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Abstract
This research study aims to conduct a comparative performance analysis of different scaling equations and non-scaling models 
used for modeling asphaltene precipitation. The experimental data used to carry out this study are taken from the published 
literature. Five scaling equations which include Rassamadana et al., Rassamdana and Sahimi, Hu and Gou, Ashoori et al., 
and log–log scaling equations were used and applied in two ways, i.e., on full dataset and partial datasets. Partial datasets 
are developed by splitting the full dataset in terms of Dilution ratio (R) between oil and precipitant. It was found that all 
scaling equations predict asphaltene weight percentage with reasonable accuracy (except Ashoori et al. scaling equation for 
full dataset) and their performance is further enhanced when applied on partial datasets. For the prediction of Critical dilu-
tion ratio (Rc) for different precipitants to detect asphaltene precipitation onset point, all scaling equations (except Ashoori 
et scaling equation when applied on partial datasets) are either unable to predict or produce results with significant error. 
Finally, results of scaling equations are compared with non-scaling model predictions which include PC-Saft, Flory–Huggins, 
and solid models. It was found that all scaling equations (except Ashoori et al. scaling equation for full dataset) either yield 
almost the same or improved results for asphaltene weight percentage when compared to best case (PC-Saft). However, for 
the prediction of Rc, Ashoori et al. scaling equation predicts more accurate results as compared to other non-scaling models.
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Abbreviations
R	� Dilution ratio
Rc	� Critical dilution ratio
SARA​	� Saturates, aromatics, resins, and 

asphaltenes
ASTM	� American society for testing and 

materials
EoS	� Equation of state
M	� Molecular weight of precipitant
Wt%	� The precipitated asphaltene weight 

percent
X and Y or x and y	� Scaling equation variables
Xc	� Value of X at onset point

r1, r2, c1, c2, n	� Scaling equations adjustable 
parameters

T	� Temperature
R2	� Coefficient of determination
MAE	� Mean Absolute Error
A1, A2, A3, A4	� Scaling equation coefficients

Introduction

Crude oil is composed of mainly four components, i.e., 
saturates, aromatics, resins, and asphaltenes (SARA) 
(Ashoori et al. 2017). Among all of them, asphaltene is 
regarded as the heaviest and the most polar constituent of 
crude oil (Mohammed et al. 2021). Under favorable condi-
tions, asphaltene remains as a dissolved entity in crude oils. 
Crude oils when suffering changes in their composition, due 
to variation of pressure and temperature conditions, cause 
asphaltenes to precipitate out and deposit (Gharbi et al. 
2017). This problematic situation offers severe challenges 
to operating companies in terms of preventing hydrocar-
bon production shutdowns and applying costly treatment 
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methods (Melendez-Alvarez et al. 2016). Therefore, this 
scenario makes it necessary for operators to predict the con-
ditions and extent of asphaltene precipitation of a particular 
crude oil.

In past, various experimental techniques were applied to 
determine the amount of asphaltene precipitation from crude 
oils under different conditions (Zendehboudi et al. 2014). 
These experimental techniques include standard tests such 
as IP-143, ASTM D-3279-07, ASTM D-4124-01, ASTM 
D-4124-09, ASTM D-6560-00, and ASTM D-2007-03 for 
dead oil (Zheng et al. 2020) and filtration test for live oil 
(Firoozinia et al. 2016). Apart from these experimental 
methods, several models have also being developed for the 
estimation of asphaltene precipitates at different operational 
conditions and found to complement well with experimental 
results. According to Mohammadi et al. (Mohammadi et al. 
2012), there are five major categories of asphaltene precipi-
tation modeling which include: Equation of State (EoS)-
based models, ‘Association’ models, colloidal/micellization 
models, ‘Activity coefficient’-based models, and scaling 
laws, corresponding states and correlations.

EoS models have been applied extensively for asphaltene 
precipitation modeling and were found easy to implement 
due to their availability in commercial software (Zhang 
et al. 2012; Zendehboudi et al. 2013; Panuganti et al. 2012; 
Alhosani and Daraboina 2020). These commercial soft-
ware include PVTsim of Calsep, Multiflash of infochem, 
VLXE of VLXE Aps, and Winprop of CMG (Ali et al. 
2021).Cubic, Cubic plus association, Saft, and PC-Saft are 
the well-renowned EoS models (Subramanian et al. 2016). 
One of the drawbacks of EoS models is that they require 
fluid characterization normally up to C30+. Moreover, this 
modeling class sometimes encounters convergence issues 
especially when polydispersity of asphaltene particle is con-
sidered (Mohammadi et al. 2012). Activity coefficient-based 
models are generally based on the polymer solution or regu-
lar solution theories of Flory–Huggins, Scatchard–Hilde-
brand, and Scott–Magat model (Subramanian et al. 2016). 
The mean asphaltene molecular weight is a necessary input 
for this modeling type. When polydispersity of asphaltene 
particles is considered, then more tuning parameters are 
needed (Mohammadi et al. 2012). Furthermore, a suitable 
distribution function should be utilized in the model. Select-
ing an appropriate distribution function is a challenging task 
and may cause some problems in calculations (Mohammadi 
et al. 2012). Agrawala and Yarranton introduced an associa-
tion model for asphaltene precipitation modeling by con-
sidering asphaltene aggregation like linear polymerization 
(Agrawala and Yarranton 2001). According to the associa-
tion model, asphaltene monomers are regarded as propaga-
tors, while resin molecules are considered as terminators 
of polymerization reaction (Agrawala and Yarranton 2001). 
Leontaritis and Mansoori proposed a colloidal model in 

which they considered that resins are attached to the sur-
face of asphaltenes and prevent asphaltene precipitation 
(Leontaritis and Mansoori 1987). The colloidal model can-
not estimate the amount of asphaltene precipitation and only 
be used to predict asphaltene precipitation onset conditions. 
Victorov and Firoozabadi considered the asphaltene micel-
lar and aggregation nature and proposed a thermodynamic 
micellization model in which resins stabilized asphaltene 
micelles (Victorov and Firoozabadi 1996). The model is dif-
ficult to implement as it contains several adjustable param-
eters and requires information about crude oil resin contents 
(Mohammadi et al. 2012). The last modeling type is the 
scaling equations. The scaling equations were originally 
developed on the idea of Park and Mansoori, who studied the 
similarities between the asphaltene precipitation and aggre-
gation/gelation mechanisms (Moghadasi 2019). Rassamdana 
et al. proposed the first scaling equation to model asphaltene 
precipitation in dead oil at isothermal conditions by con-
sidering parameters that include dilution ratio of n-alkanes 
(precipitant) and crude oil and molecular weight of n-alkane 
(Rassamdana et al. 1996). The advantage of using the scal-
ing equation is that it does not require critical properties of 
asphaltenes. Furthermore, these equations are user-friendly 
and need comparatively less amount of data (Alimohammadi 
et al. 2020).

As discussed earlier that the implementation of preven-
tive measures to control asphaltene precipitation is highly 
dependent upon the reliable prediction results obtained 
through models. Therefore, the accuracy of models is of 
prime importance in this respect. Apart from asphaltene pre-
cipitation during the natural depletion process, the problem 
could arise in processes like VAPEX in which (n-alkanes) 
solvents are injected in crude oil for lowering its viscosity 
during transportation (Alimohammadi et al. 2017). In this 
research study, a detailed statistical and graphical perfor-
mance analysis of five scaling equations that are used to 
model asphaltene precipitation in dead crude oil is carried 
out. Motivated with the approach adopted by some investi-
gators (Alimohammadi et al. 2020; Ashoori et al. 2003) to 
apply scaling equation on partial datasets formed by break-
ing full dataset in terms of certain dilution ratio between 
precipitant (n-alkane) and crude oil, therefore, in this study 
we have applied scaling equations on full dataset and on the 
partial dataset (by breaking the dataset at a dilution ratio of 
5). Accordingly, the accuracies of models are monitored and 
compared with each other. Furthermore, the advantages and 
drawbacks of each scaling equation are presented. Finally, 
the results of the scaling equations are also compared with 
other non-scaling models.
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Scaling equations applied in this study

Rassamdana et al. scaling equation

The first scaling equation was developed by Rassamdana 
et al. (Rassamdana et al. 1996). Rassamdana and cowork-
ers estimated the asphaltene precipitation by titrating the 
crude oils with different precipitants at room pressure and 
temperature. It was found that dilution ratio (R), molecular 
weight of precipitant (M), and asphaltene weight percentage 
(wt%) are in relationship through variables X and Y as given 
by Eqs. 1 and 2:

Rassamdana et al. suggested the value of 0.25 to z while 
considered z’ as a universal constant having a value of − 2 
independent of crude oil and precipitant type. Yu-Feng Hu 
et al. (Hu et al. 2000) studied and analyzed the Rassamdana 
et al. scaling equation model and proposed that the value 
of z may range from 0.1 to 0.5. The values obtained for X 
and Y are plotted and best fitting is carried out on a curve 
represented by Eq. 3 termed as scaling equation.

where X ≥ Xc
Coefficient values of A1 to A4 can be tuned to any oil 

species. Xc is the magnitude of X at the asphaltene onset 
point. Critical dilution ratio (Rc), which refers to the dilution 
ratio at which asphaltene precipitation starts, is obtained by 
finding Xc by placing Y = 0 in Eq. 3. Then, Xc along with 
corresponding M will be used in Eq. 1 to evaluate corre-
sponding Rc.

Temperature‑dependent Rassamdana scaling 
equation

The scaling equation which was initially developed by Ras-
samdana et al. is independent of temperature. To incorporate 
the effect the temperature, Rassamdana et al. proposed a 
new scaling equation that takes into account the results of 
the original Rassamdana scaling model to include the tem-
perature effect on asphaltene precipitation (Rassamdana and 
Sahimi 1996). The new relationships developed are given 
by Eqs. 4 and 5:

(1)X =
R

Mz

(2)Y =
wt%

Rz�

(3)Y = A1 + A2X + A3X
2 + A4X

3

(4)x =
X

Tc1

where X and Y are the variables of temperature-inde-
pendent Rassamdana et al. scaling equations. C1 and C2 are 
the adjustable parameters. Rassamdana et al. found accu-
rate estimates of asphaltene precipitation at c1 = 0.25 and 
c2 = 1.6.

The new proposed scaling model can be expressed in 
terms of new variables x and y through a third-order poly-
nomial equation given by Eq. 6:

where x ≥ xc.
A1 to A4 are scaling coefficients and xc is the value of x 

at the asphaltene precipitation onset point. Critical dilution 
ratio (Rc) is determined by finding xc by placing y = 0 in 
Eq. 6. Then, obtained xc is placed in Eq. 4 to find the cor-
responding value of Xc. Finally, the Xc is substituted in Eq. 1 
to obtain Rc.

Hu and Guo scaling equation

Hu and Guo (Hu and Guo 2000) proposed a scaling equation 
to model asphaltene precipitation of Chinese dead crude oil 
at different temperatures, dilution ratios, and precipitants. It 
was found that the developed scaling equation yields more 
accurate results as compared to the Rassamdana et al. scal-
ing equation. The new relationships of x and y with experi-
ment variables are represented by Eqs. 7 and 8:

where X is the variable of Rassamdana et al. scaling equa-
tion while c1, c2, z, and z’ are the adjustable parameters. Hu 
and Guo found the best estimates of asphaltene precipitation 
at z = 0.25, z’ = − 2, c1 = 0.5, and c2 = 1.6.

The new proposed scaling model can be expressed in 
terms of new variables x and y through a third-order poly-
nomial equation as Eq. 9:

where x ≥ xc.
A1 to A4 are scaling coefficients and xc is the value of x 

at the asphaltene precipitation onset point. Critical dilution 
ratio is determined by finding xc by placing y = 0 in Eq. 9. 
Then, xc along with other corresponding variables, i.e., M 
and T, will be used in Eq. 7 to evaluate corresponding Rc.

(5)y =
Y

Xc2

(6)y = A1 + A2x + A3x
2 + A4x

3

(7)x =
R

Tc1Mz

(8)y =
wt%

Xc2

(9)y = A1 + A2x + A3x
2 + A4x

3
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Ashoori et al. scaling equation

Ashoori et al. (Ashoori et al. 2003) conducted a series of 
experiments using Iranian dead crude oil at different tem-
peratures. They modeled asphaltene precipitation by applying 
Rassamdana et al. and Yu-Feng Hu et al. scaling equations. 
As predicted results were not found too accurate by these two 
models, therefore, Ashoori et al. developed a new scaling 
equation that produced asphaltene precipitation close to those 
yields experimentally. They found X and Y in the following 
relationship as given by Eq. 10 and 11:

where n, z, and z’ are the adjustable parameters. It was pro-
posed that n may be taken in between 0.1 and 0.25 while 
z and z’ as 0.25 and − 2, respectively. Ashoori et al. found 
accurate results at n = 0.15. The scaling model can be 
expressed in terms of new variables x and y through a third-
order polynomial equation as Eq. 12:

where X ≥ Xc.
A1 to A4 are scaling coefficients and Xc is the value of X at 

the asphaltene precipitation onset point.
Ashoori et al. formed two scaling equations for the calcu-

lation of asphaltene precipitation. One scaling equation was 
developed by using data up to dilution ratio 7, while the other 
was constructed utilizing a dilution ratio of more than 7. Xc is 
determined by using the scaling equation developed by utiliz-
ing dataset up to dilution ratio of 7 and further placed in Eq. 10 
to find Rc.

Log–log scaling equation

Log–log scaling equation was proposed by Bahman et al. 
(Bahman et al. 2018). It was derived from Ashoori et al. scal-
ing equation by placing log operator in X and Y correlations. 
The log operator caused the transformation of scattered data 
to exist in the rectangular coordinate system to a linear form 
in a new log–log system. Furthermore, the inclusion of a log 
operator enhanced the accuracy of the scaling equation con-
siderably. According to this scaling equation, the X and Y may 
be correlated using Eqs. 13 and 14:

(10)X =
R

TnMz

(11)Y =
wt%

Rz.

(12)Y = A1 + A2X + A3X
2 + A4X

3

(13)X = log10

(
R

TnMz

)

where n and z are the adjustable parameters and depend upon 
the type of oil while z’ is the universal constant and its value 
is to be set as − 2.

The scaling equation in the form of X and Y can be writ-
ten as:

where Xc ≤ X.
A1 to A4 are the scaling coefficients and XC is the value 

of X at the asphaltene precipitation onset point. Xc is deter-
mined by using scaling Eq. 15 and then placed in Eq. 13 to 
find Rc.

Methodology

This research study is performed on the experimental dataset 
presented in the published research paper of Behbahani et al. 
(Behbahani et al. 2011). Behbahani et al. in their research 
study performed comprehensive performance analysis of 
three major thermodynamic models on dead and live crude 
oils. This research work is conducted by using asphaltene 
precipitation of dead crude oil data (experimental and pre-
dicted by models) of Behbahani et al. work (Behbahani 
et al. 2011). For viewing the dataset used in this study, refer 
Tables 4, 7, and 8 of Behbahani et al. research paper (Behba-
hani et al. 2011). Five scaling equations, as discussed ear-
lier, are applied. The implementation of these equations is 
carried out on the full dataset as well as on partial datasets. 
The partial datasets are formed by breaking the full dataset 
in terms of dilution ratio (R), i.e., R ≤ 5 and R > 5.

The tuning of adjustable parameters of all scaling equa-
tions, when using the full dataset, is carried out using the 
MATLAB optimization tool, and then, the same tuned 
adjustable parameters are applied on both partial datasets. 
The coefficient of determination (R2) is evaluated to deter-
mine the performance of the third-degree scaling equation 
developed by using tuned parameters. R2 is determined 
by using Eq. 16:

where Yi is the value of Y calculated by Eqs. 2, 5, 8, 11, or 
14 for the ith observation, Yi(poly) is the value of Y calculated 
by third-degree scaling equations for the ith observation, 
and Y  is the average of Y values calculated by using the 
y-relationship of scaling equation.

(14)Y = log10

(
wt%

Rz�

)

(15)Y = A1 + A2X + A3X
2 + A4X

3

(16)R2 = 1 −

∑�
Yi − Yi(poly)

�2

∑�
Yi − Y

�2
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The performance analysis of all non-scaling models, 
already applied in primary research (Behbahani et al. 2011) 
including PC-Saft, Flory–Huggins, and solid model and 
scaling equations for full and partial datasets, is carried out 
using two graphical methods, i.e., cross plots and relative 
error plots and one statistical metric which is mean absolute 
error (MAE) and calculated by applying Eq. 17:

where Pi is the ith predicted value of the model, Ai is the ith 
actual value, and b is the total number of values.

Finally, based on statistical analysis (graphical and non-
graphical), a performance comparison is conducted between 
non-scaling models and scaling equations, and scaling 
equations for full and partial datasets in terms of predict-
ing asphaltene weight percentage and critical onset dilution 
ratio (Rc).

Result and discussion

Table 1 shows the tuned values of adjustable parameters 
obtained for the calculation of X and Y variables of differ-
ent scaling equations along with their corresponding scal-
ing equation coefficient and the coefficient of determination 
(R2) for full and partial datasets. Figure 1 shows the curves 
obtained between X and Y variables of different scaling 

(17)MAE =

∑b

i=1
�
�Pi − Ai

�
�

b

equations when the full dataset is taken while Figs. 2 and 
3 illustrate the curves between X and Y variables of differ-
ent scaling equations for two partial datasets, i.e., R > 5 and 
R ≤ 5, respectively.   

Table 2 shows the Mean Absolute Error (MAE) of dif-
ferent non-scaling models and scaling equations when 
implemented on the whole dataset and partial datasets. It 
can be seen that the performance of all scaling equations 
is enhanced when applied to partial datasets as compared 
to when applied on the full dataset and also yield more accu-
rate results as compared to non-scaling equations except 
Ashoori et al. scaling equation which perform below PC-
Saft equation but still it produces reasonable results. Ashoori 
et al. scaling equation when applied to the whole dataset 
performs worst. This is because it is not valid for the whole 
dataset and must be applied according to its stated crite-
ria as mentioned in the model’s description section. This 
is quite evident in this study that accuracy of Ashoori et al. 
scaling equation improved considerably when applied on 
partial datasets.

Figures 4, 5, and 6 show the cross plots between experi-
mental (actual) and predicted values obtained using non-
scaling models, scaling models (applied on the whole 
dataset), and scaling equations (when applied on partial 
datasets), respectively. Referring to Fig. 4, comparing the 
performance of non-scaling models, the PC-Saft model 
performed best as it is evident from the accumulation of 
more points on or near to the 45-degree line as compared to 
other models. Comparing Figs. 5 and 6, it can be depicted 

Table 1   Values of tuned adjustable parameters, scaling coefficient & coefficient of determination of different scaling equations for full and par-
tial datasets

Full dataset Z C1 C2 n A1 A2 A3 A4 R2

Rassamdana’s model 0.338 – – – 0.333 65.391 − 18.958 1.809 0.998
Rassamdana & Sahimi model – 0.5 1.28 – 12.49 − 68.107 250.84 − 4.361 0.997
Hu & Gou 0.25 0.5 − 0.4 – 4.619 − 30.819 76.705 1.905 0.986
Ashoori’s model 0.25 – – 0.25 8.877 51.139 167.25 − 69.111 0.995
Log–log model 0.25 – – 0.25 − 0.003 − 0.202 2.293 2.024 0.999

Partial dataset ( R ≤ 5) Z C1 C2 n A1 A2 A3 A4 R2

Rassamdana’s model 0.338 – – – 7.591 57.418 − 18.012 2.166 0.994
Rassamdana & Sahimi model – 0.5 1.28 – − 2147 1123.3 76.119 1.611 0.988
Hu & Gou 0.25 0.5 − 0.4 – 170.36 − 85.245 87.481 0.421 0.986
Ashoori’s model 0.25 – – 0.25 126.07 − 6.396 15.747 − 1.696 0.997
Log–log model 0.25 – – 0.25 − 0.653 − 0.732 2.350 2.074 0.998

Partial dataset (R > 5) Z C1 C2 n A1 A2 A3 A4 R2

Rassamdana’s model 0.338 – – – 0.370 64.607 − 14.148 − 6.127 0.997
Rassamdana & Sahimi model – 0.5 1.28 – 5.074 35.287 209.62 8.364 0.991
Hu & Gou 0.25 0.5 − 0.4 – 4.566 − 30.986 78.834 − 1.192 0.947
Ashoori’s model 0.25 – – 0.25 33.554 − 294.23 1554.5 − 1497.1 0.994
Log–log model 0.25 – – 0.25 2.418 − 4.067 4.038 1.828 0.997
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Fig. 1   X and Y curves a Rassamdana et al., b Rassamdana and Sahimi, c Hu and Gou, d Ashoori et al., and e log–log scaling equations when 
applied of full dataset
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Fig. 2   X and Y curves a Rassamdana et al., b Rassamdana and Sahimi, c Hu and Gou, d Ashoori et al., and e log–log scaling equations when 
applied of half dataset with R > 5
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Fig. 3   X and Y curves a Rassamdana et al., b Rassamdana and Sahimi, c Hu and Gou, d Ashoori et al., and e log–log scaling equations when 
applied of half dataset with R ≤ 5
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that each scaling equation performance is improved when 
applied on partial datasets as the spreading of predicted 
results is reduced across slant lines. The highest improve-
ment is observed for the Ashoori et al. scaling equation 
and it predicted results with quite good accuracy. Though 
looking at Fig. 6, it is difficult to compare the accuracies 
of models; however, when considered Table 2 and Fig. 6 
collectively, one could confirm that Rassamdana et al. and 

Rassamdana and Sahimi scaling equation performed slightly 
better due to the comparatively more number of points on 
or near to the slant line while Ashoori et al. scaling equa-
tion performed relatively least due to the more spreading of 
predicted data across 45-degree line.   

Figure 7, 8, and 9 show the relative error plot for non-
scaling models, scaling equations (applied on the whole 
dataset), and scaling equations (applied on partial datasets), 

Table 2   Mean absolute error (MAE) of scaling equations and non-scaling models (Behbahani et al. 2011)

Dataset Rassamdana et al Rassamdana 
& Sahimi

Hu & Gou Ashoori et al Log–log PC-Saft Solid model Flory–Huggins

Full 0.107 0.105 0.147 6.660 0.130 0.116 0.379 0.238
Partial (both 

R > 5 & R ≤ 5
0.077 0.085 0.103 0.143 0.103 – – –

Fig. 4   Cross plots a PC-Saft b Solid model c Flory–Huggins on full dataset (Behbahani et al. 2011)
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Fig. 5   Cross plots a Rassamdana et al., b Rassamdana and Sahimi, c Hu and Gou, d Ashoori et al. and e log–log scaling equations when applied 
on full dataset
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Fig. 6   Cross plots a Rassamdana et  al., b Rassamdana and Sahimi, c Hu and Gou, d Ashoori et  al., and e Log–log scaling equations when 
applied on partial datasets



3610	 Journal of Petroleum Exploration and Production Technology (2021) 11:3599–3614

1 3

respectively. Looking at Fig. 7, all non-scaling models yield 
under-predicted asphaltenes wt. %; however, PC-Saft com-
paratively found more accurate results due to less range of 
error. Comparing Figs. 8 and 9, it is observed that either the 
range of error is reduced or the accumulation of data point 
is increased near or onto the horizontal line in the case of 
using partial datasets which indicates that the performance 
of scaling equations is enhanced when applied on partial 
datasets as compared to the whole dataset.  

Table 3 shows the values of Critical Dilution Ratio (Rc) 
predicted by different scaling equations when applied to 
the whole dataset. Rassamdana et al. and Hu and Guo scal-
ing equation are unable to predict onset points for differ-
ent precipitants (n-alkanes) and therefore produce negative 
results. The main cause of this observation seems to be the 
curve obtained between X and Y for these models. It can 
be observed in Fig. 1a and c that the curves of these two 

scaling equations are going to meet the x-axis at the negative 
side when Y = 0. On the other hand, Ashoori et al. and the 
log–log scaling equations overpredict the results, whereas 
Rassamadana and Sahimi scaling equations underpredict the 
results. The nearest results are predicted by a log–log scaling 
equation with significant error.

Table 4 illustrates the predicted values of critical dilution 
ratio (Rc) by different scaling equations when applied on 
the partial dataset (R ≤ 5). Rassamdana et al., Rassamadana, 
and Sahimi, and Hu and Guo’s scaling equations could not 
find the onset point since their XY curve goes to intersect 
the negative x-axis at Y = 0 as shown in Fig. 3a, b, and c. 
Log–log scaling equation produces approximately the same 
onset points for all precipitants as produced while using 
the whole dataset. Ashoori et al. scaling equation predicted 
excellent results.

Fig. 7   Relative Error plots a PC-Saft b solid model c Flory–Huggins on full datasets (Behbahani et al. 2011)
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Fig. 8   Relative error plot a Rassamdana et al., b Rassamdana and Sahimi, c Hu and Gou, d Ashoori et al., and e Log–log scaling equations when 
applied on full dataset
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Fig. 9   Relative Error plot a Rassamdana et al., b Rassamdana and Sahimi, c Hu and Gou, d Ashoori et al., and e Log–log scaling equations 
when applied on partial datasets‏



3613Journal of Petroleum Exploration and Production Technology (2021) 11:3599–3614	

1 3

Table 5 presents the onset results predicted and perfor-
mance comparison between all non-scaling models and the 
best scaling equation, i.e., Ashoori et al. scaling equation 
in this case. It is observed that the Ashoori et al. scaling 
equation yields more accurate results as compared to other 
non-scaling models.

Conclusion

The following conclusions can be drawn from this study:

1.	 Scaling equations performance, in terms of predicting 
asphaltene weight percentage, is enhanced when applied 
on datasets formed by splitting the full dataset with 
respect to dilution ratio.

2.	 Scaling equations are capable of predicting asphaltene 
weight percentage with good accuracy when applied on 
full dataset as well as by using partial datasets except for 
Ashoori et al. scaling equation when applied on the full 
dataset.

3.	 Scaling equations are not good predictors of critical dilu-
tion ratio (Rc) except for Ashoori et al. scaling equation 
which produces excellent results when utilized partial 
dataset (R ≤ 5) for prediction.

4.	 Comparing the performance of scaling equations with 
non-scaling models for predicting the asphaltene weight 
percentage, all scaling equations yield almost the same 
or better results as compared to the best case of non-
scaling models which is the PC-Saft model.

5.	 Comparing the performance of scaling equations with 
non-scaling models for predicting the critical dilution 
ratio, the non-scaling models perform better. In most 
cases, scaling equations are unable to predict Rc or pro-
duce results of considerable error. Non-scaling models 
produce less accurate results as compared to Ashoori et 
scaling equation when utilized partial dataset (R ≤ 5) for 
prediction.

6.	 Summarizing the study, it is suggested that the asphaltene 
modeling in dead crude oils, both for predicting onset 
point and asphaltene weight percent, could be achieved by 
Ashoori et al. scaling equation with good accuracy when 
applied on splitting the full datasets concerning dilution 

Table 3   Values of Rc obtained 
for different precipitants using 
the full dataset

Precipitant Rassamdana et al Rassamdana & 
Sahimi

Hu & Gou Ashoori et al Log–log

n − C5 − 573.02 0.317 − 0.328 2.300 0.935
n − C6 − 599.05 0.346 − 0.343 2.405 0.977
n − C7 − 622.07 0.373 − 0.356 2.498 1.015
n − C9 − 661.67 0.423 − 0.379 2.657 1.079
n − C12 − 710.31 0.487 − 0.407 2.851 1.159

Table 4   Values of Rc obtained 
for different precipitants using 
partial dataset R ≤ 5

Precipitant Rassamdana et al Rassamdana & Sahimi Hu & Gou Ashoori et al Log–log

n − C5 − 22.926 − 3.264E + 13 − 0.064 0.643 0.931
n − C6 − 23.967 − 3.567E + 13 − 0.066 0.672 0.973
n − C7 − 24.888 − 3.847E + 13 − 0.069 0.698 1.010
n − C9 − 26.473 − 4.352E + 13 − 0.073 0.743 1.075
n − C12 − 28.419 − 5.016E + 13 − 0.793 0.797 1.154

Table 5   Rc values obtained 
from different precipitants and 
mean absolute error (MAE) of 
experimental (Behbahani et al. 
2011), non-scaling models 
(Behbahani et al. 2011), and 
Ashoori et al. scaling equation

Bold values indicate MAE results

Precipitant Experiment 
onset

PC-Saft Flory–Huggins Solid model Ashoori et al

n − C5 0.65 0.69 0.72 0.74 0.644
n − C6 0.7 0.74 0.79 0.83 0.673
n − C7 0.72 0.78 0.84 0.84 0.699
n − C9 0.78 0.82 0.86 0.87 0.743
n − C12 0.84 0.89 0.92 0.94 0.798
MAE – 0.046 0.088 0.106 0.027
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ratio. On splitted datasets, Ashoori et al. scaling equation 
found asphaltene weight percentages with mean absolute 
error of 0.143 which is slightly greater than other scaling 
model but still very less. The biggest advantage of using 
this equation is its excellent ability of predicting onset 
point when other scaling equations are completely failed. 
Ashoori et al. scaling equation yields only 0.027 of MAE 
while estimating onset point (Rc) even better than non-
scaling models. Moreover, this scaling equation does not 
require crude oil properties and offer fewer computation 
complexities as compared to non-scaling models.
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