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Abstract
Unconventional resources, such as Eagle Ford formation, are commonly classified for their ultra-low permeability, where 
pore sizes are in nano-scale and pore-conductivity is low, causing several challenges in evaluating unconventional-rock 
properties. Several experimental parameters (e.g., diffusion time of gas, gas injection pressure, method of permeability 
measurement, and confining pressure cycling) must be considered when evaluating the ultra-low permeability rock’s physi-
cal and dynamic elastic properties measurements, where erroneous evaluations could be avoided. Characterizing ultra-low 
permeability samples’ physical and elastic properties helps researchers obtain more reliable information leading to success-
ful evaluations. In this study, 24 Eagle Ford core samples’ physical and dynamic elastic properties were evaluated. Utiliz-
ing longer diffusion time and higher helium injection pressure, applying complex transient method, and cycling confining 
pressure were considered for porosity, permeability, and velocities measurements. Computerized tomography (CT) scan, 
porosity, permeability, and ultrasonic wave velocities were conducted on the core samples. Additionally, X-ray Diffraction 
(XRD) analysis was conducted to determine the mineralogical compositions. Porosity was measured at 2.07 MPa injection 
pressure for 24 h, and the permeability was measured using a complex transient method. P- and S-wave velocities were 
measured at two cycles of five confining pressures (up to 68.95 MPa). The XRD analysis results showed that the tested core 
samples had an average of 81.44% and 11.68% calcite and quartz, respectively, with a minor amount of clay minerals. The 
high content of calcite and quartz in shale yields higher velocities, higher Young’s modulus, and lower Poisson’s ratio, which 
enhances the brittleness that is an important parameter for well stimulation design (e.g., hydraulic fracturing). The results of 
porosity and permeability showed that porosity and permeability vary between 5.3–9.79% and 0.006–12 µD, respectively. 
The Permeability–porosity relation of samples shows a very weak correlation. P- and S-wave velocities results display a 
range of velocity up to 6206 m/s and 3285 m/s at 68.95 MPa confining pressure, respectively. Additionally, S-wave velocity 
is approximately 55% of P-wave velocity. A correlation between both velocities is established at each confining pressure, 
indicating a strong correlation. Results illustrated that applying two cycles of confining pressure impacts both velocities and 
dynamic elastic moduli. Ramping up the confining pressure increases both velocities owing to compaction of the samples 
and, in turn, increases dynamic Young’s modulus and Poisson’s ratio while decreasing bulk compressibility. Moreover, the 
results demonstrated that the above-mentioned parameters’ values (after decreasing the confining pressure to 13.79 MPa) 
differ from the initial values due to the hysteresis loop, where the loop is slightly opened, indicating that the alteration is 
non-elastic. The findings of this study provide detailed information about the rock physical and dynamic elastic properties 
of one of the largest unconventional resources in the U.S.A, the Eagle Ford formation, where direct measurements may not 
be cost-effective or feasible.
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Abbreviations
CT-scan	� Computerized tomography scan
XRD	� X-ray diffraction
GRI	� Gas Research Institute
NMR	� Nuclear Magnetic Resonance
NER	� New England Research

List of symbols
MPa	� Megapascal pressure unit
mD	� Milli-Darcy permeability unit
µD	� Micro-Darcy permeability unit
nD	� Nano-Darcy permeability unit
kV	� Kilovolt electromotive force unit
mA	� Milliampere electric current unit
g/mol	� Gram per mole molar mass unit
pm	� Picometer kinetic diameter unit
o2θ	� Degrees 2-theta diffraction angle unit
lp/mm	� Line pairs per millimeter spatial resolution
V1	� Volume in Cell-1, cm3

V2	� Total volume of the setup, cm3

P1	� Initial pressure in Cell-1, MPa
P2	� Expansion pressure in the system
Ed	� Dynamic Young’s modulus, GPa
vd	� Dynamic Poisson’s ratio, unitless
Cb	� Bulk compressibility, 1/MPa
Br	� Brittleness ratio, unitless
VP	� Primary/compressional wave (P-wave) velocity, 

m/s
VS	� Secondary/shear wave (S-wave) velocity, m/s
ρ	� Bulk density of the rock, g/cm3

∅	� Porosity, %
kg	� Gas permeability, µD
VS1	� Fast shear-velocity 1, m/s
VS2	� Slow shear velocity 2, m/s
R2	� Coefficient of determination
Δ	� Change

Introduction

Unconventional resources (e.g., shale oil and shale gas) are 
commonly defined as reservoirs that have ultra-low perme-
ability in micro-Darcy (µD) to nano-Darcy (nD) scale. Using 
the combination of horizontal wells and multistage trans-
verse hydraulic fracturing, hydrocarbon production from 
unconventional formations has become practical and eco-
nomically feasible. Over the last years, these unconventional 
formations have become the primary sources of hydrocar-
bons in the U.S. A proper understanding of shale physical 
and mechanical properties is essential for many aspects, such 
as reserve estimation, hydrocarbon production prediction 
and improvement, and carbon sequestration. Several chal-
lenges are encountered in laboratory-based measurements 

since unconventional formations have ultra-low perme-
ability, less than 10% porosity, and complex mineralogical 
compositions.

Several techniques are used to experimentally meas-
ure the porosity, including Nuclear Magnetic Resonance 
(NMR), mercury capillary pressure, and immersion poro-
simetry method (Kuila et al. 2014; Sigal 2013; Yao et al. 
2010). The gas expansion or gas injection porosimeter 
technique, a widely used one, is another method that can 
measure effective porosity. Some challenges, such as gas 
injection pressure and the dimension of core plugs, are 
associated with this technique (Sun et al. 2016). Using 
this method, gas is simply injected into Cell-1 (known 
as reference cell) at a specific pressure, and then Cell-1 
is opened and connected to Cell-2 (sample cell) to drive 
gas molecules into the sample’s pores. Then, Boyle’s law 
at the isothermal condition is used to calculate the grain 
volume, Eq. (1):

 where V1 is the volume in Cell-1, V2 is the total volume of 
the setup, P1 is the initial pressure in Cell-1, and P2 is the 
expansion pressure in the system.

One of the essential rock properties is permeability. The 
permeability of core samples can be measured directly by 
flowing fluid through the rock and indirectly using the NMR 
method. There are two direct techniques to measure per-
meability depending on the flow regime: steady-state and 
unsteady-state methods. The steady-state method is consid-
ered the standard practice to measure the permeability of 
different rocks in the laboratory (Amann-Hildenbrand et al. 
2013; Gensterblum et al. 2014; Li et al. 2009; Profice et al. 
2016; Rushing et al. 2004; Tanikawa and Shimamoto 2009), 
and its experimental setup, procedure, and analytical solu-
tion make it a reliable technique. However, its application 
to ultra-low permeability rocks is believed to be imprac-
tical due to its time-consuming process for measuring the 
tremendously low flow rates and small pressure drops (Cui 
et al. 2009). The second method to measure the permeabil-
ity is the unsteady-state method. A transient flow method, 
which is based on the single-phase flow and pressure tran-
sient analysis introduced by Brace et al. (1968) to determine 
Westerly granite permeability. Many methods have been 
developed and proposed to measure the permeability of low-
permeable rocks. There are three unsteady-state methods; 
pressure-pulse decay method, Gas Research Institute (GRI) 
method, and oscillating pressure method. Pressure-pulse and 
modified pressure-pulse decay methods are appeared to be 
reliable techniques to measure the permeability of low-per-
meable samples (Aljamaan et al. 2013; Alnoaimi and Kovs-
cek 2013; Badrouchi et al. 2019; Billiotte et al. 2008; Cao 
et al. 2016; Cui et al. 2009; Dicker and Smits 1988; Firouzi 

(1)V1P1 = V2P2
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et al. 2014; Heller et al. 2014; Hildenbrand et al. 2002; Jones 
1997; Kim et al. 2020; Lin et al. 1986; Metwally and Son-
dergeld 2011; Mokhtari and Tutuncu 2015; Pan et al. 2015; 
Zhang et al. 2000). Comparing to the steady-state method, 
the pressure-pulse decay method is mostly used because of 
its shorter running times and high-resolution measurement 
for low-permeable rocks (Cui et al. 2009).

In the oil and gas industry, ultrasonic velocity measure-
ments are performed to estimate hydrocarbon formations’ 
geomechanical properties. The ultrasonic velocities are 
measured by calculating the travel time of an elastic sig-
nal through a rock sample. There are two types of elastic 
waves: primary or compressional wave (P-wave) and sec-
ondary or shear wave (S-wave). P- and S-wave are longi-
tudinal and transverse waves to the particle displacement 
direction, respectively, where P-wave travels faster than 
S-wave. Unlike P-Wave, S-wave can only travel through 
solid materials. Ultrasonic velocities are commonly used 
for several reasons: being economically practical, having a 
short duration of the measurements, and being eco-friendly 
and non-destructive. Using the results of ultrasonic veloci-
ties, dynamic elastic moduli of the rock can be calculated.

Effective stress, porosity, permeability, fluid saturation, 
mineralogical compositions, pore type, and rock strength 
of sandstone and carbonate samples have been extensively 
investigated by several researchers (Anselmetti and Eberli 
1993; Chang et al. 2006; Freund 1992; Khaksar et al. 1999; 
Khazanehdari and Sothcott 2003; Miller 1992; Rafavich 
et al. 1984; Shakouri et al. 2019; Soete et al. 2015). Sev-
eral studies have investigated the effects of many param-
eters, such as gas transport and adsorption effect, pyrolysis-
induced thermal maturation, water content, the relationship 
between static and dynamic properties, temperature, anisot-
ropy, and bedding orientation effects using shale samples 
(Aljamaan et al. 2017; Aljamaan et al. 2013; Allan et al. 
2016; Alnoaimi* et al. 2014; Guo et al. 2013; He et al. 2019; 
Holt et al. 2015; Holt et al. 2012; Kim et al. 2020; Kuila 
et al. 2011; Lai et al. 2016; Masri et al. 2014; Sone and 
Zoback 2013a; Sone and Zoback 2013b; Zhai et al. 2021). 
However, few studies have conducted to examine the rock 
physical and/or dynamic elastic properties of shale forma-
tions (Badrouchi et al. 2019; Cho et al. 2016; He and Ling 
2016; Heller et al. 2014; Khalil et al. 2019; Ramezanian and 
Emadi 2020; Sun et al. 2016).

Heller et al. (2014) investigated the effects of confining 
and pore pressures on matrix permeability of gas-shale plugs 
from Barnett, Eagle Ford, Marcellus, and Montney reser-
voirs. The results demonstrated that the matrix permeability 
mainly depends on the confining pressure. Also, they con-
cluded that permeability was substantially improved at low 
pore pressure less than 3.4 MPa using helium gas. Sun et al. 
(2016) studied the effect of gas injection pressure on acces-
sible porosity using shale plugs and crushed samples. They 

concluded that measuring shale porosity is strongly depend-
ent on the gas injection pressure. Also, they concluded that 
a minimum gas injection pressure of 1.48 MPa and a longer 
diffusion time are required for accurate porosity measure-
ments of core samples compared to crushed samples. It is 
worth noting that applying gas injection pressures less than 
1.38 MPa results in underestimating the porosity values. 
Cho et al. (2016) measured samples’ porosity and perme-
ability from three unconventional reservoirs, Bakken, Eagle 
Ford, and Niobrara formations, using GRI-crushed samples 
analysis. They plotted permeability versus porosity, and 
adjusted relationships for all three formations were drawn. 
They observed that even though the lower Eagle Ford and 
Niobrara samples’ mineralogical compositions are similar, 
the lower Eagle Ford cores have lower permeability values.

He and Ling (2016) measured the permeability of six 
core samples from middle Bakken formation using one setup 
and three methods (oscillating pulse, downstream pressure 
buildup, and radius-of-investigation) to reduce uncertainty. 
The results indicated that the permeabilities from the three 
methods show fair agreements with a range of uncertainty. 
The results showed that using three methods to measure the 
low permeability samples would help model the uncertain-
ties associated with permeability and porosity. Badrouchi 
et al. (2019) compared different permeability measurement 
methods (steady-state, aspike, and multi-pulse methods) 
using core samples from Bakken formation. The steady-state 
method is subjected to overestimating the matrix permeabil-
ity of low-permeable samples due to the high-flow resistiv-
ity that might diffuse and flow between the sleeve and the 
sample’s wall. The steady-state method is not applicable for 
very tight samples because the flow does not comply with 
Darcy’s law. The permeability results from unsteady-state 
methods (aspike and multi-pulse) demonstrated that the 
aspike method showed higher permeability values (10 times) 
than the multi-pulse method. The aspike method is more 
suitable for samples that have higher permeability values 
(> 1mD). The multi-pulse method results showed that this 
method could reduce anisotropy and heterogeneity effects.

Khalil et al. (2019) measured samples’ porosity from 
Marcellus formation at four injection pressures (0.69, 1.38, 
2.07, and 2.76 MPa). The results showed a direct relation-
ship between the injection pressure and the measured poros-
ity. They concluded that the optimum injection pressure to 
measure the samples’ porosities accurately is 1.38 MPa. The 
results showed that porosity values range from 6 to 14%. 
Additionally, they measured the permeability and ultrasonic 
velocities of the samples. Permeability values vary from 
4.69 nD to 153 nD, which is considered ultra-low permea-
bilities. The velocity measurement results demonstrated that 
as confining pressure increases (from 5.17 to 29.23 MPa), 
compressional and shear velocities also increase. However, 
no correlations were established in this study. Ramezanian 
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and Emadi (2020) investigated the effects of temperature and 
confining pressure on dynamic elastic properties and perme-
ability of four different shale rock samples. The results illus-
trated that increasing confining pressure (up to 34.5 MPa) 
increases rock stiffness while increasing the temperature (up 
to 100 ◦C ) makes the rock more plastic and decreases perme-
ability. They found out that there is an inverse relationship 
between temperature and ultrasonic wave velocities. They 
observed that temperature is the dominant factor in making 
the rock samples more ductile even at elevated confining 
pressures.

In the previous works, the physical and dynamic elas-
tic properties of sandstone and carbonate samples were 
extensively investigated. On the other hand, few studies 
examining shale samples’ physical and/or dynamic elastic 
properties were conducted. Apart from previous experimen-
tal investigations using shale samples, some experimental 

parameters (e.g., using longer diffusion time of gas, utiliz-
ing higher gas injection pressure, applying complex tran-
sient method, and cycling the confining pressure) were 
not thoroughly considered when investigating the physical 
and dynamic elastic properties of the ultra-low permeabil-
ity samples. In this study, considering these experimental 
parameters, porosity, permeability, and ultrasonic veloci-
ties of 24 unsaturated Eagle Ford core samples were experi-
mentally investigated. This study aims to provide and add 
detailed information when it comes to the evaluations of 
rock physical and dynamic elastic properties of one of the 
largest unconventional resources in the U.S.A, the Eagle 
Ford formation, where direct measurements may not be 
cost-effective or feasible. For example, the S-wave velocity 
can be calculated using the less expensive P-wave velocity 
data when an established correlation between P- and S-wave 
velocities is available.

24 EF core samples (L=7.62 cm, 
D=3.81 cm)

Dried in a vacuum oven at 65 
o
C CT-scanned the samples with 1.25 

lp/mm of spatial resolution

Measured porosity at injection-
pressure = 2.07 MPa for 24 hrs.

Measured permeability (net eff. press.= 5.52 MPa) and ultrasonic 
velocity (at two cycles of five confining pressures up to 68.95 MPa) 

XRD analysis. 

(b)

(a)

● Unconventional resources are commonly classified for their ultra-low permeability, where pore sizes 
are in nano-scale and pore-conductivity is low, causing several challenges in evaluating 
unconventional-rock properties.

● In the previous works, several experimental parameters, such as using longer diffusion time of gas, 
utilizing higher gas injection pressure, applying complex transient method, and cycling the confining 
pressure, were not thoroughly considered when evaluating the physical and dynamic elastic 
properties of the ultra-low permeability samples.

● Characterizing ultra-low permeability samples’ (e.g., Eagle Ford samples) physical and dynamic-
elastic properties, with taking these experimental parameters into account, helps researchers obtain 
more reliable information leading to successful evaluations. 

Fig. 1   a General sketch of the problems presented in this study and b Core samples preparation and methods
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Figure 1a and b show the general sketch of the problems 
presented in this study and the methodology and procedure 
adopted, respectively. As shown in Fig. 1b, at first, all sam-
ples were prepared and dried in a vacuum oven for 48 h. 
Then, CT scanner was used to identify any fracture(s) in 
the tested samples. Additionally, a helium porosimeter setup 
was assembled, and the samples’ porosity was measured 
at 2.07 MPa for 24 h. Next, using AutoLab 1500 system, 
samples’ permeability was measured by applying a com-
plex transient method (multi-pulse). Furthermore, P- and 
S-wave velocities were measured using the AutoLab 1500 
and ultrasonic transmission method at two cycles of five dif-
ferent confining pressures (up to 68.95 MPa). Finally, using 
ten samples in this study, XRD analysis was conducted to 
determine mineralogical compositions.

Materials and methods

Materials

Twenty-four outcropped and unsaturated core samples from 
Eagle Ford of West Texas (7.62 cm in length and 3.81 cm 
in diameter) cut parallel to the bedding planes were used 
in this study. The samples were numbered, and their end-
surfaces were ground (flatness was ~  ± 0.01 mm) and pol-
ished to ensure accurate measurements. It is worth noting 
that all samples were dried in a vacuum oven at 65 °C until 
the samples’ weight stabilized (48 h) to remove any exist-
ing free-water and moisture. Then, their dry weights were 
measured, and several measurements of length and diameter 
were taken and averaged to avoid any irregularity.

Methods

In this experimental study, five experiments were conducted 
on the samples: CT-scan, porosity, permeability, ultrasonic 
velocities (P- and S-wave velocities), and XRD analysis. It 
is worth noting that all tests were conducted at an ambient 
temperature of 22 ℃.

A CT scanner is a diagnostic tomography device that 
uses a series of X-rays taken from different angles of the 
tested object and a computer to process and create cross-
sectional images (slices). These slices can be stacked and 
reformatted in multiple planes. The oil and gas industry has 
utilized this technology for many purposes, such as iden-
tifying any fracture(s) in the tested rock samples. In this 
study, the NL3000 CereTom® CT scanner was used to 
detect any existing fracture(s) inside the samples. The scan-
ner has 8-slice configurations, 100–140 kV of tube voltage, 
1–7 mA current, 2–6 s of the rotation time range, and 64 cm 
of scanning rage. After each full rotation, there is an image 

that has eight slices scanned, and each slice has 1.25 mm 
of thickness.

A porosimeter setup (Fig. 2) was assembled to measure 
the core samples’ porosity. All porosity measurements were 
performed at 2.07 MPa injection pressure for 24 h to reach 
pressure equilibrium using helium gas. Using helium gas in 
low-permeable rocks (< 0.01 mD), the pressure equilibrium 
may take longer testing and diffusion times (Sun et al. 2016).

Due to the extremely low permeability of the core sam-
ples (in order of nD), using the steady-state method becomes 
too long and impractical, especially when the flowing fluid is 
liquid. Hence, in this study, the tested samples’ permeabil-
ity was measured using an unsteady-state method (transient 
pulse decay method) combined with helium gas. AutoLab 
1500 system (Fig. 3) and low permeability sample assembly 
(Fig. 4a) were used to measure the samples’ permeability.

After preparing and jacketing the test sample, the sam-
ple assembly was placed inside the high-pressure vessel and 
filled with mineral oil. The confining and pore pressures 
were then increased in the system until a net effective stress 

Helium Gas Cylinder

Pressure 
Regulator

Relieving 
Valve

Valve-1

Pressure 
Transducer

Cell-1

Cell-2 Valve-2

Fig. 2   Schematic diagram of helium porosimeter setup

Fig. 3   AutoLab 1500 for permeability and ultrasonic measure-
ments:(1) Digital panel (2) Controlling valves (3) Core holder and 
core assembly (4) Pressure intensifiers
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of 5.52 MPa was reached. It is worth noting that the confin-
ing pressure was gently increased at a rate of 0.015 MPa/s 
to prevent the creation of any crack(s) in the samples, and 
it was kept higher than pore pressure to avoid any gas-flow 
bypass around the test sample. Afterward, helium, as pore 
fluid, was injected into the sample. The confining pressure, 
upstream pressure, and temperature were maintained con-
stant throughout the test. After reaching pressure equilib-
rium, which may take up to 27 h, the sample’s permeabil-
ity was measured using the multi-pulse method. First, the 
upstream pressure was decreased by 0.86 MPa and main-
tained constant for few minutes (~ eight minutes), then it 
was increased by 1.72 MPa and kept stable for the same 
period. Lastly, the upstream pressure was decreased back to 
the equilibrium pore pressure. It is worth noting that helium 
is an inert and non-adsorptive gas that has significant dif-
fusion (4.003 g/mol of molar mass and kinetic diameter of 
260 pm), which can reduce the gas adsorption effect and 
access the micro-pores inside the core samples (Aljamaan 
et al. 2017; Alnoaimi* et al. 2014; API 1998; Cui et al. 2009; 
Firouzi et al. 2014; Sun et al. 2016). Hence, it was selected 
for porosity and permeability tests.

P- and S-waves were measured using the AutoLab 1500 
and ultrasonic transmission method. The sample assembly 
includes two endcaps; two velocity transducer plugs that 
transmit and receive P- and S-wave through the test sam-
ple (Fig. 4b). Cyclic confining pressure was applied. The 
ramping up cycle started from 13.78 MPa, increased by 

13.78 MPa increment until reaching 68.95 MPa, and then 
ramped down to 13.78 MPa by a decremental of 13.78 MPa. 
One P-wave and two S-wave were recorded at each con-
fining pressure. It should be mentioned that the confining 
pressure was gradually increased and decreased at a rate of 
0.023 MPa/s to avoid creating any damage in the samples. 
Additionally, the confining pressure was maintained con-
stant for two minutes, as a relaxation time, before recording 
the waves to ensure accurate measurements. Using P- and 
S-wave velocities results, dynamic Young’s modulus and 
Poisson’s ratio and bulk compressibility were calculated 
using the following equations (Fjar et al. 2008; Zoback 
2010):

 where Ed is dynamic Young’s modulus, " � " is the bulk den-
sity of the rock, VS and VP are the S-wave and the P-wave 
velocities, vd is the dynamic Poisson’s ratio, and Cb is bulk 
compressibility. Also, the brittleness of the samples was cal-
culated using the following equation (Rickman et al. 2008):

Finally, using ten samples in this study, X-ray Diffraction 
(XRD) analysis was conducted to determine the core sam-
ples’ mineralogical compositions. The samples were crushed 
and ground into fine powders. The XRD test was performed 
using a diffractometer that obtained the diffraction patterns 
from 5 to 70 o2 �. The quantification of mineral compositions 
was completed utilizing a reference intensity ratio method 
based on the PDF4 + database.

Results and discussion

The XRD analysis results showed that the samples are rich in 
calcite with minor compositions of different minerals, such 
as quartz, muscovite/illite, kaolinite, pyrite, dolomite, sphal-
erite, bassanite, and ankerite (Fig. 5). Eagle Ford shale rocks 
are generally considered carbonaceous shale rocks with a 
minor amount of silica and clays (Sone and Zoback 2013a; 
Wu et al. 2017). The tested core samples have an average 
of 81.44% and 11.68% calcite and quartz, respectively, 
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Fig. 4   a Core sample assembly of low permeability, and b Ultrasonic 
velocity measurements
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with a minor amount of clay minerals. A higher content of 
carbonate (calcite and dolomite) and quartz in shale yields 
higher velocities, higher Young’s modulus, and lower Pois-
son’s ratio (Alqahtani et al. 2013; Kumar et al. 2012), which 
enhances the brittleness properties. On the other hand, 

existence of high clay content results in increasing rock’s 
ductility and decreasing both velocities, which leads to a 
slight decrease in Young’s modulus and an increase in Pois-
son’s ratio (Alqahtani et al. 2013; Aoudia et al. 2010; Kumar 
et al. 2012).

Fig. 5   Mineralogical composi-
tions of 10 samples
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Fig. 6   CT-scan images of samples #2, #4, #8, #13, #16, and #18 in XY and YZ planes
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The CT-scan results revealed that some core samples 
(#2, #4, #8, #13, #16, and #18) contain fracture(s), as pre-
sented in Fig. 6. For instance, the CT-scan image of sam-
ple #13 clearly shows a longitudinal fracture from the top 
to the bottom of the sample. The orientations of the frac-
tures (e.g., parallel/perpendicular to the sample bedding) 
are different from one sample to another. Moreover, based 
on variations in density, the CT-scan results show a visual 
distribution of different mineralogical compositions in the 
samples. The presence of crack(s), as shown in Fig. 6, in 
the sample significantly affects the permeability value com-
pared to the non-fractured samples, where these fractures 
provide a high-penetrable pathway for the fluid (gas/liquid) 
to flow rapidly, resulting in high values of permeability. It 
is worth noting that the CT-scan used in this study has a 
spatial resolution of 1.25 lp/mm. The CT scanner detected 
clear fractures in some core samples (six samples out of 24), 
and micro-fractures that were near to or below the CT-scan 
resolution were not detected. Using a micro-CT scanner can 
assist in getting more accurate information and detecting 

any micro-fracture(s) in the core samples that are near to 
or below the CT-scan imaging resolution used in this study.

The results revealed that the samples’ porosity and per-
meability vary from 5.30% to 9.79% and 0.006 μD to 11.8 
μD, respectively. Table 1 summarizes the bulk density, 
grain volume, porosity, and permeability of the twenty-four 
samples. Fig. 7 exhibits plots of histogram and boxplot. As 
shown in Fig. 7a, 50% of the data show a range of 2.50-2.59 
g/cm3 of the bulk density, and the median is 2.55 g/cm3 with 
one outlier of 2.22 g/cm3. 75% of data display that the grain 
volume is greater than 77.45 cm3 (Fig. 7b). The samples’ 
median and average porosity are 8.42% and 8.12%, respec-
tively, and the distribution is a negative-skewed. About 
75% of the data show a porosity that is greater than 7.20% 
(Fig. 7c). For the permeability results (Fig. 7d), 75% of the 
samples are below 0.398 μD, where 0.006 μD is the lowest 
measured permeability. The data is not normally distributed 
(positive-skewed), and the median is 0.0329 μD.

The results demonstrate an inverse relationship between 
bulk density and porosity of the samples (Fig. 8a). As the 
bulk density increases, the porosity decreases. However, the 
relation between the bulk density and porosity displays a 
weak correlation. In contrast, the grain volume and porosity 
cross-plot show an inverse relationship with an acceptable 
coefficient of determination (0.77759 ± 0.092).

The results illustrated that permeability values fall into 
four ranges (≤ 0.01 µD, 0.01–0.355 µD, 0.356–0.7 µD, 
and > 0.7 µD). The highest permeability values appear in 
the samples contained fracture(s) (Fig. 6), where some sam-
ples (samples #2, #4, #13, and #18) show high permeability 
with low bulk density, and samples #8 and #16 show high 
permeability values with higher bulk densities, as shown 
in Fig. 9. However, since there are no clear and observed 
relationships between porosity and permeability with bulk 
density, the origin of the fractures (from natural or coring-
induced fractures) is doubtful. It cannot be related to the 
presence of microcracks or coring process that may have 
induced crack(s) due to the higher brittleness (higher calcite 
volume).

It is worth noting that one of the limitations in this study 
is that the gas slippage effect (known as the Klinkenberg 
effect) was not taken into account. When the rock’s pores 
are small, near the gas molecules mean free path size, the 
velocity of gas molecules increases, known as the gas slip-
page effect, which lowers viscous drag and increases the 
gas permeability or apparent permeability (Amyx et al. 
1960; Firouzi et al. 2014; Klinkenberg 1941; Rushing et al. 
2004). Klinkenberg (1941) observed that gas permeability 
is a function of mean pressure. When the gas/apparent per-
meability is plotted versus the reciprocal mean pore pres-
sure and the straight-line is extrapolated to the y-axis, the 
intersection is known as Klinkenberg-corrected permeabil-
ity or equivalent liquid permeability. However, due to the 

Table 1   Summary of determined petrophysical properties of the 
tested Eagle Ford core samples

*sample used in XRD analysis

Sample ID Bulk density, 
g/cm3

Grain vol-
ume, cm3

∅ , % kg, µD

1* 2.56 80.83 6.91 0.0076
2 2.22 78.37 9.12 0.6997
3* 2.56 79.82 8.00 0.2162
4 2.44 77.34 9.79 59.8344
5 2.60 79.62 6.56 0.0078
6 2.62 80.76 5.30 0.0104
7* 2.59 77.57 8.69 0.2977
8 2.56 77.30 8.96 1.2022
9* 2.54 77.79 8.42 0.0196
10* 2.59 78.91 7.11 0.1465
11 2.48 78.22 8.41 0.0449
12* 2.52 79.10 7.13 0.0080
13 2.39 77.12 8.61 118.8000
14 2.50 78.96 7.22 0.0105
15* 2.50 78.17 8.26 0.0074
16 2.49 77.48 9.03 2.6171
17 2.54 76.98 9.34 0.0098
18 2.41 76.65 11.39 25.1173
19 2.66 80.95 6.45 0.0416
20 2.57 79.52 7.38 0.0242
21 2.56 77.74 9.21 0.0060
22* 2.55 78.50 8.48 0.1110
23* 2.63 78.19 7.47 0.0172
24* 2.63 77.07 9.40 0.0196
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ultra-low permeability of the core samples and the required 
long time to reach the pressure equilibrium, the permeabil-
ity was measured using the Autolab 1500, which applies 
the transient pulse decay method, and helium gas as pore 
fluid. It is worth mentioning that it took approximately 27 h 
to reach the pressure equilibrium before the permeability 
measurements. Increasing the temperature significantly 
decreases the permeability, where rock minerals expand, 
causing a reduction in the pore-throat and closure of the 
micro-fractures in the samples (Khalil et al. 2020; Rameza-
nian and Emadi 2020). It is worth noting that reaching the 

pressure equilibrium in the permeability measurement tests 
at the reservoir temperature (82 ℃) may take several weeks. 
Hence, the permeability measurements were conducted at 
the ambient temperature of 22 ◦C.

Measured permeability was plotted versus measured 
porosity in Fig. 10, demonstrating that the permeabil-
ity–porosity relation of samples shows a very weak cor-
relation owing to high heterogeneity. Shale samples are 
anisotropic and heterogenous that have variations in min-
eral compositions and complex pore networks even within 
the same shale formation. Thus, they are very heterogene-
ous regarding their pore size distribution, porosity, and 

Fig. 8   Cross-plot of porosity 
with (a) porosity and (b) grain 
volume
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tortuosity level (Curtis et al. 2012). The complexity of 
these parameters makes the permeability–porosity cor-
relation in shale samples challenging to achieve, and no 
or very weak permeability–porosity relationship can be 
attained.

Since the tested core samples in this study are from shale 
formation, Eagle Ford, where the pore sizes are in nano-
meters scale (Burrows et al. 2020) and the porosity is low, 
using the conventional procedures measuring the porosity 
results in underestimating the porosity value. Measuring 
shale porosity is strongly dependent on the gas injection 
pressure (Sun et al. 2016), where a minimum gas injec-
tion pressure of 1.48 MPa and a longer diffusion time are 
required for accurate porosity measurements of plug sam-
ples. Applying gas injection pressures less than 1.38 MPa 
results in underestimating the porosity values. For perme-
ability measurement, Autolab 1500 system was used and 
this system involves the complex transient methods devel-
oped by the New England Research (NER) (Boitnott 1997). 
The tested samples’ permeability was calculated using the 
multi-pulse transient method that reduces anisotropy and 
heterogeneity effects (Badrouchi et al. 2019), making it a 
reliable method to determine the permeability of shale sam-
ples. While measuring ultra-low-permeability core samples 

using a different method, such as aspike, would overestimate 
the permeability results compared to the multi-pulse method. 
The aspike method is more suitable for samples that have 
higher permeability values (> 1mD) (Badrouchi et al. 2019; 
Boitnott 1997).

Shale formations are well-known for their heterogeneity 
and properties, such as petrophysical and composition prop-
erties. They vary from one location to another, where the 
findings from one formation cannot be generalized to other 
shale rocks. In this study, core samples from Eagle Ford of 
West Texas were used. This formation is divided into the 
upper and lower units. The upper Eagle Ford is characterized 
by interlayered, burrowed, laminated light, and dark gray 
calcareous mudrock. The lower Eagle Ford can be described 
as organic-rich and laminated dark gray mudrock (EIA 2014; 
Hentz and Ruppel 2011). The upper Eagle ford is thicker 
than the lower Eagle Ford and displays higher calcite con-
tent and lower porosity (Inamdar et al. 2010). However, the 
Eagle Ford formation is generally considered a carbonate-
rich shale formation. The porosity can range from 1.5 to 12% 
(Cho et al. 2016; EIA 2014; Inamdar et al. 2010; Quirein 
et al. 2012; Sone and Zoback 2013a) and the ultra-low per-
meability of parallel-to-bedding samples vary from 3 nD to 
12 µD (Heller et al. 2014).

Fig. 10   Porosity and permeabil-
ity cross-plot
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Table 2   P- and S-wave 
velocities at different confining 
pressures

VP, m/s VS, m/s

Confining pres-
sure, MPa

Min Max Avg Min Max Avg

13.79 4415 6127 5470 2515 3252 3013
27.58 4453 6143 5511 2617 3258 3028
41.37 4470 6201 5530 2625 3263 3037
55.16 4483 6216 5552 2627 3275 3045
68.95 4512 6206 5575 2635 3285 3055
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Table 2 presents P-wave (VP) and S-wave (VS) velocities 
measurements at different confining pressures; 13.79, 27.58, 
41.37, 55.16, and 68.95 MPa. The results revealed that VS 
values are approximately 55% of VP values, and increasing 
the confining pressure up to 68.95 MPa resulted in increas-
ing the VP and VS by about 1.92% and 1.39%, respectively.

The results show a linear relationship between VP and VS 
velocities. For instance, using Eq. (6), VP and VS velocities 
at 68.95 MPa confining pressure (Table 3) can be correlated.

As shown in Fig. 11, the coefficient of determination, R2 , 
is high (0.9727 ± 0.012754), indicating a strong correlation 
between the two velocities. Table 4 shows the established 
correlations between Vp and Vs with the corresponding R2 
values at each applied confining pressure. It is worth noting 
that the two S-wave velocities (VS1 and VS2) are averaged to 
have a consistent S-wave velocity.

The variations in the tested samples’ porosity and perme-
ability make the relationship between the ultrasonic veloci-
ties and rock properties complex. However, the relationship 
between ultrasonic velocities (VP and VS) and porosity is 
generally inversely proportional. The same trend is observed 
between both velocities and the determined permeability of 
the samples (Fig. 12a and b). Moreover, the results indicate 
a direct relationship between velocities and bulk density of 
the samples (Fig. 12c). Additionally, the results showed that 
the relationships between VS and porosity, permeability, and 
bulk density are less scattered than VP.

Two cycles of confining pressure were applied to the 
samples to investigate the effects of confining pressure on 
ultrasonic velocities and the dynamic elastic properties of 
the samples. The first cycle starts at 13.79 MPa and ends 
at 68.95 MPa. The second cycle is the ramping down cycle 
(from 68.95 to 13.79 MPa). The effects of the two confining 
pressure cycles, ramping up and down, on P- and S-wave 
velocities and dynamic elastic moduli are illustrated in 
Fig. 13 and Fig. 14, respectively.

Ramping up the confining pressure from 13.79 to 
68.95 MPa results in increasing both velocities and, in turn, 
increasing dynamic Young’s modulus and Poisson’s ratio 
(Fig. 14a and b), while decreasing the bulk compressibility 

(6)VS = 0.357298207VP + 1063.160813

Table 3   P- and S-wave velocities at 68.95 MPa confining pressure

At 68.95 MPa confining pressure

Sample ID VP, m/s VS1, m/s VS2, m/s

1 5560 3086 3067
2 4512 2630 2639
3 5513 3011 3072
4 5167 2906 2960
5 5679 3065 3023
6 6188 3299 3271
7 6028 3223 3217
8 5716 3148 3106
9 5806 3133 3099
10 5963 3205 3156
11 5487 3043 3080
12 5520 3090 3034
13 4785 2748 2777
14 5564 3063 2940
15 5744 3138 3110
16 5354 3020 3021
17 5558 3091 3027
18 5036 2868 2833
19 6200 3270 3260
20 5472 2999 3067
21 5395 2980 3026
22 5334 2936 3001
23 6206 3288 3255
24 6011 3157 3207

Fig. 11   P- and S-wave relation-
ship at 68.95 MPa confining 
pressure y = 0.3573x + 1063.2

R² = 0.9727
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(Fig.  14c). Increasing the confining pressure results in 
increasing P- and S-wave velocities due to the samples’ 
compaction and increasing the rock stiffness. One of the 
minerals present in the samples is kaolinite (Fig. 5), which 
is brittle (its Mohs’ and absolute hardness are 2–2.5 and 
2, respectively) and can be easily broken (Ramezanian and 
Emadi 2020). The presence of this mineral results in more 

compaction in the samples when the confining pressure 
increases.

Effects of applying confining pressure cycles, ramping 
up and down (known as hysteresis loop), on both velocities 
are depicted in Fig. 13, where the loop is slightly opened, 
indicating that the deformation is non-elastic. The results 
demonstrated that during the ramping down cycle, P- and 

Table 4   Correlations of P- and 
S-wave velocities at all applied 
confining pressures

Confining pres-
sure, MPa

Determined equations, m/s R2 Standard deviation

13.79 V
S
= 0.380923755V

P
+ 929.50206 0.968572763 0.014628968

27.58 V
S
= 0.358494377V

P
+ 1051.936411 0.982697661 0.010141763

41.37 V
S
= 0.350325847V

P
+ 1099.893107 0.973810194 0.012248695

55.16 V
S
= 0.351333154V

P
+ 1094.24756 0.972744822 0.012538132

68.95 V
S
= 0.357298207V

P
+ 1063.160813 0.972732818 0.012753895

Fig. 12   Ultrasonic velocities at 
68.95 MPa confining pressure 
with: a porosity, b permeability, 
and c bulk density
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S-wave velocities are slightly higher than initial values when 
ramping up at any confining pressures due to unstable micro-
pores and/or microcracks in the samples. These unstable 
micro-pores/micro-fractures are more likely to get partially 
closed during the ramping up cycle, where the confining 
pressure does not reach the collapsing pressure (Anselmetti 
and Eberli 1993; Luffel et al. 1993; Soete et al. 2015). There-
fore, both velocities do not immediately return to the initial 
values during the ramping down cycle. However, loading 
and unloading rate of 0.023 MPa/s, which is lower than the 
suggested rates (0.05–0.1 MPa/s) (Eloranta 2004; Guo et al. 
2019; He et al. 2016; Ko and Kemeny 2007; Lin et al. 2016; 
Zhang et al. 2019), was applied to prevent any damage(s) 
inside the samples. Additionally, the confining pressure 
was held constant for two minutes before capturing the 
velocities. It is worth noting that all the samples were found 
undamaged after finishing the ultrasonic velocity measure-
ment. Comparing the velocities at the two cycles, none of 
the samples showed a significant decrease in velocity while 

ramping down, demonstrating no fracture(s) was/were cre-
ated in the test samples.

The changes in the P- and S-wave velocities and dynamic 
elastic moduli for both cycles are shown in Table 5. The 
results demonstrated that the changes in the velocities dur-
ing the ramping up cycle are higher than the changes while 
ramping down (Table 5). For instance, when the confining 
pressure increased from 13.79 to 27.58 MPa, the change in 
VP is 0.757%, while the change in VP when decreasing the 
confining pressure from 27.58 to 13.79 MPa is 0.637%.

Furthermore, inverse relationships exist between the 
dynamic Young’s moduli with porosity (Fig. 15a) and 
permeability (Fig. 15b). Increasing porosity or perme-
ability makes the rock sample less brittle. The existence 
of pore spaces and microcracks in the rock affects the 
rock-mechanical properties, such as uniaxial compres-
sive strength (UCS) and tensile strength, where UCS and 
tensile strength of rock decrease with increasing poros-
ity and permeability (Al-Harthi et al. 1999; Altawati and 
Emadi 2021; Gharahbagh and Fakhimi 2011; Koncagül 

Fig. 13   Effect of confining 
pressure cycling and hysteresis 
loop on: a P-wave velocity and 
b S-wave velocity
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and Santi 1999; Mohd 2009; Palchik and Hatzor 2004; 
Rajabzadeh et al. 2012). Thus, alteration in the rock brit-
tleness occurs. Additionally, there are several factors that 
influence rock brittleness, such as mineral compositions, 
fluid type, and porosity (Wang and Gale 2009; Ye et al. 

2020). Rock brittleness decreases with increasing porosity 
(Heidari et al. 2014; Jin et al. 2014; Mews et al. 2019; Ye 
et al. 2020). As a result, rock that is more brittle is stiffer, 
and it has lower porosity and permeability.

Fig. 14   Effect of confining 
pressure cycling on: a dynamic 
Young’s modulus, b dynamic 
Poisson’s ratio, and c bulk 
compressibility
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Table 5   Changes of increasing 
and decreasing the confining 
pressure on velocities and 
dynamic elastic moduli

Cycle Confining pres-
sure, MPa

∆VP, % ∆VS, % ∆E, % Δv , % ∆Cb, %

Ramping up 27.58 0.757 0.484 1.025 0.531 − 1.768
41.37 1.105 0.803 1.667 0.553 − 2.431
55.16 1.495 1.050 2.231 0.889 − 3.431
68.95 1.919 1.392 2.966 1.122 − 4.502

Ramping down 68.95 1.741 1.207 2.602 − 0.323 4.111
55.16 1.383 0.988 2.091 − 0.141 3.161
41.37 1.163 0.671 1.500 − 0.768 2.786
27.58 0.637 0.445 0.909 − 1.118 1.427
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The brittleness ratios of samples are calculated using 
Eq. (5). As the confining pressure increases, the brittleness 
ratio increases, making test samples more rigid owing to 
the compaction. However, increasing the confining pres-
sures beyond 13.79 MPa does not significantly affect the 
brittleness ratio. Typically, having a lower value of Pois-
son’s ratio makes the rock more brittle, and as Young’s 
modulus increases, the rock becomes more brittle. A 
positive correlation exists between Young’s modulus and 

brittleness ratio (standard error ± 0.06935), as shown in 
Fig. 16.

Brittleness is an important parameter for well stimula-
tion design and development in shale formations, such as 
hydraulic fracturing (Grieser and Bray 2007; Hou et al. 
2015; Rickman et al. 2008; Wanniarachchi et al. 2017). 
Fractures tend to propagate well from a stiff zone toward 
a less-stiff zone and seem to penetrate the contact (Gud-
mundsson et al. 2010). Brittle shale has moderate-to-high 
Young’s modulus and low Poisson’s ratio, where natural 

Fig. 15   Dynamic Young’s 
modulus with: a porosity and b 
permeability
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Fig. 16   Dynamic Young’s 
modulus and Poisson’s ratio vs. 
brittleness ratio of the samples 
at 68.95 MPa
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fractures are more likely to exist. In contrast, ductile shale 
has low Young’s modulus and high Poisson’s ratio and act-
ing as a seal stopping the hydrocarbon from moving out of 
the brittle shale interval (Grieser and Bray 2007; Rickman 
et al. 2008). Eagle Ford rocks have high strength (uncon-
fined compressive strength > 120 MPa), moderate-to-high 
Young’s modulus, and low Poisson’s ratio (Alqahtani et al. 
2013; Inamdar et al. 2010; Kolawole et al. 2019; Sone and 
Zoback 2013b). These characteristics develop the creation 
of fractures when compared with other clay-rich formations, 
making it a suitable candidate for implementing hydraulic 
fracturing operation.

Summary and conclusions

Some experimental parameters (e.g., using longer diffusion 
time of gas, utilizing higher gas injection pressure, applying 
complex transient method, and cycling the confining pres-
sure) were not thoroughly considered when investigating 
the physical and dynamic elastic properties of the ultra-low 
permeability samples in the previous experimental studies. 
In this study, the experimental parameters of longer diffu-
sion time and a higher injection pressure of helium, applying 
the multi-pulse method, and cycling the confining pressure 
were considered for porosity, permeability, and ultrasonic 
velocities measurements of twenty-four Eagle Ford core 
samples. This study provides and adds detailed information 
when it comes to experimental evaluations of rock physical 
and dynamic elastic properties of one of the most consider-
able unconventional resources in the U.S.A, the Eagle Ford 
formation, where direct measurements may not be cost-
effective or feasible. The following conclusions are drawn:

•	 The mineralogical compositions of the samples indicate 
that the samples are rich in calcite. The tested core sam-
ples have an average of 81.44% and 11.68% calcite and 
quartz, respectively, with a minor amount of clay miner-
als. Higher carbonate and quartz content in shale yields 
higher velocities, higher Young’s modulus, and lower 
Poisson’s ratio, which enhances the brittleness proper-
ties that are beneficial for well stimulation design such 
as hydraulic fracturing.

•	 The results revealed that the samples’ porosity and per-
meability vary from 5.30% to 9.79%, where 75% of the 
porosity data shows a greater porosity than 7.196%. The 
samples’ permeability ranges from 0.006 µD to 11.8 µD, 
and 75% of the determined permeability data is below 
0.398 µD. The results demonstrate a very weak correla-
tion between permeability and porosity of Eagle Ford 
samples.

•	 P- and S-wave velocities were measured at five differ-
ent confining pressures: 13.79, 27.58, 41.37, 55.16, 

and 68.95 MPa. The highest P- and S-wave velocities 
(6206 m/s and 3285 m/s) were measured at 68.95 MPa 
confining pressure. Since a strong correlation is found 
between the two velocities, S-wave velocity can be 
confidently calculated using the less expensive P-wave 
velocity data. The results demonstrated inverse relation-
ships between ultrasonic velocities and both porosity and 
permeability of the samples. However, the correlations 
between S-wave velocity with porosity, permeability, and 
bulk density are less scattered than P-wave velocity.

•	 The effects of applying cycles of confining pressure 
(known as hysteresis loop) were investigated in this 
study. Ramping up and down the confining pressure from 
13.79 MPa to 68.95 MPa impact P- and S-wave velocities 
and dynamic elastic moduli ( Ed , vd , Cb ). Increasing the 
confining pressure results in increasing both velocities 
owing to compaction of the samples and, in turn, increas-
ing dynamic Young’s modulus and Poisson’s ratio while 
decreasing the bulk compressibility. Furthermore, the 
results demonstrated that both velocities are marginally 
higher than their initial values during the ramping down 
cycle. This is because of the unstable micro-pores and/
or micro-fractures in the samples, which partially closed 
during the ramping up cycle. As a result, they do not 
instantly return to their initial conditions during ramping 
down.
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