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Abstract
Methane content in a coal seam is a necessary parameter for evaluating coal bed gas, and it poses an environmental risk 
to underground coal mining activities. Keeping in pace with comprehensive studies of coal bed gas, 12 coal samples were 
selected from the Sitarampur block of Raniganj Coalfield for analysis. The Petrographic examination illustrated that signifi-
cant values of reactive macerals present in samples demonstrate that organic matter is dominated by the prominent source 
of aromatic hydrocarbons with a minor proportion of aliphatic hydrocarbon, which falls in the region of (Type III) kerogen, 
confirms the suitability for the potential of hydrocarbon generation. “A” factor (aliphatic/aromatic bands) and “C” factor 
(carbonyl/carboxyl bands) value concluded that the sample has the lowest aromaticity and the highest hydrocarbon-generating 
potential, which was also validated by the Van Krevelen diagram. The Van Krevelen diagram plots between the H/C and 
O/C ratio indicate that coal samples lie in the type III kerogen, and bituminous coal (gas prone zone) is present in the block, 
which is confirmed by the cross-plot between desorbed and total gas (cc/g). The in situ gas content values are high enough to 
produce methane from coal beds. The overall study concludes that the Sitarampur block from Raniganj Coalfield is suitable 
for hydrocarbon generation and extraction.

Keywords  Hydrocarbon generation potential · Petrographic study · In situ gas content · Oil yield · Kerogen type · Fourier 
Transform Infrared spectrometry analysis

Introduction

Natural gas discoveries have been made in many basins 
around the world, and governments are paying close atten-
tion and focusing on exploration (Abudeif et al. 2016; Attia 
et al. 2015; Radwan et al. 2021). Natural gas has become a 
promising substitute for coal and plays a significant role in 

power generation and other alternative sources of energy in 
different applications in India (CEA 2019). The demand for 
natural gas in India is steadily increasing over the past few 
decades from 49.10 to 59.70 billion cubic feet (BP 2020). In 
India, natural gas consumption grew continuously, with an 
annual rate of 6.2% between 2000 and 2019 (MPNG 2020). 
In the last few decades, natural gas production from coal 
beds has experienced rapid development in many countries 
such as the USA, Australia, China, India, and Canada (Pan-
war et al. 2016a, 2016b, 2020). When the methane is recov-
ered simultaneously with coal during underground mining 
of coal, it is known as coal mine methane (CMM). Coal 
mine methane mining is done to reduce methane concen-
tration in the mines and working areas around the mines 
for its effective utilization of coal and CMM. Methane is 
the principal gas in CMM with varying concentrations from 
25–60% (Karacan 2009) and must be released or vented for 
safety reasons. So, CMM is an unconventional form of natu-
ral gas found in association with coal seams, and it is a 
clean burning fuel with a good heating value > 8500 kcal/
Kg. (Ojha et al. 2013; Panwar et al. 2017a, 2017b, 2017c). 
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The literature reveals that coal is a sedimentary rock, with 
complex pore and fracture structure (Gao et al. 2014). The 
macro–micro pores in coal provide extremely massive 
surface areas for methane, and it accumulates as a free, 
adsorbed, and dissolved state (Kumar et al. 2018; Wang et al. 
2020). The different ranks of coal, mineral matter and mac-
eral composition significantly influence the methane sorp-
tion capacity (Goraya et al. 2019; Moore et al. 2014). The 
literature reveals that Fourier transform infrared spectros-
copy (FTIR) is extensively employed to characterize various 
source rocks to determine hydrocarbon generation potential 
(Ganz and Kalkreuth 1991; Mishra et al. 2018; Varma et al. 
2018). The FE-SEM and EDX analysis were significantly 
used for organic matter association with mineral matter and 
coal surface structure.

In the current investigation, the author’s tried to analyze 
the petrographic composition, geochemical characteristics, 
organic richness, oil generation potential, thermal maturity, 
liquefaction behavior, and hydrocarbon generation poten-
tial for Gondwana coals belonging to Barakar formations 
in Raniganj Basin, which is the primarily targeted basin for 
hydrocarbon productions (CBM) in India. This investiga-
tion may be serving as a guide for future deep hydrocarbon 
resource evaluation.

Methods of experiment and analysis

A total of 12 coal core samples were collected from one 
borehole during the exploratory drilling in different five 
coal seams present in the Sitarampur block. The Sitar-
ampur Coal Block is situated in Raniganj coalfield in 
Burdwan District, West Bengal, India, having coordinates 
with Latitude N 23° 43´ 25´´ to N 23° 45´ 28.11´´ and 
Longitude E 86° 51´ 23´´ to E 86° 53´ 28.16´´ as shown 
in Fig. 1 along with geological setting such as age, group 
and formation. However, the methodology adopted and 
equipment used for the characterization of the sample are 
shown in Table 1.

Proximate analysis

Proximate analysis was carried out in the IIT (ISM), Dhan-
bad, by following the standard procedure of the Bureau of 
Indian Standard [BIS Standard: 1350, Part-1, 2003] were 
used. For analysis, − 212 μ size of coal was prepared, and 
1 g of coal was taken for each analysis, and it was used for 
the determination of ash content, moisture, and volatile 
matter of coals.

Fig. 1   Sitarampur block location in map
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Ultimate analysis

The elemental analysis of coal core samples collected from 
different seams of the Sitarampur block of Raniganj coalfield 
was analyzed by the elemental analyzer (Elementar Vario EL 
III-CHNS analyzer) in the IIT (ISM), Dhanbad. For analysis, 
− 212 μ size of coal was prepared, and 1 g of coal was taken 
for the analysis of C, H, N, and S.

Petrographic analysis

Coal petrography for collected coal samples were carried out 
at the Department of Applied Geology, IIT (ISM), Dhan-
bad. Maceral groups were identified. Subsequently, estima-
tion of vitrinite reflectance (Goraya et al.) has been done 
in oil medium on polished coal surface in reflectance with 
white light and fluorescence illumination under an advanced 
research polarizing microscope using Leica DMRXP-HC 
setup. Besides this, the Bureau of Indian Standards was fol-
lowed to prepare the sample [BIS No 9127 part 2 for prepa-
ration, grinding and polishing of pellet, part 3 for maceral 
and mineral identification and part 5 for VRo measurement].

Fourier Transform Infrared spectrometry 
(FTIR) analysis

For FTIR spectroscopy, samples were prepared in the form 
of pellets, following the procedures outlined by Painter et al. 
(Painter et al. 1981). Dried pellets were used to reduce the 
contribution of water over the spectrum. FTIR of the coal 
samples was carried out in a wavelength frequency range of 
4000 cm−1 to 200 cm−1 in absorbance mode. A 3000 Hype-
rion Microscope with Vertex 80 made by Bruker optics, 
Germany, was used for FTIR analysis.

Measurement of coal seam gas content

Direct method

There are mainly three steps involved in measuring the in situ 
gas content of coal core samples retrieved from exploratory 
boreholes. Lost gas denoted by Q1 is the amount of gas lost 

by the core sample since its extraction from undisturbed 
coal seam to its confinement in the desorption canister. The 
cumulative value obtained by desorbed gas volume measure-
ment gave desorbed gas (Q2) for the coal samples. From the 
measured volume of gas obtained after crushing a portion of 
the samples, the residual gas (Q3) was calculated for the total 
weight of the samples. The total volume of gas obtained by 
the addition of Q1, Q2, and Q3 is divided by the total weight 
of the sample.

Result and discussion

Hydrocarbon generation potential

The petrographic study is predominantly used for the deter-
mination of kerogen type and its suitability for hydrocarbon 
generation. In previous studies, many researchers reveal that 
Vitrinite and liptinite macerals are generally used as an indica-
tor for the determination of hydrocarbon generation potential 
(Akanksha et al. 2020; Panwar et al. 2020; Tissot and Welte 
1984). The hydrocarbon generation potential of the Sitarampur 
block was assessed using petrographic data. The samples have 
significant values of reactive macerals and liptinite content 
in the range of 67.57 to 81.10 vol.% and 5.24 to 10.05 vol.%, 
respectively, making them suitable for hydrocarbon generation 
(Akanksha et al. 2017; Kotarba et al. 2002; Varma et al. 2019). 
The Petrographic examination illustrated that type III kerogen 
present in studied samples, as shown in Fig. 2. The ternary plot 
of petrographic constituents indicates that samples are vitrinite 
ample and mature. It was also deduced from the study that 
there is also a possibility of excellent hydrocarbon (methane) 
generation potential in coal, as shown in Fig. 3.

Empirical equations are given by Guyot (Guyot 1978; Jin 
and Shi 1997) used for assessment of the conversion of coal 
into oil and oil yield.

Q = Q1 + Q2 + Q3

(1)RF =
1000Rmax

RM

(2)Conversion(%) = 0.2RM + 76.6

Table 1   Tests adopted for coal 
sample characterization

Name of experiment Equipment Size of sample Institute

Proximate analysis Oven for Moisture and Muffle furnace for 
ash and volatile content measurement

−72 BSS mesh IIT (ISM) Dhanbad

Ultimate analysis Vario Macro Cube CHNS analyzer −72 BSS mesh IIT (ISM) Dhanbad
SEM–EDX FE-SEM Supra 55 (Carl Zeiss, Germany) −72 BSS mesh IIT (ISM) Dhanbad
FTIR spectroscopy Perkin Elmer Spectra 2, USA −72 BSS mesh IIT (ISM) Dhanbad
Petrographic analysis Petrographic microscope – IIT (ISM) Dhanbad
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where Rmax indicates huminite maximum reflectance, RM 
indicate reactive macerals.

The coal samples demonstrate prominent values of con-
version (%) and oil yield (%) in the range of 90.11 to 92.82 
vol.% and 59.67 to 62.64 vol.%, respectively. It was also 
depicted from the study that emphasis correlations were 

(3)Oilyield(%) = 0.22RM + 44.8

found in conversion (%) with vitrinite (%) and oil yield (%), 
as illustrated in Figs. 4 and 5.

Petrographic investigations

The petrographic analysis indicates the quantity of organic 
content, maturity, gas generation, and storage capacity in 
coal (Goraya et al. 2019; Kumar et al. 2018). It was also sig-
nificantly utilized to determine coal formation and diagen-
esis (Gao et al. 2014; Moore 2012). The macroscopic petrog-
raphy of the coal seams is mainly bright coal with black 
color, obvious black streaks (Gao et al. 2014; Moore 2012). 
The studied samples are mainly bright, vitreous luster and 
black in color, amorphous in nature, and fine-grained. The 
quantitative distribution of different macerals like vitrinite, 
liptinite, and inertinite is shown in Table 2. The micropho-
tographs of various macerals and their associated subgroups 
are illustrated in Fig. 6.

A ternary facies of various macerals and mineral matter 
content was plotted. The studied samples mostly fall in 
the E field. The ternary diagram also exemplifies that they 
were deposited in alternating oxic (dry) moor with sudden 
high flooding during peat accumulation, as shown in Fig. 7 
(Esen et al. 2020; Kumar et al. 2018). The vitrinite groups 
of macerals are dominantly present in samples, primar-
ily derived from woody plant tissue, and its value varies 
from 59.47 to 73.39 vol.% (averaging 66.43%) on a dry 
ash-free basis (Varma et al. 2015a; Varma et al. 2015b). 
The liptinite is generally derived from waxy or resinous 
plant parts, and its value varies in samples from 5.24 to 
10.05 vol.% (averaging 7.64%) on a dry ash-free basis. 
The carbon-rich inertinite groups are found in moderate 

Fig. 2   Ternary diagram of maceral composition indicating kerogen 
types of samples

Fig. 3   Hydrocarbon potential based on petrographic components for 
representative samples

Fig. 4   Correlation between conversion (%) and vitrinite (%) for stud-
ied samples
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quantity, and their values ranging from 16.18 to 35.31 
vol.% (averaging 25.74%) on a dry ash-free basis. The 
moderate value of inertinite content indicates that stud-
ied samples were formed under an exposed peat swamps 
environment (Fu et al. 2016; Wang et al. 2020). It was 
observed in several studies that the depth, organic matter, 
and rank enhance the gas potential of coal seams. The 
vitrinite reflectance value of studied samples varies from 
1.08–1.38% and indicates the existence of bituminous with 
a significant quantity of methane in the block (Hou et al. 
2016; Li et al. 2020).

Assessment of gas content

Methane is found in coal bed as absorbed and adsorbed 
from the latter constitutes 90% of the total amount of gas 
(Evans et al. 2020; Yee et al. 1993). The quantity of gas 
present in coal is known as gas content, and it depends 
on coal geology, seam thickness, depth of burial, igneous 
intrusions, and bounding strata type (Crosdale et al., 1998; 
Kiani et al., 2018; Yan et al., 2020). Methane evolution in 
coal is a two-step process biogenic (microbial activity) and 
thermogenic (cracking of organic matter). Gases generated 
in the succeeding thermogenic stage could migrate due to 
high-pressure regimes and remain stored in the coal (Altow-
ilib et al. 2020). The pore and fracture systems were devel-
oped in coal during maturation. The micro-pore systems 
significantly control the gas's storage and flow in the coal 
matrix (Moore et al., 2014; Sharma et al., 2019). Methane 
is trapped in pores and fractures in the free, adsorbed, and 
dissolved states. Some of the microscopic images of the pore 
and fracture system are shown in Fig. 8. Modified USBM 
Direct Method was used for the measurement of in situ gas 
content. The total gas content of samples ranged from 2.09 
to 11.64 (cc/g) on a dry ash-free basis, whereas residual gas 
content varies from 0.17 to 1.07 (cc/g) at standard condi-
tion (STP). The lost gas of the studied sample varied from 
0.07 to 0.52 (cc/g) on a dry ash-free basis (Table.2). The 
desorbed gas content varies from 1.37 to 10.18 (cc/g) on a 
dry basis. The study also depicted that emphasis correlations 
were found between desorbed gas and total gas, as illustrated 
in Fig. 9. The study also revealed that total gas content value 
increases with desorbed gas, which may be due to the high 
desorption rate of studied samples in the field.

Fig. 5   Correlation between conversion and oil yield for studied sam-
ples

Table 2   Maceral analysis and In situ gas of studied coal samples

Ro- Vitrinite Reflectance; Wt- Weight of the sample (gram); Q1- Lost Gas (cc/g); Q2- Desorbed Gas (cc/g); Q3-Residual Gas (cc/g); Q- Total gas 
content (cc/g)

Sample No Vitrinite (%) Liptinite (%) Inertinite (%) Ro (%) Wt (g) Q1 (cc/g) Q2 (cc/g) Q3 (cc/g) Q (cc/g)

1 63.29 6.53 20.16 1.28 1210 0.46 2.99 0.21 3.67
2 65.99 7.77 35.25 1.23 1090 0.37 2.76 0.21 3.34
3 69.97 6.29 20.26 1.38 1050 0.07 2.65 0.17 2.89
4 70.40 7.34 35.31 1.08 1440 0.21 6.85 0.51 7.58
5 59.47 8.79 27.40 1.20 1640 0.25 1.37 0.47 2.09
6 68.26 10.05 21.69 1.23 990 0.52 4.08 0.33 4.93
7 63.75 8.20 21.18 1.21 1390 0.26 7.04 0.22 7.52
8 66.96 9.09 23.50 1.19 1160 0.37 7.82 0.43 8.62
9 71.90 9.20 18.28 1.25 1130 0.44 7.84 0.40 8.68
10 73.39 6.46 19.38 1.13 1170 0.41 8.32 0.33 9.06
11 66.71 5.24 16.18 1.09 1170 0.51 9.46 0.96 10.92
12 63.04 4.54 20.63 1.31 1110 0.39 10.18 1.07 11.64
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Coal quality analysis

The gross calorific value, ultimate and proximate analyses 
were performed, and their results are summarized in Table 3. 
Due to the existence of significant quantity combustible 
component in coal samples, calorific value high is in all 
samples, and it varies from 5160 to 6840 cal/gm. It can be 
illustrated from the various analyses sample encompasses 
lower moisture content, and it varies from 0.80 to 1.90%. 
Samples also contain a moderate to high amount of ash 
percentage, and it varies from 16.90 to 32.60%. Similarly, 
organic contents like volatile matter and fixed carbon vary 
from 7.20 to 22.40% and 51.70–70.50% (dry basis).

Samples have a significant quantity of carbon and hydro-
gen content; value varies from 78.59 to 92.16%, 3.40–5.36% 
on dry ash-free basis, respectively. The sulfur and nitrogen 
content of samples is below 1.16% and 2.71%. The Van 
Krevelen diagram (Van Krevelen 1993) chart represents 

Fig. 6   Description: Representa-
tive photomicrographs of mac-
erals of Raniganj Bituminous 
coal. Figure (A) shows bed of 
vitrinite [Vt] and inertinite[It] 
macerals; frame (B) shows 
sporenite[Sp] and cutinite[Cu] 
macerals of liptinite group, 
under fluorescence light; (C) 
frame of telenite[Tl] and (D) 
semifusinite[Sf] macerals; (E) 
groundmass of telovitrinite[Tv] 
with inertodetrinite[Id]; (F) bed 
of fusinite[Fu] macerals

Fig. 7   Ternary facies diagram involving maceral and visible mineral 
matter contents after Kumar et al. 2018
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samples' maturity, kerogen type, and nature. The cross-plot 
between H/C and O/C shown in Fig. 10 demonstrates that 
the samples fall in bituminous rank and lie in the category 
of kerogen types III.

Fourier transform infrared spectroscopy studies

FTIR analysis not only provides information about func-
tional groups, but it is also significant for the determination 
of hydrocarbon generation potential (Hossain et al. 2019; 
Kumar et al. 2018). “A” factor (aliphatic/aromatic bands) 
can evaluate the hydrocarbon-generating potential of coal, 
and the “C” factor primarily the ratio of carbonyl/carboxyl 
groups to the aromatic group and illustrate the maturity of 
coal. It has been seen in many studies that as the “C” factor 
value increases, the maturity level of coal decreases (Ganz 
and Kalkreuth 1987, 1991; Samad et al. 2020).

Fig. 8   Characteristics of the 
SEM pore-fracture system of 
the coal samples

Fig. 9   Correlation between desorbed gas and total gas content for 
studied samples

Table 3   Proximate and ultimate 
analysis of samples

M Moisture; A Ash; VM Volatile matter, FC Fixed Carbon; ad-air dry basis; daf- dry ash-free basis

S. No Proximate analysis, w (%) Ultimate analysis, w (%) daf Atomic ratio G.C.V

M A VM FC C H N S O O/C H/C (cal/g)

1 1.30 32.30 7.20 59.20 90.33 3.40 2.66 0.81 2.80 0.021 0.451 5160
2 1.80 18.70 9.00 70.50 91.76 3.82 2.29 0.74 1.38 0.010 0.500 6230
3 1.90 20.00 7.80 70.30 92.16 3.86 1.46 0.74 1.77 0.013 0.503 6150
4 1.70 32.60 8.50 57.20 87.52 5.36 2.71 1.08 3.33 0.025 0.735 5200
5 0.90 20.10 21.50 57.50 85.53 4.85 2.16 1.16 6.29 0.049 0.681 6820
6 1.20 19.10 21.20 58.50 81.83 4.84 2.11 0.82 10.40 0.085 0.710 6700
7 0.80 18.60 21.80 58.80 78.59 4.83 2.04 0.79 13.75 0.117 0.738 6750
8 1.30 17.30 22.40 59.00 80.57 4.86 2.05 0.74 11.78 0.098 0.724 6840
9 0.80 20.10 20.60 58.50 83.42 4.75 2.18 0.54 9.11 0.073 0.683 6700
10 1.00 21.60 22.30 55.10 80.32 4.99 2.11 0.53 12.05 0.100 0.746 6300
11 1.10 25.20 22.00 51.70 86.15 4.18 2.25 0.45 6.98 0.054 0.582 6280
12 1.00 16.90 20.40 61.70 83.58 4.73 2.02 0.68 8.99 0.072 0.679 6840
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The “A” factor and “C” factor can be easily determined 
by the following equation as given as follows (Varma 
et al., 2018):

It was described in different studies that as the A factor 
value increases, the maturity decreases and the aliphatic 
nature increases in coal (Durand and Espitalié 1976; Esen 
et al. 2020; Lis et al. 2005). Identically, the C factor value 
decreases with maturity, which reveals a decrease in oxy-
genated components in coal. A factor (> 0.664) and C 
factor (> 0.501) value of studied samples demonstrates 
that samples have moderate aromatic and aliphatic hydro-
carbon (Chen et al. 2012; Yao et al. 2011). A factor and 
C factor indicate that types II and III kerogen are pre-
sent in investigated samples (Misra et al. 2020; Varma 
et al. 2015b, 2018). A similar result found from the plot 
between atomic H/C and O/C of the coal samples demon-
strates that the samples lie in the kerogen types II and III 
consecutively (Akanksha et al. 2020, 2017).

(4)A factor =
2930 cm−1 + 2860 cm−1

1630 cm−1 + 2930 cm−1 + 2860 cm−1

(5)C factor =
1710 cm−1

1710 cm−1 + 1630 cm−1

Conclusion

Based on the current examination, the following conclu-
sions are drawn:

1.	 The hydrocarbon generation potential of the Sitarampur 
block was assessed using petrographic data. The petro-
graphic examination illustrated that significant values of 
reactive macerals are present in samples, and its value 
varies from 67.57 to 81.10 vol. % respectively. Similarly, 
the petrographic analysis also demonstrates that organic 
matter is dominated by the prominent source of aromatic 
hydrocarbon with a minor proportion of aliphatic hydro-
carbon, making it suitable for hydrocarbon generation 
potential.

2.	 The petrographic analysis confirms the appearance of 
textinite and attrinite as a primary contributor to vit-
rinite macerals groups. Sporenite, cutinite, and resin-
ite macerals were dominantly present in liptinite mac-
erals groups. Similarly, semifusinite is the only visible 
maceral present in samples from the inertinite group.

3.	 Some positive correlations were also found between 
conversion, reactive macerals, and oil yield, which inte-
grates the participation of various macerals during oil 
and gas generation in studied samples.

4.	 Fourier transforms infrared (FTIR) spectroscopy was 
significantly utilized in our study to determine vari-
ous functional groups. “A” factor (aliphatic/aromatic 
bands) and “C” factor (carbonyl/carboxyl bands) value 
concluded that the sample has the lowest aromaticity and 
the highest hydrocarbon-generating potential, which was 
also validated by the Van Krevelen diagram.

5.	 The plots between H/C and O/C ratio in the Van 
Krevelen diagram indicate that the coal samples were 
lied in the type III kerogen and bituminous coal (gas 
prone zone). Which is also confirmed by the cross-plot 
between desorbed and total gas (cc/g).

6.	 The SEM analysis reveals the occurrence of several size 
pores and fracture and distribution in studied samples.

7.	 The studied samples of Sitarampur block were charac-
terized by low moisture, high ash, and moderate volatile 
matter content in nature, which is suitable for methane 
production.
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samples
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