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Abstract
Underground  CO2 storage is a promising technology for mitigating climate change. In this vein, the subsurface condition 
was inherited a lot of uncertainties that prevent the success of the  CO2 storage project. Therefore, this study aims to build the 
3D model under geological uncertainties for enhancing  CO2 storage capacity in the Shahejie Formation (Es1), Nv32 block, 
China. The well logs, seismic data, and geological data were used for the construction of 3-D petrophysical models. The target 
study area model focused on four units (Es1 × 1, Es1 × 2, Es1 × 3, and Es1 × 4) in the Shahejie Formation. Well logs were 
utilized to predict petrophysical properties; the lithofacies indicated that the Shahejie Formation units are sandstone, shale, 
and limestone. Also, the petrophysical interpretation demonstrated that the Es1 reservoir exhibited high percentage porosity, 
permeability, and medium to high net-to-gross ratios. The static model showed that there are lateral heterogeneities in the 
reservoir properties and lithofacies; optimal reservoir rocks exist in Es1 × 4, Es1 × 3, and Es1 × 2 units. Moreover, the pore 
volume of the Es1 unit was estimated from petrophysical property models, ranging between 0.554369 and 10.03771 ×  106  sm3, 
with a total volumetric value of 20.0819 ×  106  sm3 for the four reservoir units. Then, the 100–400 realizations were gener-
ated for the pore volume uncertainties assessment. In consequence, 200 realizations were determined as an optimal solution 
for capturing geological uncertainties. The estimation of  CO2 storage capacity in the Es1 formation ranged from 15.6 to 
207.9 ×  109 t. This result suggests the potential of  CO2 geological storage in the Shahejie Formation, China.

Keywords 3-D geological model · Geological uncertainty · CO2 storage capacity · Unconventional oil reservoir · Tight oil 
reservoir · Nv32 block

Introduction

Carbon capture and storage is an alternative approach for 
minimizing  CO2 emissions to the atmosphere (Vo Thanh 
et al. 2019; Ampomah et al. 2017b). In general,  CO2 can 
be stored in different subsurface sites, such as deep saline 

aquifers, coal bed seams, unconventional resources, and 
depleted petroleum reservoirs (Vo Thanh et  al. 2020b, 
2020a). Among these storage sites, saline aquifers have the 
largest  CO2 storage capacity (Vo Thanh et al. 2019). How-
ever, depleted petroleum reservoirs are the most suitable 
candidates because the  CO2 injection process can improve 
oil recovery (Vo Thanh et al. 2019). Improving the oil recov-
ery is therefore feasible by injecting  CO2 into oil-bearing 
reservoirs. This method, known as  CO2-enhanced oil recov-
ery  (CO2-EOR), combined with gas storage, can be used to 
alleviate the cost of sequestration (Zhong and Carr 2019; Vo 
Thanh et al. 2019).

Mitigating  CO2 seepage hazards implies a reduction 
in perpendicular  CO2 migration by selecting appropriate 
storage sites. Three-dimensional (3-D) reservoir geologi-
cal modeling is currently an effective method for evaluat-
ing the  CO2 storage capacity. Several recent studies have 
examined the  CO2 storage capacity using 3-D geological 
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models (Ampomah et al. 2017a; Anderson 2017; Spencer 
1987; Alcalde et al. 2018). These models are an appropriate 
approach that integrates all available geological, geophysi-
cal, and engineering data (Hirsche et al. 1997; Bueno et al. 
2011; Abdideh and Bargahi 2012; Dai et al. 2016). Accord-
ing to recent studies, 3-D geostatistical modeling can sup-
port the evaluation of potential  CO2 storage areas in hydro-
carbon reservoirs (Vo Thanh et al. 2019, 2020b; Rahim et al. 
2015; Yin et al. 2017). Therefore, geological modeling is a 
promising tool for maximizing  CO2 utilization in petroleum 
resources (Kamali et al. 2013; Zamora Valcarce et al. 2006; 
Metwalli et al. 2017).

The assessment and management of subsurface uncer-
tainties have increasingly become more important in the 
petroleum industry sector. The aim is to enhance reserve 
portfolios, implement appropriate field developments, and 
strengthen technical operations, particularly with respect to 
well planning (Kamali et al. 2013). Stochastic approaches 
are used to screen and value hydrocarbon assets (Bueno et al. 
2011; Kamali et al. 2013).

Using Monte Carlo simulations, subsurface models can 
reduce the geological uncertainty, thus improving the prob-
ability of  CO2 storage project success (Dai et al. 2016; Hir-
sche et al. 1997). Additionally, the geological uncertainty 
assessment provides a better understanding of the P10, P50, 
and P90 values. These values can provide an enhanced per-
spective on the static and dynamic  CO2 storage capacity at 
the target site (Bueno et al. 2011).

As sampling and direct multiplication of Monte Carlo 
loops is straightforward and fast, thousands of Monte Carlo 
loops can be implemented for accurate output distributions. 
Although these methods are fast, determining the intrinsic 
dependencies among all of the input variables is difficult, 
often providing no quantification or visualization of the spa-
tial location and variability in the uncertainty. A 3-D model 

is an alternative approach for volumetric determinations, 
facilitating a practical treatment of the dependence between 
various input variables while enhancing knowledge on the 
spatial heterogeneity in the uncertainty (Kamali et al. 2013; 
Abdideh and Bargahi 2012; Kamali et al. 2013). The geo-
logical structure of a reservoir, variation in its petrophysical 
properties, and the gas oil contact and oil water contact are 
considered the main sources of uncertainty (Kamali et al. 
2013). The probabilistic distribution of the gross rock vol-
ume (GRV)  (MMm3) and stock-tank oil initially in place 
(STOIIP) can then be determined, as well as the use of reli-
able volume computations and risk evaluations (Bueno et al. 
2011; Satter and Iqbal 2016). Moreover, few studies have 
focused on the gap between  CO2 storage and geological 
uncertainties, whereas the performance of the  CO2 storage 
assessment affects the geological uncertainty. Therefore, we 
address comprehensive 3-D reservoir geological modeling 
as a multi-objective function of the four reservoir units in 
the Paleogene Shahejie Formation (Es1) and compute the 
 CO2 storage capacity based on the geological uncertainty in 
the Nv32 block of the Shenvsi oilfield (Fig. 1). This study 
also aims to provide a systematic overview of the potential 
for the geological sequestration of  CO2 while improving oil 
recovery and  CO2 storage.

Study area

The Shahejie Formation (Es1) of the Nv32 block is situ-
ated in the Shenvsi oilfield in the southern region of Cang-
zhou City, Hebei Province. The Shenvsi oilfield structure is 
located within the Cangxian and Kongdian structures. Sev-
eral oilfields exist as a result of the structural complexity 
and fault evolution within the Shenvsi oilfield. Furthermore, 
the sedimentary stratigraphy of the study area comprises 

Fig. 1  Map of the Shahejie 
Formation in the Nv32 block
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Eocene to Pliocene rock successions, which include four 
major lithostratigraphic formations, i.e., the Shahejie, Dong-
ying, Guantao, and Minghuazhen formations, from oldest to 
youngest. The structural area of the sand–oil top structure is 
2.0  km2, the structural width is 100 m, the proven oil-bear-
ing area is 1.4  km2, and the petroleum geological reserves 
are 225 ×  104 t (Rassas et al. 2020; Ling and Qingkui 2017). 
Figure 1 shows the oilfield locations.

Databases and methodology

Figure 2 presents the workflow and databases used in this 
study, including the check-shot data, 3-D seismic volume, 
lithological characteristics, geological reports, deviation 
data, and wireline logs [consisting of the spontaneous poten-
tial (SP), gamma-ray (GR), caliper (CAL), and acoustic 
impedance (AC)] from the 22 available drilled wells in block 
Nv32, Shenvsi oilfield. These geophysical and geological 
data were used to quantify and improve the accuracy of the 
internal structure of the reservoir and the petrophysics of its 
heterogeneity. These data were incorporated into the Petrel 
software and utilized to build 3-D geological static models, 
such as structural, lithofacies, and petrophysical property 
models, as well as to calculate the volume of the reservoir. 
Uncertainty analysis of the constructed reservoir geological 
models was performed to compute the  CO2 storage capacity. 
Additionally, the theoretical  CO2 sequestration capacity was 
established based on a specific formulation introduced by 
previous studies (Bradshaw et al. 2007; Mckee 2005; Ping-
ping et al. 2009).

Reservoir modeling

The 3-D geological model was built using the Petrel soft-
ware to show the structural features of block Nv32, the verti-
cal and horizontal distributions of the petrophysical proper-
ties (i.e., the porosity and permeability), and the lithofacies 
of the Es1 formation units in the Shenvsi oilfield.

Structural modeling

Structural modeling is the major stage in constructing a 3-D 
geological model (Abdel-Fattah et al. 2018; Agyare God-
will and Waburoko 2016; Jika et al. 2020). The model of 
the structural features in block Nv32 was constructed using 
interpretations of the 3-D seismic data. The seismic data 
show that the Shenvsi oilfield, including block Nv32, pri-
marily comprises horsts and tilted fault blocks (Fig. 3).

This structural style indicates that the Shenvsi oilfield can 
be classified as a rifting basin. The 3-D seismic interpreta-
tion data, including the reservoir surface tops and measured 

fault surfaces, were imported into the Petrel software to 
build the structural model.

The first stage of building a structural model was the 
selection of structural faults based on the 3-D seismic data 
(Fig. 3). The fault surfaces were constructed by employing 
the fault polygon in Petrel for each type of vertical fault, 
diagonal fault, curving fault, and faults with various geo-
metrical structures, each congruous to its polygon. The pri-
mary surface was defined by implementing fault polygons 
with varying stratification planes (Fig. 4a and b). Subse-
quently, the structural domain of the reservoir rock horizons 
was selected from the 3-D seismic data and then converted 
from a time version to a depth version. Finally, the skeleton 
of the structural model was realized by associating the 3-D 
fault surfaces with the reservoir rock horizons of the Es1 
formation (Fig. 4c).

Lithofacies modeling

The lithofacies model of block Nv32 was constructed 
based on the lithofacies interpretation of the sedimentary 

Fig. 2  Workflow used in this study
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environments obtained from the well logs. The well log-
based lithofacies results showed that the Es1 units in block 
Nv32 mainly comprise three lithologies, i.e., shale, lime-
stone, and sandstone. The well log-based lithofacies results 
from the 22 wells were imported to the Geomap 3.6 soft-
ware. Additionally, data for the facies model were then 
extracted from Geomap 3.6 and imported to the Petrel soft-
ware to construct the lithofacies model of block Nv32.

Facies modeling requires different facies approaches, 
such as object modeling, which is typically utilized for litho-
facies modeling. However, in this model, the assigned values 
were employed to populate discrete lithofacies models based 
on grids of different bodies with various geometries, facies 
codes, and fractions. Facies modeling in a 3-D space was 
simulated using the simulation sequential indicator (SIS) 
method.

Petrophysical property modeling

Petrophysical property modeling is a critical stage in res-
ervoir characterization because it significantly influences 
the heterogeneity and flows modeling. In this study, the 
petrophysical properties of the four formation units within 
the Es1 Formation of block Nv32 were estimated from the 
well-logging data using the Petrel software. Based on the 
well log, the petrophysical properties were up-scaled and 
laterally dispersed using the sequential Gaussian simula-
tion (SGS) method. This method is the most prominent 
geostatistical technique for constructing stochastic random 
fields of continuous parameters, including permeability 
and porosity (Pyrcz and Deutsch 2014; Zhong and Carr 
2019). The SGS method has been successfully imple-
mented to generate several equiprobable realizations of 
the distributions of the petrophysical properties to obtain 
the uncertainty (Mckee 2005; Pingping et  al. 2009). 

Fig. 3  Seismic sections showing the reservoir tops of the Formation units associated with normal faults a. Es1 × 1, b. Es1 × 2, c. Es1 × 3, and d. 
Es1 × 4. Vertical lines represent the locations of the wells
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Furthermore, this algorithm is more effective than a trun-
cated simulation because it does not consider the orderly 
transformation between facies types (Al-Mudhafar 2018). 
Previous studies provide a more detailed description of 
the methodology for the SGS (Pyrcz and Deutsch 2014; 
Zhong and Carr 2019).

Volumetric analysis

Volumetric analysis of the reservoir rock allows the calcu-
lation of the volume of hydrocarbon in the reservoir. The 
determination of the reservoir rock volume is commonly 
an important calculation because it serves as a reference 
for the exploration and development of oil and gas fields. 
In this study, the reserves, in terms of the STOIIP in the 
Shahejie Formation, were determined after the 3-D res-
ervoir model was completed, including the structural and 
petrophysical property models. Moreover, the STOIIP in 
the Shahejie Formation was estimated as follows (Satter 
and Iqbal 2016):

(1)STOIIP = 7758 × A × h × � ×
(

1 − SW
)

×
1

Bo

,

where A = reservoir area (acres); h = reservoir thickness (ft); 
Sw = water saturation (fraction); Bo = formation volume fac-
tor (bbl/stb).

Uncertainty analysis

The construction of a geological reservoir model requires a 
significant quantity of data to reduce the associated uncer-
tainties. Thus, understanding the uncertainty associated with 
reservoir geological modeling as a support for oil industry 
decisions is essential. An awareness of uncertainty man-
agement based on forecasting hydrocarbon volumes has 
increased in recent decades as a consequence of accurate 
3-D geological models constructed using advanced technol-
ogies. Many studies have addressed the uncertainties inher-
ent in geological modeling. (Lelliott et al. 2009) classified 
the sources of uncertainties associated with geological mod-
eling into data density (the borehole density was employed 
to build the model), data quality (quality of the model data, 
including the logging quality, sample type, borehole atti-
tude, and drilling approach), geological complexity (geologi-
cal heterogeneity across the site), and software modeling. 
In reservoir engineering, as stated by (Zabalza-Mezghani 
et al. 2004), the sources of uncertainty can be categorized 

Fig. 4  Structural model of block Nv32. a. Fault pillars and polygons as a structural framework. b. Fault pillars associated with the reservoir hori-
zons. c. Reservoir horizons (Es1 × 1–Es1 × 4), along with the interpreted faults
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throughout the geological modeling process. These uncer-
tainties occur in static geological models, fluid flow mod-
eling, up-scaling, the incorporation of production data, and 
economic assessments. Bueno et al. (2011) categorized the 
various uncertainty behaviors, including discrete and deter-
ministic stochastic uncertainties. Therefore, the uncertainties 
associated with the input datasets utilized to construct 3-D 
geological models cannot be represented by a single deter-
ministic realization, which produces significant uncertainty 
during reservoir estimation when combining sources.

Furthermore, 3-D models still comply with these rules, 
and the presence of significant uncertainty elements, which 
occur in model construction, remains irrefutable. The vol-
umetric equation is usually used to define the number of 
errors; however, modern technology has enabled the use of 
3-D models as a basis to facilitate evaluations of this uncer-
tainty within a reservoir. The use of these 3-D models has 
several benefits over an assessment, depending on the direct 
implementation of volumetric equations. Among these bene-
fits, 3-D models facilitate the realistic visualization of intrin-
sic correlations; the resulting accuracy of the uncertainty 
estimation allows the establishment of a strong foundation 
for capital management. In this model, for the geological 
uncertainty, calculating the pore volume is essential. Thus, 
100–400 cases were simulated for the uncertainty evalua-
tion to define the pore volume by changing the variogram 
parameter in the Petrel software. The probability distribution 
of the pore volume was determined using the Monte Carlo 
sampling approach. Subsequently, the results for P10, P50, 
and P90 were adopted for the risk evaluation of the theoreti-
cal  CO2 storage capacity.

Theoretical ��
2
 Storage Capacity

This study mainly focused on the theoretical  CO2 storage 
capacity in the structural and stratigraphic trapping, given 
as follows:

where MCO2 is the mass  CO2 storage capacity (Mt), A is 
the trap area ( m2 ), h is the thickness (m), ϕ is the porosity 
(lrb%), Siir is the irreducible water saturation (lrb%), B is the 
formation volume factor ( m3∕m3 ), �CO2 is the density of  CO2 
( kg∕m3 ), and E is the coefficient of the capacity integrated by 
the traps,  CO2 sweep, and buoyancy efficiency (IEA 2020; 
Anon 1981).

(2)MCO2 = A × h × � ×
(

1 − Swiir
)

× B × �CO2 × E,

The  CO2 storage mass can be characterized as an effective 
capacity by multiplying by the storage effective coefficient, 
C, which is the trapping efficiency. The storage mass can be 
determined based on the reservoir simulation. The trap area, 
thickness, and porosity were precisely estimated using the 
3-D reservoir geological model. Therefore, rather than 
Eq.  (2), we changed the grid pore summation volumes 
�

VPV =
∑

i

Ai × hi × �i

�

 to replace A × h × � , where Ai is 

the grid area, hi is the grid thickness, and �i is the porosity 
of the grid; thus, the new equation was as follows (Vo Thanh 
et al. 2019):

where VPV is the total pore volume ( m3).

Results and discussion

3‑D reservoir geological models

In block Nv32 of the Shenvsi oilfield, the Es1 Formation 
was the main reservoir rock, which was divided into four 
zones, i.e., Es1 × 1, Es1 × 2, Es1 × 3, and Es1 × 4, from top 
to bottom, based on the well log and seismic data, providing 
effective compatibility (Figs. 5 and 6). The geological char-
acteristics, such as the significant change in thickness of the 
four Es1 zones, were obtained based on the correlations of 
the wells used in this study (Fig. 5f). The four horizons were 
also mapped in 3-D model space. These reservoir units are 
laterally extensive throughout the model area and influenced 
by the interpreted normal faults (Fig. 5a–d).

The seismic data, horizon, and fault surfaces were inter-
preted (Fig. 6a–c), followed by structural modeling (Fig. 6e). 
The structural model of block Nv32 displays a network of 
faults related to the syndepositional tectonic event. These 
sets of normal faults control the entire area of block Nv32, 
covering up to 70%; they are mainly NE–SW-trending and 
dip toward the NW–SE (Fig. 6d).

The petrophysical models of block Nv32 were developed 
based on the petrophysical parameters, i.e., porosity, perme-
ability, and net-to-gross ratio (NTG). These were obtained 
through a well log analysis of the wells (Fig. 1).

Porosity refers to the quantity of oil that occupies the 
pore space of a reservoir. Thus, the oil volume capacity in 
the oil reservoir was estimated by measuring its porosity. 

(3)MCO2 = VPV ×
(

1 − Swiir
)

× B × �CO2 × E,



2333Journal of Petroleum Exploration and Production Technology (2021) 11:2327–2345 

1 3

Fig. 5  Results of surface modeling in block Nv32. Elevation depths (m) of the a. Es1 × 1, b. Es1 × 2, c. Es1 × 3, and d. Es1 × 4 reservoir units. E. 
Depth modeling of all of the Es1 reservoir units. F. Cross section of the wells used in this study
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Permeability is another crucial parameter for determining 
the characteristics of reservoir rocks. Permeability is utilized 
to facilitate the transmission of reservoir fluid in the subsur-
face rock to the well surface.

Fig. 6  Structural modeling results for block Nv32. The left panel 
presents the seismic sections a–c showing the reservoir tops of the 
Es1 Formation associated with normal faults. d. Surfaces of the fault 

network in the NE–SW, NW–SE, and E directions. e. Structural mod-
eling presenting the depths of the Es1 reservoir units in contact with 
the normal faults

Fig. 7  Results of the reservoir porosity modeling for block Nv32. The 
left panel presents the porosity maps of the a. Es1 × 1, b. Es1 × 2, c. 
Es1 × 3, and d. Es1 × 4 reservoir units. e. Porosity modeling of all of 
the ES1 reservoir units. F. Cross-sectional porosity model of the wells 
used in this study

▸
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In this study, the petrophysical investigation identified 
four principal reservoir intervals, i.e., Es1 × 1, Es1 × 2, 
Es1 × 3, and Es1 × 4, from the top to the bottom. These res-
ervoir units have average porosity and permeability values 
ranging from 2 to 36% and 0.017–974.8 mD, respectively. 
In contrast, the NTG ratios of these reservoir units have rela-
tively low to high values ranging from 0.60 to 1.00. These 
petrophysical results were mapped and dispersed in a 3-D 
model space by up-scaling the assigned values and under-
standing the reservoir quality within block Nv32.

Petrophysical models, including the porosity, perme-
ability, and NTG ratio, were built for each reservoir unit 
throughout block Nv32 by employing the SGS technique. 
The 3-D models indicate that the petrophysical parameters 
of these four reservoir units extend laterally within the 
block Nv32 model, influenced by the interpreted normal 
faults. However, these models facilitated simulations of 
the spatial distribution of the petrophysical parameters 
and were used to determine the volume (STOIIP) of the 
reservoir units, indicating potential locations for future 
evolution within the oilfield. The 3-D spatial distribution 
indicates the presence of high porosity and permeability in 
the Es1 × 2, Es1 × 3, and Es1 × 4 reservoir units, as shown 
by the yellow–red color range (Figs. 7B–D and 8B–D).

In contrast, models for the Es1 × 1 reservoir unit exhib-
ited lower porosity and permeability values (based on the 
blue–green color scheme in Figs. 7A and 8A). We note 
that the interpreted lithofacies of these units affect the 
principal petrophysical parameters of the reservoir units. 
In summary, the 3-D facies model revealed that the Es1 
Formation is, in terms of the lithology, a more heterogene-
ous reservoir rock, showing a generally larger probability 
distribution of shale (dominantly) and sandstone, with 
minor limestone, both vertically and laterally (Fig. 9).

The presence of low porosity and permeability values 
within the Es1 × 1 reservoir unit can likely be attributed 
to the presence of high shale lithofacies (Fig. 9A) because 
shales are commonly characterized by low petrophysical 
properties, i.e., porosity and permeability.

The NTG models of the Es1 × 1, Es1 × 2, Es1 × 3 and 
Es1 × 4 units were also mapped in a 3-D model space 
based on the validity of the 3-D porosity and perme-
ability models. The NTG model agreed with the 3-D 
reservoir property models for the porosity and perme-
ability, revealing that the Es1 × 2, Es1 × 3, and Es1 × 4 
reservoir units generally have good NTG ratio values 
between 0.60 and 1.00, as indicated by the green to red 
colors in Fig. 10B–D. Moreover, the structural limbs of 
the Es1 × 1 unit in the model had significant NTG ratio 
values (Fig. 10A).

STOIIP Determination

The reservoir volume (STOIIP) was the last stage for assess-
ing the oil capacity in the reservoir, which aimed to esti-
mate the quantity of HCs in the reservoir (El Khadragy et al. 
2017). Reservoir characteristics, including the porosity, per-
meability, and NTG ratio, are commonly used as input data 
to determine the reservoir volume (Edwards and Santogrossi 
1989).

The modeled petrophysical parameters of the Es1 reser-
voir units, including the porosity, permeability, and NTG 
ratio (Figs. 7, 8, and 10), were utilized to determine the 
reserves in accordance with the STOIIP of block Nv32. 
The STOIIP of block Nv32 was estimated at approximately 
20.0819 ×  106  sm3.

The 3-D spatial distribution indicated the presence of 
high potential reserves in the Es1 × 2, Es1 × 3, and Es1 × 4 
reservoir units, with volumes (STOIIP) of 4.70694, 4.78284, 
and 10.03771 ×  106  sm3, respectively (Fig. 11). These res-
ervoir units have porosities, permeabilities, and NTG ratios 
of 2–36%, 0.017–974.8 mD, and 0.60–1.00, respectively 
(Figs. 7b–d, 8b–d, and 10b–d). In contrast, the petrophysi-
cal property models showed that the porosity, permeability, 
and NTG ratio of the Es1 × 1 reservoir unit in block Nv32 
are 2–15%, 0.017–100 mD, and 0.10–0.25, respectively 
(Figs. 7a, 8a, and 10a). Moreover, we estimated a volume 
(STOIIP) of 0.554368 ×  106  sm3 (Fig. 11).

Geological uncertainties in the petrophysical 
models

Spatial uncertainties refer to reservoir properties that dif-
fer spatially, including the petrophysical properties ratio 

Fig. 8  Results of the reservoir permeability modeling for block Nv32. 
The left panel presents the permeability maps of the a. Es1 × 1, b. 
Es1 × 2, c. Es1 × 3, and d. Es1 × 4 reservoir units. e. Permeability 
modeling of all of the ES1 reservoir units. F. Cross-sectional perme-
ability model of the wells used in this study

◂
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Fig. 9  Facies modeling results for block Nv32. The left panel presents the facies maps of the a. Es1 × 1, b. Es1 × 2, c. Es1 × 3, and d. Es1 × 4 res-
ervoir units. e. Facies modeling of all of the ES1 reservoir units. f. Cross-sectional facies model of the wells used in this study
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(Almeida et al. 2020). Sites for  CO2 sequestration typically 
contain significant uncertainty within their geological char-
acteristics, including the uncertainty in the petrophysical 
properties (Chen et al. 2020; Jin et al. 2020; Heath et al. 
2012). Structural interpretation is typically achieved using 
many assumptions, which leads to more uncertainties in 
the distribution of the reservoir properties in the structural 
models. Additionally, the core and well log data represent 
the porosity and permeability, respectively. Therefore, geo-
logical uncertainties also occur in the petrophysical models. 
Consequently, the models utilized for reservoir forecasting 
are vulnerable to various forms of uncertainty; moreover, 
interpreting and quantifying uncertainty is the most chal-
lenging aspect of modeling (Demyanov et al. 2019). There-
fore, we considered the geostatistical parameters for the 
geological uncertainties. These parameters included the 
major, minor, and vertical directions, with values between 
600 and 800 (base value of 600), 400–700 (base value of 
500), and 2–50 (base value of 10), respectively. Table 1 lists 
the geostatistical parameters for the geological uncertainty. 
These geostatistical parameters generated a large number of 
operations with respect to the geological uncertainties. How-
ever, computing the pore volume is essential for determining 
the geological uncertainty. Therefore, 100‒400 operations 
were conducted for the geological uncertainty, which was 
used to estimate the pore volume by altering the variogram 
parameters in the Petrel software (Fig. 12). The Monte Carlo 
sampling approach was employed to compute the probability 
distribution of the pore volume.

Figure 12 presents the geological uncertainty for the 
theoretical  CO2 storage capacity in block Nv32, Shenvsi 
oilfield. This figure demonstrates the idea of the selected 
number of realizations, which will vary from case to case. 
The P10, P50, and P90 statistics were adopted for the risk 
evaluation of the theoretical  CO2 storage capacity, which 
shows that an increase in the number of operations up to 
400 does not change the results when compared with the 
use of 200 realizations. However, the results of the pore vol-
ume uncertainties were similar to those of the uncertainty 
assessment based on 200 geological operations. Therefore, 
200 was deemed the optimal number of realizations for the 
 CO2 storage evaluation. Table 2 presents the computed pore 

volumes using the P10, P50, and P90 statistics using geo-
logical realizations.

Theoretical  CO2 storage capacity

Estimating the  CO2 storage capacity in a tight oil formation 
is convenient and straightforward, as compared with coal 
bed methane (CBM) and deep saline aquifers (DSA). Fur-
thermore, petroleum reservoirs are better known and char-
acterized than CBM and DSA media. Moreover, petroleum 
reservoirs are discrete instead of continuous, which allows 
for  CO2 storage in petroleum reservoirs. The total capacity 
of all the reservoirs in an area determines the  CO2 storage 
capacity in the petroleum reservoirs of a specific area and 
at a given scale, computed based on the reservoir proper-
ties, including the oil initial in place (OIIP), temperature 
(T), pressure (P), permeability (k), and porosity (ϕ). The 
Carbon Sequestration Leadership Forum introduced a set of 
approaches to estimate the  CO2 storage capacity for struc-
tural and stratigraphic trapping, dissolution trapping, and 
residual gas saturation trapping. Based on these guidelines, 
the theoretical  CO2 storage capacity was computed using 
Eq. (3). The least likely, P10, storage capacity was 15.6 
million tons, whereas the most likely, P90, storage capacity 
was 207.9 million tons. Therefore, this tight oil reservoir 
has the potential for  CO2 storage, as indicated by the large 
quantity of  CO2. Although this unconventional oil reser-
voir poses challenges for  CO2 injection, the carbon capture 
utilization and storage guidelines suggest that a tight oil 
formation is a promising  CO2 injection site. The advan-
tage of tight oil reservoirs for CCUS includes improved 
oil recovery and a decrease in the rate of  CO2 emissions. 
Additionally, the capability of these formations is unknown 
in the CCUS community. Thus, the theoretical  CO2 storage 
capacity was evaluated to determine the potential of a tight 
oil reservoir. In summary, the advantage of  CO2-EOR in 
tight oil reservoirs is the possibility of an additional stor-
age site in the CCUS network. Owing to data availability 
limitations, which hinder our understanding of the  CO2 
flows in tight oil reservoirs, the result of this study provide 
a preliminary indicator for the CCUS in unconventional 
oil-bearing formations. Furthermore, we plan to develop 



2340 Journal of Petroleum Exploration and Production Technology (2021) 11:2327–2345

1 3



2341Journal of Petroleum Exploration and Production Technology (2021) 11:2327–2345 

1 3

• The seismic and well log data indicate that the Es1 for-
mation can be divided into four reservoir units. Shale is 
the dominant lithology, with intercalations of sandstone 
and limestone shale within the reservoir units, affected 
by interpreted normal faults.

• The well log data also indicate that the Es1 × 2, Es1 × 3, 
and Es1 × 4 reservoir units generally exhibit 2–36% 
porosity, 0.017‒974.8 mD permeability, and moderate 
to good NTG ratios, i.e., good reservoir quality.

• The reservoir geological models show that there are lat-
eral heterogeneities in the petrophysical properties and 
lithofacies of the reservoir.

• The reservoir geological models were employed to cal-
culate the reservoir volume of the units in the Shahe-
jie Formation of block Nv32. The four reservoir units 
in the Es1 Formation have volumetric values between 
0.554368 ×  106 and 10.03771 ×  106  sm3, with a total volu-
metric value of 20.0819 ×  106  sm3.

• According to the results of the uncertainty analysis for 
the geological model, 100–400 realizations were used 
in the uncertainty evaluation to estimate the pore vol-
ume. The results indicate that the appropriate number 
of realizations is 200. This number of geological reali-
zations were reduced the uncertainties in the 3D model.

• The results for the theoretical  CO2 storage capacity 
indicate that the least likely, P10, range capacity was 
15.6 million tons, whereas the most likely, P90, storage 
capacity was 207.9 million. A large  CO2 storage capac-
ity demonstrates that tight oil formations may be a new 
sink for CCUS researchers.

• The results of the model indicate that the ES1 forma-
tion in block Nv32 has a combined potential for  CO2 
storage and EOR.

Fig. 10  Results of the net-to-gross (NTG) ratio modeling for block 
Nv32. The left panel presents the NTG maps of the a. Es1 × 1, b. 
Es1 × 2, c. Es1 × 3, and d. Es1 × 4 reservoir units. e. NTG modeling 
of all of the ES1 reservoir units. f. Cross-sectional NTG model of the 
wells used in this study

◂

Table 1  Geostatistical parameters for the geological uncertainties

Parameters Min Base value Max

Major direction 600 600 800
Minor direction 400 500 700
Vertical 2 10 50

a dynamic reservoir model for  CO2 injection in unconven-
tional oil reservoirs. Further data collection will be con-
ducted to evaluate the compositional  CO2 interaction in the 
reservoir. Table 3 lists the theoretical  CO2 storage capacity 
for P10, P50, and P90 in block Nv32.

Summary and conclusion

We performed a comprehensive study on integrated 3-D geo-
logical reservoir models under geological uncertainty in the 
Es1 Formation in block Nv32, Shenvsi oilfield, with a multi-
objective function to improve oil recovery and estimate the 
 CO2 storage capacity. The main conclusions obtained from 
this study are summarized below.
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Fig. 11  Modeling results for the volume (STOIIP) estimation in block 
Nv32. The left panel presents the estimated STOIIP of the a. Es1 × 1, 
b. Es1 × 2, c. Es1 × 3, and d. Es1 × 4 reservoir units. e. Table present-
ing the total estimated STOIIP and bulk volume values for all of the 
Es1 reservoir rocks

◂ • Future studies should attempt to enhance our under-
standing of the  CO2 storage potential in tight oil for-
mations. The field production history should be first 
updated in the history-matching reservoir models. 

Fig. 12  Geological uncertainty 
associated with the theoretical 
 CO2 storage capacity of block 
Nv32, Shenvsi oilfield. The left 
panel presents the pore volume 
histograms based on a. 100, b. 
200, c. 300, and d. 400 realiza-
tions
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History-matching models can represent the reliabil-
ity of future dynamic reservoir simulations. Second, 
rock–fluid interactions must be analyzed to understand 
information on the relative permeability in the dynamic 
reservoir models.
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