondary variable at 
each point (Esmaeilzadeh et al. 2013). Thus, the co-kriging 
technique is suitable for the modeling process in this study. 
The illustration in Fig. 15a indicates that the target reservoir 
has a good distribution permeability in the marginal field. In 
addition, Fig. 15b presents the water saturation using the J 
function for both the E10 and E20 reservoirs.

Model verification

Data and model validations were performed at every signifi-
cant modeling step. First, when data have been imported to 
the geological package (Petrel Version 2012), they should be 
under quality control (QC). Typical methods of data QC are 
to display them and to check statistics, histograms, etc. The 
QC process uses a general intersection to view the data in 
the cross section, and playing through the data set is an addi-
tional experience. Then, various cross sections were gen-
erated for QC, structural framework, facies modeling, and 
petrophysical modeling. Second, the skeleton grid was for 
quality control. The essential steps during QC also include 
checking for crossing pillars because possible negative cell 

volumes are generated. Finally, the static method checks the 
matching between the input and output during the reservoir 
property modeling processes.

In addition, the synthetic data generated in a global well 
is a critical parameter for checking model quality. Depth 
synthetic information was used for comparison with the raw 
data to ensure no-depth mismatch. Synthetic data were also 
checked to ensure that the generated parameters matched 
the raw well data while generating facies and petrophysical 
realizations.

A statistical value check was also conducted to exam-
ine the facies volume proportion and trend to determine the 
matching status between generated realizations and input 
well data. Figures 16 represents histograms showing the 
facies and PHIE distribution of the input and output data 

Fig. 16  Histogram analysis is obtained for facies and porosity in E10 reservoir (a) and E20 reservoir (b)

Table 2  The statistical analysis compares between raw well log and 
model results

Statistics E10 E20

Raw log Model Raw log Model

Min value 0 0 0 0
Max value 0.23 0.23 0.26 0.25
Mean value 0.11 0.12 0.14 0.13
Standard deviation 0.04 0.04 0.07 0.07
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for zones E10 and E20. The visualization analysis from 
these histograms indicated an excellent model distribution 
for porosity in both the E10 and E20 reservoirs. In addi-
tion, the statistics of the two zones were also conducted for 
a better comparison. Table 2 shows the statistical analysis 
of the E10 and E20 reservoirs. Surprisingly, results were 
obtained between the raw log and 3D model. This indicates 
an excellent fit between the well-log and geo-cellular mod-
eling approaches.

This result demonstrates that our model successfully 
represents the subsurface conditions for marginal fields in 
offshore Vietnam. The following section elaborates on the 
oil reserves for the E10 and E20 reservoirs for future devel-
opment plans.

Volumetric calculation

The volumetric was computed based on the 3D geological 
reservoir model (Radwan and Chiarella 2021). Because of 
the facies definition, cutoff Vcl <  = 35% and PHIE >  ≥ 9%; 
therefore, the net to gross (NTG) was taken as 1. The NTG 
model was generated for volumetric calculation. In addition, 
the oil saturation (So), oil formation volume factor (Bo), and 
oil–water contact (OWC) were adapted from the Reserve 
and Resources Report (RAR) for the volumetric calcula-
tion. Volumetric sensitive processes were also carried out to 
choose the most appropriate OIIP value for the model (closer 
to the Conventional Volumetric Method shown in the latest 
RAR). The OIIP is calculated using the following equation 
(Petrel Software Manual 2012):

To evaluate the uncertainty of the geo-cellular models, 
200 cases were conducted for each reservoir. Figure 17 
illustrates the volumetric calculations for the E10 and E20 
reservoirs. The comparative results of the RAR and model 
calculations are shown in Table 3. There is a slight differ-
ence between the report and the model calculation. These 
results indicate that the proposed model is acceptable for 
further assessment.  

Conclusion

This study applied geo-cellular modeling to evaluate the 
potential of reservoirs in the marginal field offshore. The 
following key points can be drawn from this research:

OIIP = BRV ∗ NTG ∗ PHIE ∗ (1 − Sw)∕Bo ∗ C

• As the maps of reservoirs are not being interpreted, the 
top and base maps of reservoirs generated from the top 
E and top basement lead to different volume reservoirs 
of rock in the Reserve and Resources Report and 3D 
model. Therefore, the structural model should be inter-
preted as a map of reservoirs calibrated with seismic 
attribute cubes.

• The facies model helps determine the sand distribution 
of reservoirs to support petrophysical modeling. This 
study used 20 facies geological realizations to reduce 
the geological uncertainty in porosity and permeabil-
ity modeling. The porosity realization distributes the 
porosity properties for each facies realization.

• The petrophysical model was determined by a relation-
ship adapted from the core analysis. Thus, determinis-
tic modeling was used for permeability, while stochas-
tic modeling was used to ensure the suitability of the 
target reservoirs.

• Sequential Gaussian simulation (SGS) was used for 
porosity realization to preserve the characteristics of 
the lithofacies model. In addition, the permeability 
distribution was adapted to the co-kriging technique to 
achieve the minimum variance of the estimation error 
in the modeling process.

• The volume of the reservoir rock is one of the critical 
factors that affect the oil’s initial in-place calculation. 
It should be taken from the 3D model to eliminate the 
uncertainty.

• Geological uncertainty is necessary for 3D geo-cellular 
modeling in the exploration and production of hydro-
carbons.

• This model provides the static geological model for 
future development plans by dynamic simulation

The potential oil reserve of the study reservoir was dem-
onstrated using 3D geological modeling. However, uncer-
tainties still exist in the Oligocene reservoir model for the 
marginal field. Some uncertainties are highlighted below:

• Structural maps are still unconfident due to the mod-
eling process.

• While not yet studying the depositional conceptual 
model, the intermediate conceptual model has been 
referred to as for the assumption of direction, location, 
and size of geological feature distribution.

• Log upscaling and grid upscaling themselves lead to 
model uncertainty, particularly the hydrocarbon pore 
volume.
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Fig. 17.  Two hundred cases run for calculation the STOIIP for E10 reservoir (a) and E20 reservoir (b)
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