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Abstract
Calculation of water influx into petroleum reservoir is a tedious evaluation with significant reservoir engineering applica-
tions. The classical approach developed by van Everdingen–Hurst (vEH) based on diffusivity equation solution had been 
the fulcrum for water influx calculation in both finite and infinite-acting aquifers. The vEH model for edge-water drive 
reservoirs was modified by Allard and Chen for bottom-water drive reservoirs. Regrettably, these models solution variables: 
dimensionless influx ( W

eD
 ) and dimensionless pressure ( P

D
 ) were presented in tabular form. In most cases, table look-up 

and interpolation between time entries are necessary to determine these variables, which makes the vEH approach tedious 
for water influx estimation. In this study, artificial neural network (ANN) models to predict the reservoir-aquifer variables 
W

eD
 and P

D
 was developed based on the vEH datasets for the edge- and bottom-water finite and infinite-acting aquifers. The 

overall performance of the developed ANN models correlation coefficients (R) was 0.99983 and 0.99978 for the edge- and 
bottom-water finite aquifer, while edge- and bottom-water infinite-acting aquifer was 0.99992 and 0.99997, respectively. 
With new datasets, the generalization capacities of the developed models were evaluated using statistical tools: coefficient 
of determination (R2), R, mean square error (MSE), root-mean-square error (RMSE) and absolute average relative error 
(AARE). Comparing the developed finite aquifer models predicted W

eD
 with Lagrangian interpolation approach resulted 

in R2, R, MSE, RMSE and AARE of 0.9984, 0.9992, 0.3496, 0.5913 and 0.2414 for edge-water drive and 0.9993, 0.9996, 
0.1863, 0.4316 and 0.2215 for bottom-water drive. Also, infinite-acting aquifer models (Model-1) resulted in R2, R, MSE, 
RMSE and AARE of 0.9999, 0.9999, 0.5447, 0.7380 and 0.2329 for edge-water drive, while bottom-water drive had 0.9999, 
0.9999, 0.2299, 0.4795 and 0.1282. Again, the edge-water infinite-acting model predicted W

eD
 and Edwardson et al. poly-

nomial estimated W
eD

 resulted in the R2 value of 0.9996, R of 0.9998, MSE of 4.740 ×  10–4, RMSE of 0.0218 and AARE of 
0.0147. Furthermore, the developed ANN models generalization performance was compared with some models for estimating 
P
D
 . The results obtained for finite aquifer model showed the statistical measures: R2, R, MSE, RMSE and AARE of 0.9985, 

0.9993, 0.0125, 0.1117 and 0.0678 with Chatas model and 0.9863, 0.9931, 0.1411, 0.3756 and 0.2310 with Fanchi equation. 
The infinite-acting aquifer model had 0.9999, 0.9999, 0.1750, 0.0133 and 7.333 ×  10–3 with Edwardson et al. polynomial, 
then 0.9865, 09,933, 0.0143, 0.1194 and 0.0831 with Lee model and 0.9991, 0.9996, 1.079 ×  10–3, 0.0328 and 0.0282 with 
Fanchi model. Therefore, the developed ANN models can predict W

eD
 and P

D
 for the various aquifer sizes provided by vEH 

datasets for water influx calculation.

Keywords Dimensionless influx · Dimensionless pressure · Edge- and bottom-water drive reservoirs · Finite and infinite-
acting aquifer · Artificial neural network models

Abbreviations
AARE  Absolute average relative error
ANN  Artificial neural network
CNN  Convolution neural network

FFBP  Feed-forward back-propagation
FFNN  Feed-forward neural network
GRNN  Generalized regression neural network
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MISO  Multiple-inputs single-output
MLP  Multilayer perceptron
MSE  Mean square error
PD  Dimensionless pressure
P′
D
  Dimensionless pressure derivative
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qD  Dimensionless heat flow rate
R  Correlation coefficient
R2  Coefficient of determination
RBFNN  Radial basis function neural network
reD  Dimensionless radius
RMSE  Root-mean-square error
RNN  Recurrent neural network
SISO  Single-input single-output
tD  Dimensionless time
vEH  Van Everdingen-Hurst
We  Water influx
WeD  Dimensionless influx
zD  Dimensionless vertical distance

Introduction

Most petroleum reservoirs are underlain by water-bearing 
formation aquifer, which in most cases provides the res-
ervoir natural energy (drive) source (Okon and Appah 
2018). During oil and gas production from the reservoir, 
the pressure drop depletion, in the reservoir, enables the 
encroachment of water (i.e., water influx) from the aqui-
fer into the petroleum reservoir (Nashawi and Elkamel 
1999). In other words, water influx contributes to the driv-
ing force (energy) used for the production of hydrocarbon 
from the reservoir to the surface (Mustafa et al. 2018). 
Al-Ghanim et al. (2012) reported that calculation of water 
influx volumes into the hydrocarbon reservoir is impera-
tive in numerous applications, such as material balance 
for estimation of reserves, reservoir simulation studies for 
model calibration, production scheduling and setting up 
development strategies to optimize hydrocarbon recovery. 
Because of the mentioned importance of water influx cal-
culation, a reliable model that captures the dynamics of 
petroleum subsurface system is of essence (Mustafa et al. 
2018). In the literature, there are several models for water 
influx calculation which apply to different flow regimes, 
namely steady-state (Schilthius 1963), modified steady-
state (Hurst 1943; Leung 1986a), unsteady-state (van 
Everdingen-Hurst 1949; Carter-Tracy 1960) and pseudo-
steady-state (Fetkovitch 1971; Leung 1986b). In all the 
available water influx models, van Everdingen and Hurst 
(vEH) in 1949 presented the most reliable model for water 
influx calculation. The reason is that their developed model 
was the exact solution to the radial flow diffusivity equa-
tion, that is, the partial differential equation that describes 
the fluid flow in porous media. According to Allard and 
Chen (1988) and Al-Ghanim et al. (2012), the vEH model 
applies to all flow regimes provided the flow geometry is 
radial. Also, the model solutions are for both the constant-
terminal-pressure and constant-terminal-rate cases of finite 
and infinite-acting edge-water aquifers. Meaning, the vEH 

aquifer model was one dimensional and does not cover 
bottom-water aquifer.

Looking at the gap in vEH solution, Coats (1962) pre-
sented a model (diffusivity equation) that considers the 
upward movement of water from the aquifer into the reser-
voir, thus, bottom-water drive model. His developed model 
was two dimensional that provides the solution for only the 
constant-terminal-rate case of an infinite-acting aquifer. 
Thus, Coats (1962) model was not applicable to the finite 
aquifer. Again, using Coats (1962) model, Allard and Chen 
(1988) modified the model to provide solutions for constant-
terminal-pressure case in both finite and infinite-acting aqui-
fers. These classical models for calculating water influx in 
edge- and bottom-water drive reservoirs are quite useful in 
reservoir engineering applications (Etim 2019). Regrettably, 
their established solutions for reservoir-aquifer variables: 
dimensionless influx ( WeD ) and dimensionless pressure ( PD ) 
for the constant-terminal-rate case and constant-terminal-
pressure case, respectively, are in table form. Hence, the use 
of these models for water influx calculation requires table 
look-up and interpolation between time entries (Nashawi and 
Elkamel 1999; Al-Ghanim et al. 2012) to determine the WeD 
and PD for the appropriate aquifer size. In applying these 
vEH-based models in petroleum reservoir software, the task 
of executing table look-up and interpolation between time 
entries requires huge computer efforts (Ansa 2019). Okotie 
and Ikporo (2019) added that vEH-based approach of cal-
culating water influx requires the principle of superposition 
which is not straightforward procedure. In this direction, 
Carter and Tracy (1960) and Fetkovitch (1971) developed 
approximation models for calculating water influx. Carter-
Tracy model handled the tedious process of superposition 
involved in vEH-based approach. However, the challenge of 
table look-up and interpolation between time entries remains 
part of the approach, as they introduced dimensionless pres-
sure ( PD ) and its derivative ( P′

D
 ) with respect to dimension-

less time ( tD ) (Nashawi and Elkamel 1999). Allard and Chen 
(1988) maintained that these vEH-based approximate mod-
els are applicable to only a limited range of flow condition or 
reservoir-aquifer geometries. Considering the wide accept-
ability of the vEH-based approach, therefore, it is important 
to have models that are not limited to flow condition rather 
applicable to all vEH datasets ranges. Hence, the focus of 
this study is to develop ANN models that cover the vEH 
datasets for predicting WeD and PD variables for calculation 
of water influx volume into the reservoirs.

Overview of some existing models for estimating 
the reservoir‑aquifer dimensionless variables: W

eD
 

and P
D

Among the available models for calculating water influx into 
the reservoir, there is no doubt that the vEH-based models, 

(2021) 11:1885–1904Journal of Petroleum Exploration and Production Technology 



1887 

1 3

which are the exact solutions of the diffusivity equations, are 
the most applicable. As reported by Al-Ghanim et al. (2012), 
these models suffer limitation because their results (i.e., WeD 
and PD variables) are in tabular forms, which significantly 
limits their application in computer analysis and simulation 
studies. For the constant-terminal-rate in finite-radial and 
infinite-acting edge-water drive reservoirs, the proposed 
Chatas (1953), Lee (1982) and Fanchi (1985) equations for 
estimating PD from tD and reD determine this dimensionless 
variable. In another development, the polynomials developed 
by Edwardson et al. (1962) for the approximation of qD , PD 
and P′

D
 as a function of tD for an infinite-acting aquifer are 

extended to water influx dimensionless variables determina-
tion, as WeD replaces qD in the equations. Also, Klins et al. 
(1999) developed some complex polynomials for estimating 
water influx variables: WeD , PD and P′

D
 for finite and infinite-

acting aquifers that apply to edge-water drive reservoirs. 
They maintained that these equations represent a traceable 
replacement to tubular listings of the vEH dimensionless 
functions. Again, Al-Ghanim et al. (2012) developed non-
parametric optimal transformation models for WeD and PD 
for edge-water drive reservoirs that are data-driven and 
do not assume a priori function form as other models do. 
Regrettably, as reported by Nashawi and Elkamel (1999) and 
Al-Ghanim et al. (2012), the available models for estimating 
these water influx dimensionless variables are characterized 
by drawbacks. For instance, Chatas (1953), Edwardson et al. 
(1962), Lee (1982), Fanchi (1985) and Klins et al. (1999) 
models do not apply to the various aquifer sizes (i.e., finite 
and infinite-acting aquifers) and reservoir drives (edge- and 
bottom-water drive). Also, these models do not provide val-
ues for all the aquifer sizes presented by vEH as their estima-
tion is correlation range limited. Again, Klins et al. (1999) 
and Al-Ghanim et al. (2012) equations are not easy to imple-
ment as they involve some complex transformations and 
computation effort. In this direction, it is necessary to have 
a model that will handle the mentioned drawbacks of these 
existing models. According to Nashawi and Elkamel (1999), 
intelligent models-neural network models would provide the 
values of the dimensionless variables for the various res-
ervoir drive and aquifer sizes as presented by vEH. They 
developed ANN models for predicting WeD and PD in edge- 
and bottom-water drive finite and infinite-acting aquifers. 
Their developed ANN models were multiple-inputs single-
output (MISO) except for edge-water drive infinite-acting 
aquifer model that was single-input single-output (SISO). 
The performance of these models was evaluated based on 
their training and testing data points errors (i.e., minimum, 
maximum and average errors) and compared to the results 
obtained from Fanchi (1985) and Klins et al. (1999) equa-
tions. Unfortunately, these ANN models generalization 
capacities were not tested with new datasets to establish their 
application potentials. Also, except for the finite edge-water 

ANN model, other models’ scaled variables were further 
normalized by taking their natural logarithm. Meaning that 
the de-normalization of these models predicted outputs 
would not be straight forward, as they will involve 2-stage 
de-normalization. Besides, any ANN model predicts val-
ues in the range of 0.00001–1.0 effectively, which is not the 
case in edge- and bottom-water drive infinite-acting aquifers. 
Therefore, the potential of the Nashawi and Elkamel (1999) 
ANN models to predict new sets of data is in doubt. Hence, 
it is imperative to develop ANN models that can handle new 
datasets to predict WeD and PD that are comparable with the 
existing models in this study.

Overview of artificial neural network (ANN)

According to Zou et al. (2008), the artificial neural network 
(ANN), often just called a neural network, is a machine 
learning method evolved from the idea of simulating the 
human brain. Therefore, ANN is modeled on the concept 
of biological neural network with ANN as the interconnec-
tion nodes or neurons. An ANN consists of several artificial 
neurons (i.e., nonlinear processing unit) connected through 
weights (Krenker et al. 2011). Zou et al. (2008) reported that 
ANN has three major components, namely, node character, 
network topology and learning rules. The node or neuron 
character signals processes by the neuron, such as the num-
ber of inputs and output, and the activation (transfer) func-
tion. The network topology controls the manners neurons are 
array and linked to the network. Again, the learning rules 
determine how the weights and biases (threshold) are initial-
ized and adjusted in the network. There are several types 
of neural networks, namely, feed-forward neural network 
(FFNN), multilayer perceptron (MLP), generalized regres-
sion neural network (GRNN), convolution neural network 
(CNN), radial basis function neural network (RBFNN), 
recurrent neural network (RNN), etc. A typical ANN topol-
ogy or architecture has three layers: input layer, hidden layer 
and output layer (Jiang et al. 2018; Han et al. 2018). Figure 1 
depicts a simplified topology of an ANN, which can be rep-
resented mathematically as in Eq. 1 (Anifowose et al. 2012).

where xi are the inputs to the neuron, Wi are the weight 
attached to the inputs to the neuron, bi is the bias (or thresh-
old), f  is the network transfer function, and y is the output of 
the neuron. Krenker et al. (2011) mentioned that the major 
unknown variable in Eq. 1 is the transfer function, which is 
chosen based on the nature of the problem to be solved by 
the artificial neuron. The various transfer or activation func-
tions available in the literature are linear, nonlinear, piece-
wise linear, sigmoidal, tangent, hyperbolic and polynomial 

(1)y = f

[

n
∑

i=1

(

xiWi + bi
)

]
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functions (Anifowose et al. 2012). In any case, the most used 
transfer functions in a neural network are linear function 
“purelin” and nonlinear (sigmoid) function “tansig.” The 
sigmoid function is as shown in Eq. 2;

where z represents the node summed variables and �(z) 
denotes the transformed node output. The value processed 
by the sigmoid function is the network node output value. 
An artificial neural network learns a task by adjusting its 
weights (Musa and Hamisu 2019). The higher the weight of 
an artificial neuron is, the stronger the input which is mul-
tiplied by it will be. The types of network learning or train-
ing are supervised and unsupervised learning approaches. 
Supervised training requires the output data to learn the 
target data, while unsupervised learning does not need the 
output data to predict the target outcome (Krenker et al. 
2011). There are several ANN learning algorithms avail-
able in the literature. The importance of any training algo-
rithm is to minimize the mean square error (MSE) between 
the predicted output (target) datasets of the model and the 
observation outputs datasets used in the network training 
(Okon et al. 2020). Examples of the available training algo-
rithms include Levenberg–Marquardt, Bayesian regulariza-
tion, scaled conjugate gradient, Quasi-Newton, etc. Among 
these ANN learning algorithms, Levenberg–Marquardt 
algorithm is the most efficient (Konate et al. 2015), as it is 
faster and has more convergence stability than other learning 
algorithms (Hagan and Menhaj 1994). So far, ANNs have 
been applied in numerous fields, like medical, environmen-
tal, software engineering, control engineering, etc. In petro-
leum engineering, the most common type of ANN is the 
MLP which is train with a feed-forward back-propagation 

(2)�(z) =
1

1 + exp (−z)

(FFBP) approach (Wood 2019). Some applications of ANN 
in petroleum industry include prediction of hydrocarbon 
reserve (Ma and Gomez 2015); reservoir characterization 
(Long et al. 2016); mud loss treatment (Cristofaro et al. 
2017); relative permeability interpolation (Dang et al. 2018); 
water saturation prediction of sandstone reservoirs (Khan 
et al. 2018); development of screening tool for  CO2 injec-
tion in naturally fractured reservoirs (Hammam and Ertekim 
2018), among others.

Materials and methods

Data acquisition and preparation

The edge-water van Everdingen-Hurst (1949) and bottom-
water Allard and Chen (1988) dimensionless datasets of 
time ( tD ), radius ( reD ), vertical distance ( zD ) and water influx 
( WeD ) required for the finite (bounded) and infinite-acting 
aquifers were extracted from Ahmed and McKinney (2005). 
These vEH datasets were based on analytical solution (using 
Laplace transformation) to the radial diffusivity equation, 
which assumed there was step change between the reser-
voir and the aquifer pressure. The constant reservoir-aquifer 
boundary pressure solution was presented in the form of 
dimensionless water influx ( WeD ) as a function of tD and 
reD . Also, the corresponding edge-water dimensionless pres-
sure ( PD ) for the two reservoir-aquifer configurations: finite 
(bounded) and infinite-acting, was evaluated using Chatas 
(1953) and Edwardson et al. (1962) models (Eqs. 3 and 
4). In the bounded aquifer, the edge-water dimensionless 
influx ( WeD ) and dimensionless pressure ( PD ) are functions 
of dimensionless time ( tD ) and dimensionless radius ( reD ) 
while in the bottom-water, they are functions of tD , reD and 
dimensionless vertical distance ( zD ). Also, in the infinite-
acting aquifer, WeD and PD are a function of tD in edge-water 
drive and the functions of tD and zD in the bottom-water 
drive reservoir. Regrettably, there is no available empirical 
or analytical model(s) in the literature for the estimation of 
PD in the bottom-water drive reservoir type for bounded and 
infinite-acting aquifers.

For the finite (bounded) aquifer, the Chatas (1953) model 
for predicting PD in edge-water drive reservoir-aquifer con-
figuration is given as:

For the infinite-acting aquifer, the Edwardson et al. (1962) 
model for predicting PD in bottom-water drive reservoir-
aquifer configuration is expanded as:

(3)PD =
0.5 + 2tD

r2
eD

− 1
−

r4
eD

[

3 − 4 ln
(

reD
)]

− 2r2
eD

− 1

4
(

r2
eD

− 1
)2

Fig. 1  A simplified ANN topology (architecture) (Anifowose et  al. 
2012)
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when the tD > 100 ; thus, PD = 0.5
[

ln
(

tD
)

+ 0.80907
]

Therefore, for the bounded aquifer, the edge-water drive 
consists of 516 datasets with tD and reD as input data and WeD 
and PD as output variables. The bottom-water drive reservoir 
type has 1218 data points with tD , reD and zD as input data 
and WeD as output data. Again, for the infinite-acting aquifer, 
the datasets were 549 for an edge-water drive reservoir with 
tD as an input variable and WeD and PD as output data. The 
bottom-water drive consists of 4098 datasets with tD and zD 
as input data and WeD as output data. Tables 1 and 2 present 
the input and output variables’ minimum and maximum val-
ues and the statistical description of these variables’ values 

(4)PD =
370.529

√

tD + 137.582tD + 5.69549
�

tD
�1.5

328.834 + 265.488
√

tD + 45.2157tD +
�

tD
�1.5

for the various reservoir-aquifer configurations. As observed 
in Table 2, especially for the infinite-acting aquifer, the dif-
ferences between the variables maximum and minimum 
values (i.e., range) are large, and these values will affect 
the network training process if not scaled down. Hence, the 
input and output variables were normalized to 0–1 using 
the maximum–minimum normalization equation (Eq. 5). 
This approach ensures that the neural network training algo-
rithm will adjust the network weights and biases adequately. 
Again, scaling the input and output data to 0–1 reduces the 
sensitivity of the neural networks’ sigmoidal (i.e., activation) 
function to large data values (Okon et al. 2020).

(5)ynormalized =
y − ymin

ymax − ymin

Table 1  Minimum and maximum values of the input and output variables for ANN models development

Reservoir drive type Datasets Input data Input data

Bounded reservoir

Min Max Min Max

Edge-water drive 516 t
D

0.05 500 W
eD

0.276 49.36
r
eD

1.5 10.0 P
D

0.2438 22.101
t
D

2.0 1200
Bottom-water drive 1218 r

eD
4.0 10.0 W

eD
2.398 49.96

z
D

0.05 1.0

Infinite-acting reservoir

Edge-water drive 549 t
D

0.0 2.0 ×  1012
W

eD
0.0 1.42 ×  1011

P
D

0.0 14.5666
Bottom-water drive 4098 t

D
0.10 2.0 ×  1012

W
eD

0.176 1.4 ×  1011

z
D

0.5 1.0

Table 2  Statistical description of the input and output variables used for the ANN models development

x : mean; SD : Standard deviation

Reservoir type Aquifer geometry Statistical tool Input and Output Variables

tD reD zD WeD PD

Bounded Reservoir Edge-water drive x 41.4825 5.1124 – 10.4993 2.9211
SD 79.5594 2.6406 – 10.9456 2.7628

Range 499.95 8.50 – 49.084 21.8570
Bottom-water drive x 136.2644 7.2989 0.5071 18.8677 –

SD 202.9565 2.2160 0.3489 13.2108 –

Range 1198 6.0 0.95 48.453 –
Infinite-acting Reservoir Edge-water drive x 1.81 ×  1010 – – 1.34 ×  109 4.4650

SD 1.35 ×  1011 – – 9.78 ×  109 2.8416

Range 2.0 ×  1012 – – 1.42 ×  1011 14.5666
Bottom-water drive x 1.89 ×  1011 – 0.5071 1.35 ×  109 –

SD 1.38 ×  1011 – 0.3490 9.69 ×  109 –

Range 2.0 ×  1012 – 0.95 1.4 ×  1011 –
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where ynormalized is the normalized input or output variable,y 
is the actual variable value, and ymin and ymax are the minima 
and maxima values of the variables, respectively. It is worth 
mentioning that after normalizing the infinite-acting aquifer 
edge-water and bottom-water datasets, the scaled tD and WeD 
datasets were in the range of 1.0 ×  10–12–1.0. These extreme 
values would affect the generalization capacity of the ANN 
models predictions. In this case, the edge-water and bottom-
water infinite-acting aquifer datasets were grouped into five 
sets, and then scaled based on the minimum and maximum 
values in Table 3 to reduce these datasets range.

Artificial neural network development

The artificial neural network (ANN) models for predicting 
the dimensionless influx ( WeD ) and the dimensionless pres-
sure ( PD ) of finite (bounded) and infinite-acting aquifers 
were developed using the neural fitting tool (nftool) in MAT-
LAB (Matrix Laboratory) 2015a mathematical software. The 
normalized input (i.e., tD , reD and zD ) and output (i.e.,WeD 

and PD ) datasets for the various reservoir-aquifer configu-
rations were exported to the MATLAB nftool environment 
and randomly divided into three parts, namely, training set 
(70%), validation set (15%) and testing set (15%), as shown 
in Table 4. The basic settings of the MATLAB software 
used to train and developed the ANN models are visible in 
Table 5. The neural network training was supervised learn-
ing as the target data ( WeD and PD ) were provided to the 
network as outputs. In the training phase, the network learn-
ing algorithm: Levenberg–Marquardt (trainlm in MATLAB 
which takes less time) adjusts the network neurons’ weights 
and biases until the neural network learns the appropriate 
input–output pattern of the datasets (Okon et al. 2020). 
Again, during the training stage, the predictions performance 
of the neural network was assessed using the validation and 
test datasets. Then, the network training truncated based on 
the stopping criteria, that is, mean square error (MSE) and 
the number of the epoch (iteration). The MATLAB software 
default values for these stopping criteria are given in Table 5. 
In this software, the training automatically stopped when 

Table 3  Ranges of the grouped edge- and bottom-water drive infinite-acting aquifer variables

Reservoir-aquifer configurations Dataset group tD WeD PD

Min Max Min Max Min Max

Infinite-acting Edge-water SET-1 0 1000 0 293.514 0 3.8584
SET-2 1000 1.0 ×  105 293.514 17,586.28 3.8584 6.1610
SET-3 1.0 ×  105 1.0 ×  108 17,586.28 1.095 ×  107 6.1610 9.6149
SET-4 1.0 ×  108 2.0 ×  1010 1.095 ×  107 8.75 ×  108 9.6149 11.9175
SET-5 1.0 ×  1010 2.0 ×  1012 8.75 ×  108 1.42 ×  1011 11.9175 14.5666

t
D

z
D

W
eD

Infinite-acting Bottom-water SET-1 0 1000 0.5 1.0 0.176 274
SET-2 1000 1.0 ×  105 0.5 1.0 240 16,870
SET-3 1.0 ×  105 1.0 ×  108 0.5 1.0 3920 1.07 ×  107

SET-4 1.0 ×  108 2.0 ×  1010 0.5 1.0 1.01 ×  107 8.58 ×  108

SET-5 1.0 ×  1010 2.0 ×  1012 0.5 1.0 1.61 ×  108 1.40 ×  1011

Table 4  Training, validation 
and testing datasets of the finite 
and infinite-acting aquifers

Reservoir-aquifer geometry Datasets Training Validation Testing

Finite aquifer Edge-water 516 362 77 77
Bottom-water 1218 852 183 183

Infinite-acting aquifer Edge-water 549 Model-1 178 38 38
Model-2 151 32 32
Model-3 24 5 5
Model-4 16 3 3
Model-5 16 4 4

Bottom-water 4098 Model-1 1171 251 251
Model-2 1293 277 277
Model-3 170 37 37
Model-4 112 24 24
Model-5 122 26 26
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the validation dataset generalization (i.e., MSE value) stops 
improving. According to Okon et al. (2020), the weights 
and biases that yield the lowest error from the supervised 
datasets are the network best generalization. Also, this least 
MSE and correlation coefficient (R) values were the basis 
for selecting the best ANN architecture. In other words, a 
trial-and-error approach was used to achieve the number of 
neurons in the network hidden layer. Hence, the ANN archi-
tecture training was several times repeated to ensure that its 
random weights initialization did not result in the network’s 
inconsistent performance correlation.

Results and discussion

Performance of the ANN models

Finite (Bounded) aquifer

The developed ANN models for predicting the dimension-
less influx ( WeD ) and dimensionless pressure ( PD ) of edge-
water and bottom-water drive finite (bounded) aquifer are 
three-layer feed-forward back-propagation networks. These 

developed ANN models architectures are established based 
on their best generalization performance with the training, 
validation and testing datasets. Table 6 shows the models 
architecture as well as their performance indexes, namely, 
mean square error (MSE) and correlation coefficient (R) 
values, for this reservoir-aquifer configuration. From this 
table, the ANN model for the edge-water drive has two 
neurons at the input layer, ten neurons at the hidden layer 
and two neurons at the output layer, thus, represented as 
2–10–2. Also, the bottom-water drive ANN model has three 
neurons at the input layer, six neurons at the hidden layer 
and one neuron at the output layer (i.e., 3–6–1). Again, the 
developed ANN models performance plots that showed the 
training, validation, testing and overall predictions of these 
models to the edge-water and bottom-water drives datasets 
are visible in Figs. 2 and 3, respectively. For the edge-water 
drive ANN model, its predictions were very close to the 
actual WeD and PD datasets. This assertion is because of 
the MSE and R values obtained (Table 6) and the diago-
nal alignment of the output and target from the training, 
validation and testing datasets (Fig. 2). Besides, the overall 
performance of the edge-water ANN model prediction of 
WeD and PD data resulted in an R-value of 0.99983. This 

Table 5  The basic ANN models 
training parameters

Parameters Values

Number of input neurons, Finite (Bounded) aquifer Edge-water 2 ( t
D
 , r

eD
)

Bottom-water 3 ( t
D
 , r

eD
 , z

D
)

Number of input neurons, Infinite-acting aquifer Edge-water 1 ( t
D
)

Bottom-water 2 ( t
D
 , z

D
)

Number of hidden layer 1
Number of neurons in hidden Edge-water 10
layer, Finite (Bounded) aquifer Bottom-water 6
Number of neurons in hidden Edge-water 5
layer, Infinite-acting aquifer Bottom-water 8
Number of output neuron, Edge-water 2 ( W

eD
 , P

D
)

Finite (Bounded) aquifer Bottom-water 1 ( W
eD

)
Number of output neuron, Edge-water 2 ( W

eD
 , P

D
)

Infinite-acting aquifer Bottom-water 1 ( W
eD

)
Input activation function tansig
Output activation function purelin
Learning algorithm (trainlm) Levenberg–Marquardt
Mean square error (MSE) 1.0e−05
Number of epochs 1000
Training rate 0.7

Table 6  Training, validation 
and testing performance of the 
finite aquifer ANN models

Reservoir drive ANN topology Training Validation Testing

MSE R MSE R MSE R

Edge-water 2–10–2 1.030e−5 0.99985 1.532e−5 0.99979 1.388e−5 0.99983
Bottom-water 3–6–1 3.202e−5 0.99978 3.791e−5 0.99975 2.723e−5 0.99983
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R-value further supported that the model predictions fit very 
close to the actual WeD and PD data for the edge-water drive 
finite aquifer. Just as in the developed edge-water model, the 
performance plots of the bottom-water drive ANN model 
as depicted in Fig. 3 implied that the neural network pre-
dictions were near-exact values of the WeD datasets. The 
efficient predictions of this ANN model are visible in the 
MSE and R values obtained (Table 6), as well as the diago-
nal trend of the output-target datasets from the training, 

validation and testing in Fig. 3. Also, the robust predictions 
of this ANN model are visible in its overall performance 
R-value of 0.99978. Therefore, these empirical ANN mod-
els for the edge-water and bottom-water WeD and PD predic-
tions based on the Levenberg–Marquardt learning algorithm 
are expanded in Eqs. 6 and 7. These equations predict the 
WeD and PD in the normalized forms which would be de-
normalized using Eq. 8;

Edge-water drive ANN model for finite aquifer:

Bottom-water drive ANN model for finite aquifer:

(6)(WeD,PD) =

2
∑

j=1

[

purelin

{

10
∑

i=1

2
∑

j=1

tansig
[(

tDj1 + reDj2
)

i
+ bi

]

}

× Lwi,j + bki

]

(7)(WeD) =

1
∑

j=1

[

purelin

{

6
∑

i=1

3
∑

j=1

tansig
[(

tDj1 + reDj2 + zDj3
)

i
+ bi

]

}

× Lwi,j + bki

]

Fig. 2  Edge-water drive finite 
aquifer ANN model perfor-
mance plot
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 where 
(

WeD,PD

)

denorm.
 would be the de-normalized WeD 

or PD value(s) predicted by the developed ANN models, 
(

WeD,PD

)

Min.
 and 

(

WeD,PD

)

Max.
 are the actual minimum and 

(8)
(

WeD,PD

)

denorm.
=
(

WeD,PD

)

Min.
+
(

WeD,PD

)[(

WeD,PD

)

Max.
−
(

WeD,PD

)

Min.

]

maximum values of WeD or PD , and 
(

WeD,PD

)

 is the normal-
ized value(s) of WeD or PD predicted by the ANN models.

Fig. 3  Bottom-water drive finite 
aquifer ANN model perfor-
mance plot

Table 7  Weights and biases of 
the developed edge-water ANN 
model

i Input layer weights Input biases Hidden layer weight Input biases

j
1
(tD) j

2
(reD) b

1
Lw

1
Lw

2
bk

1  − 0.93605  − 1.0019441 1.893821  − 0.81513 0.05756  − 35.343549
2 2.337696  − 2.8786690  − 2.3113 11.52446  − 15.8817  − 12.135393
3 1.788543  − 1.0376910 0.760595 19.23305  − 3.96886
4 1.44388  − 0.0278711 3.086581 27.1473 2.855759
5  − 9.82893  − 6.2658930 0.471504  − 0.01458  − 0.0079
6 1.759516  − 1.0668261 0.788837  − 19.7503 4.30937
7  − 0.62423  − 1.1124574  − 1.33701 1.719126  − 0.58229
8 1.623027  − 2.3682539  − 2.33772  − 37.9502 54.98914
9  − 24.4916 0.3508711  − 26.7682  − 13.9546 0.521742
10 1.397001 2.1866949 5.217839  − 29.0559 47.95144
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Equations 6 and 7 are the trained artificial neural network 
(ANN) models for predicting WeD and PD of edge-water and 
bottom-water finite aquifers. In these equations, the variables 
j1 , j2 and j3 are input weights connected to the inputs data 
tD , reD and zD , respectively, from the input layer to the hid-
den layer neurons. The variable Lwi,j is hidden layer weights 
attached to the output layer neuron(s), as the variables bi and 
bk are biases connected to the hidden layer neurons and output 
layer neuron(s), respectively. These variables values for the 
developed edge-water and bottom-water finite aquifer ANN 
models are as shown in Tables 7 and 8, respectively. Also, in 
these equations, the activation function ‘tansig’ transformed 
the combined inputs ( tD , reD and zD ), weights ( j1 , j2 and j3 ) and 
bias ( bi ), that is, output(s) of the hidden layer neurons to the 
output layer neuron(s) and the ‘purelin’ function converts the 
estimated outcome of the output layer neuron(s) to established 
the linear relationship between the input and output datasets.

Infinite‑acting aquifer

The developed ANN models for edge-water and bottom-
water infinite-acting aquifers are also a three-layer feed-for-
ward back-propagation (FFBP) neural network. As earlier 
mentioned that because of the large values of tD and WeD 
datasets of the edge-water and bottom-water infinite-acting 
aquifer, the data were grouped into five sets. Hence, five 

ANN models, as indicated in Table 9, were trained to han-
dle the predictions of WeD and PD for this reservoir-aquifer 
geometry. The developed edge-water drive ANN models 
have one neuron at the input layer, five neurons at the hid-
den layer and two neurons at the output layer (i.e., 1–5–2), 
while the bottom-water drive models have two neurons at 
the input layer, 8 neurons at the hidden layer and one neuron 
at the output layer (i.e., 2–8–1). Table 9 depicts the train-
ing, validation and testing performance, that is, MSE and 
R values of the developed models. From these MSE and 
R values and the performance plots obtained for the vari-
ous ANN models, they showed that the models’ predictions 
were close to the actual WeD and PD datasets. Figures 4 and 
5 are the plots showing the training, validation, testing and 
overall performance of the edge-water ANN Model-1 and 
bottom-water ANN Model-1, respectively. Interestingly, the 
similar trends were obtained for other models (i.e., model-
2–5). Therefore, the overall performance of the five ANN 
models for the edge-water infinite-acting aquifer resulted 
in R values of 0.99994, 1.0, 0.99995, 0.99999 and 0.99997, 
while that of bottom-water resulted in R values of 1.0, 1.0, 
1.0, 1.0 and 0.99959. These MSE and R values obtained, 
and the output-target diagonal trends of the ANN models 
overall performance implied that the developed models 
would handle the predictions of WeD and PD for edge-water 
and bottom-water infinite-acting aquifers. The mathematical 

Table 8  Weights and biases of 
the developed bottom-water 
ANN model

i Input layer weights Input biases Hidden layer weight Input bias

j
1
(tD) j

2
(reD) j

2
(zD) b

1
Lw

1
bk

1 1.508636 1.11969  − 0.18959  − 0.97293 2.243376  − 2.97751
2 1.66491 1.005135  − 0.21951  − 0.93007  − 1.95284
3 6.89277  − 0.45576  − 0.08777 6.599614 4.996322
4  − 0.07996 0.626797  − 0.00431 0.091816 1.214238
5  − 6.82805 0.165655  − 0.14067  − 7.9447  − 2.29222
6 7.287317  − 0.40061  − 0.07584 6.866409  − 4.23918

Table 9  Training, validation and testing performance of the infinite-acting aquifer ANN models

Reservoir drive ANN topology ANN model Training Validation Testing

MSE R MSE R MSE R

Edge-water 1–5–2 Model-1 7.782e–6 0.99996 3.607e–5 0.99984 7.267e–6 0.99997
Model-2 1.047e–7 0.99999 3.846e–8 0.99999 8.211e–8 0.99999
Model-3 1.091e–5 0.99996 1.305e–5 0.99995 1.682e–5 0.99991
Model-4 8.780e–8 0.99999 2.082e–7 0.99999 2.078e–5 0.99974
Model-5 1.539e–7 0.99999 3.432e–5 0.99964 3.481e–5 0.99998

Bottom-water 2–8–1 Model-1 5.041e–7 0.99999 4.980e–7 0.99999 4.783e–7 0.99999
Model-2 1.957e–8 0.99999 5.123e–8 0.99999 6.013e–8 0.99999
Model-3 3.650e–7 0.99999 2.021e–7 0.99999 1.605e–6 0.99999
Model-4 5.143e–7 0.99999 3.786e–7 0.99999 6.673e–7 0.99999
Model-5 5.835e–5 0.99943 5.678e–5 0.99974 1.276e–5 0.99991
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equations of the developed ANN models for edge-water and 
bottom-water infinite-acting aquifers are as shown in Eqs. 9 
and 10. The variables j1 , j2 , j3 , Lwi,j , bi , bk , and activation 
functions: tansig and purelin, in these equations are the same 
as described for Eqs. 6 and 7. Tables 10, 11, 12, 13 and 14 
depict the values of these variables in the developed edge-
water infinite-acting aquifer models, while Tables 15, 16, 17, 
18 and 19 present the values for the bottom-water infinite-
acting aquifer models.

Edge-water drive ANN model for infinite-acting aquifer:

Bottom-water drive ANN model for infinite-acting 
aquifer:

(9)(WeD,PD) =

2
∑

j=1

[

purelin

{

5
∑

i=1

1
∑

j=1

tansig
[(

tDj1
)

i
+ bi

]

}

× Lwi,j + bki

]

(10)
(

WeD

)

=
∑

j=1

[

purelin

{

8
∑

i=1

2
∑

j=1

tansig
[(

tDj1 + zDj2
)

+ bi
]

}

× Lwi,j + bk

]

In all the developed empirical ANN models, the general 
steps of the models to predict WeD and PD for the finite 
(bounded) and infinite-acting aquifers require providing the 
model(s) input parameters: tD , reD and zD , values. For exam-
ple, in the developed edge-water finite aquifer ANN model 
to predict WeD and PD , the input parameters (i.e., tD and reD ) 
values provided to the input layer neurons will multiply with 
their input layer weights: j1 and j2 , respectively. In the first 
neuron of the hidden layer, the sum of these inputs to the 
neuron and its bias ( bi ), that is, 

∑

i=1

∑2

j=1

�

tDj1 + reDj2
�

1
+ b1 

is estimated using the values for i = 1 in Table 7, where 
j1 = −0.93605, j2 = −1.0019441 and b1 = 1.893821, and their 

Fig. 4  Edge-water drive infinite-
acting aquifer ANN model 
(Model-1) performance plot

(2021) 11:1885–1904Journal of Petroleum Exploration and Production Technology 



1896 

1 3

Fig. 5  Bottom-water drive infi-
nite-acting aquifer ANN model 
(Model-1) performance plot

Table 10  Weights and biases of 
the developed edge-water ANN 
Model-1

Input weights Input biases Hidden layer weight Output biases

i j
1
(tD) b

1
Lw

1
Lw

2
bk

1 0.592815  − 11.3895 8.110947 64.87528428  − 5.72214
2  − 0.20069  − 0.19554  − 4.82257  − 1.00243202  − 74.0469
3 2.038073 4.586331 10.00812 48.78773477
4 19.03442 21.65537 2.30217 50.41387002
5 315.6025 318.244 0.701886 40.35465944

Table 11  Weights and biases of the developed edge-water ANN 
Model-2

i Input 
weights

Input biases Hidden layer weight Output 
biases

j
1
(tD) b

1
Lw

1
Lw

2
bk

1 0.419221  − 0.52614 1.829332 0.180915  − 0.38807
2 0.563567 0.835056 1.251269 1.090775  − 12.2435
3  − 2.18135  − 3.32332  − 0.34596  − 3.39457
4 8.870327 10.15374 0.017444 2.900897
5 32.41138 34.54604 0.111826 6.001599

Table 12  Weights and biases of the developed edge-water ANN 
Model-3

Input 
weights

Input biases Hidden layer weight Output 
biases

i j
1
(tD) b

1
Lw

1
Lw

2
bk

1  − 6.87383 5.630295  − 0.01146 0.008828  − 0.30312
2 0.326209 0.019295 2.994527 0.634385  − 15.2071
3  − 1.86067  − 2.62919  − 0.24116  − 1.72483
4 14.97676 14.80108 0.003235 0.357384
5 71.56132 73.50562 0.053277 13.92153
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appropriate tD and reD values. This summation is transformed 
by the transfer function ‘tansig’ and connected to the output 
layer neurons. Again, the outcome from the first neuron in 
the hidden layer, 

∑

i=1

∑2

j=1
tan sig

�

tDj1 + reDj2
�

1
+ b1 is 

multiplied with the hidden layer weights ( Lwi,j ) and con-
nected to the output neurons. Thus, this input 
∑

i=1

∑2

j=1

�

tan sig
�

tDj1 + reDj2
�

1
+ b1

�

× Lwi,j  combined 
with the output biases ( bki ) in the output neurons. The 
outlined computations procedures are followed by other 
neurons ( i .e . ,  i = 2, 3… 10 )  in the hidden layer  
using their corresponding input weights ( j1 , j2 ) and 
biases ( bi ) from the input layer neurons, and weights 
( Lwi,j ) to link with the output layer neurons. The total 
summations in the output layer neurons, that is, 
∑2

j=1

�

purelin
�

∑10

i=1

∑2

j=1
tansig

��

tDj1 + reDj2
�

i
+ bi

�

�

× Lwi,j + bki

�

∑2

j=1

�

purelin
�

∑10

i=1

∑2

j=1
tansig

��

tDj1 + reDj2
�

i
+ bi

�

�

× Lwi,j + bki

�

 a r e 
transformed by the output layer transfer function ‘purelin’ 
and presented as the ANN model prediction(s) in the nor-
malized form. Then, the ANN model predicted outputs (i.e., 
WeD and PD ) would be de-normalized using Eq. 8.

Table 13  Weights and biases of the developed edge-water ANN 
Model-4

Input 
weights

Input biases Hidden layer weight Output 
biases

i j
1
(tD) b

1
Lw

1
Lw

2
bk

1  − 5.34342 7.616427  − 0.19361 0.198985 0.31164
2 0.28226  − 0.11831 3.390538 0.775696  − 5.842
3 1.180184 1.657614 0.270743 1.307581
4 5.204942 5.433135 0.003435 0.585594
5  − 17.3724  − 18.9369  − 0.05467 −4.63686

Table 14  Weights and biases of the developed edge-water ANN 
Model-5

i Input 
weights

Input biases Hidden layer weight Output 
biases

j
1
(tD) b

1
Lw

1
Lw

2
bk

1 3.052444  − 10.8808 1.248138 11.25223 0.13485
2 0.344166  − 0.14649 2.79575 0.520675  − 11.1293
3  − 1.06562  − 2.45062  − 1.62776  − 6.29203
4  − 5.51924  − 7.24091 0.163029  − 8.44282
5  − 26.1864  − 28.0842  − 0.10585  − 8.5565

Table 15  Weights and biases 
of the developed bottom-water 
ANN Model-1

i Input weights Input biases Hidden layer weight Output bias

j
1
(tD) j

2

(

zD
)

b
1

Lw
1

bk

1 0.921793 2.558332  − 3.35425  − 0.05011644  − 2.77674
2 0.124696  − 0.00178 0.236951 7.920760262
3  − 0.23814  − 1.44314 0.806048 0.445979348
4 1.658264 0.031662 3.395981 1.912592839
5 3.273171 3.005842 1.707205  − 0.00158299
6  − 16.7121  − 0.09035  − 19.0599  − 1.43222378
7  − 0.35034 0.706197  − 2.80193 2.498670008
8  − 0.18928  − 1.64078 0.865056  − 0.31372102

Table 16  Weights and biases 
of the developed bottom-water 
ANN Model-2

i Input weights Input biases Hidden layer weight Output bias

j
1
(tD) j

2

(

zD
)

b
1

Lw
1

bk

1 1.805079 2.076887  − 3.30911  − 0.03915503  − 2.02391
2 0.436752  − 0.01212  − 0.30621 2.123066693
3  − 0.91130  − 1.42462 0.950519 0.026203499
4 1.561208 0.04151 1.165645 0.208771991
5 0.138143 3.278276 0.079355  − 0.00335107
6  − 3.05957  − 0.02748  − 5.11476  − 2.49343042
7  − 1.69774 0.814585  − 2.80323 0.042488494
8 0.466702  − 4.55605 3.51433 0.001793503
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Generalization of the developed ANN models 
predictions and comparison with other existing 
models

The robustness of any developed model is its ability to predict 
with new datasets to justify its generalization as well as appli-
cation. As earlier pointed out, the used of vEH approach for 
estimation of water influx into the reservoir(s) is achieved by 
table look-up. Most times, this required interpolation between 
two data points to obtain the corresponding WeD , as the cal-
culated tD (even reD and zD ) may not be the exact value as pro-
vided in the vEH table. Therefore, the developed ANN mod-
els generalization potential was determined using randomly 
generated tD datasets based on their corresponding reD and 

zD . The ANN models predicted WeD were compared with the 
Lagrangian interpolation approach (Eq. 11) estimated WeD . 
Again, the edge-water infinite-acting models predicted WeD 
were compared with the Edwardson et al. (1962) polynomial 
(Eqs. 12 and 13) estimated WeD . Also, the developed models 
(for finite and infinite-acting edge-water aquifers) predicted 
PD were compared with some existing models, namely, Cha-
tas (1953), Edwardson et al. (1962), Lee (1982) and Fanchi 
(1985) estimations. The generalization performance of these 
developed models was determined using some statistical 
measures, like, coefficient of determination (R2), R, MSE, 
root-mean-square error (RMSE) and average absolute rela-
tive error (AARE) and cross-plots.

Table 17  Weights and biases 
of the developed bottom-water 
ANN Model-3

i Input weights Input biases Hidden layer weight Output bias

j
1
(tD) j

2

(

zD
)

b
1

Lw
1

bk

1 3.821876 0.616475379  − 3.25721 0.031639  − 0.967766
2 2.530793  − 0.41886614  − 3.18143 0.125974
3  − 0.90416  − 0.02989468 0.143353  − 0.90781
4  − 3.42025 0.444806106 2.24222  − 0.02876
5  − 0.59980 0.853563377  − 0.01835  − 0.08026
6 1.656769 0.180457588 1.232131 0.202108
7 2.129224 0.131789769 3.499738 1.082554
8  − 1.17360 1.101690488  − 2.1765  − 0.04998

Table 18  Weights and biases 
of the developed bottom-water 
ANN Model-4

i Input weights Input biases Hidden layer weight Output bias

j
1
(tD) j

2

(

zD
)

b
1

Lw
1

bk

1 2.908838 3.559277  − 2.8956477 0.011586 0.330811951
2 0.382018  − 0.0190  − 0.2043294 2.443329
3 0.888585 2.901874  − 1.7850305  − 0.01397
4 2.737426 2.006805  − 0.1870357 0.017398
5  − 2.46803  − 0.60677  − 1.4202537  − 0.06095
6  − 2.54998  − 2.55896  − 1.979025  − 0.00039
7  − 2.1266 1.111571  − 1.8037836  − 0.01525
8 3.318732 0.345222 3.55855461 0.108533

Table 19  Weights and biases 
of the developed bottom-water 
ANN Model-5

i Input weights Input biases Hidden layer weight Output bias

j
1
(tD) j

2

(

zD
)

b
1

Lw
1

bk

1 1.67080288 3.266971 4.54356235  − 0.00531  − 0.5781
2 3.58887932 0.26768  − 2.3116437 0.066026
3  − 1.5257419  − 3.45198 1.4390306  − 0.0037
4  − 2.9644605  − 2.43589 0.49762271 0.02396
5  − 0.9191691 1.868856 0.72593364  − 0.06854
6  − 0.3809961  − 0.03627  − 0.2496443  − 2.61315
7 0.98418142  − 4.13483 2.16249157 0.024557
8 2.28647923  − 2.4174 4.08816674 0.032978
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where WeD(tD) is the required dimensionless influx at esti-
mated tD , WeD(tD1

) and WeD(tD2
) are the look-up dimension-

less influx at tD1
 and tD2

 , respectively, from vEH table.
Edwardson et al. (1962) polynomial:

 (i). For 0.01 < tD < 200

 (ii). For tD > 200

Lee (1982) equation:

 where the values for a1 through a8 are: a1 = 0.8085064, 
a2 = 0.29302022, a3 = 0.035264177, a4 = −1.4036304 ×  10–3, 

(11)

WeD(tD) = WeD(tD1
)

[

tD2
− tD

tD2
− tD1

]

+WeD(tD2
)

[

tD − tD1

tD2
− tD1

]

(12)WeD =

�

1.2838
√

tD + 1.19328tD + 0.269872
�

tD
�1.5

+ 8.55294 × 10−3
�

tD
�2
�

�

1 + 0.616599
√

tD + 0.0413008tD
�

(13)WeD =
−4.29881 + 2.02566tD

ln
(

tD
)

(14)

P
D
=a

1
+ a

2
ln(t

D
) + a

3
[ln(t

D
)]2 + a

4
[ln(t

D
)]3

+ a
5
t
D
+ a

6
(t
D
)2 + a

7
(t
D
)3 +

a
8

t
D

a5 =  −4.7722225 ×  10 –4,  a6  =  5 .1240532  ×  10 –7, 
a7 = 2.3033017 ×  10–10 and a8 = −2.6723117 ×  10–3.

Fanchi (1985) equation:

where the values for a0 through a3 in the Fanchi (1985) equa-
tion varied depending on the reD value (i.e., 1.5, 2.0, 3.0, 4.0, 
5.0, 6.0, 8.0, 10.0 and ∞) considered for the equation. The 
values for the constants a0 through a3 are available in Ahmed 
and McKinney (2005).

(15)PD = a0 + a1tD + a2 ln(tD) + a3[ln(tD)]
2

Table 20  Statistical 
performance of the developed 
finite aquifer ANN models with 
other models

Finite aquifer type Parameter/Model comparison Statistical measures

R2 R MSE RMSE AARE

Edge-water W
eD

 : Lang_ANN 0.9984 0.9992 0.3496 0.5913 0.2414
P
D
 : Chatas_ANN 0.9985 0.9993 0.0125 0.1117 0.0678

Bottom-water P
D
 : Fanchi_ANN 0.9863 0.9931 0.1411 0.3756 0.2310

W
eD

 : Lang_ANN 0.9993 0.9996 0.1863 0.4316 0.2215

Fig. 6  Comparison of edge-water finite aquifer ANN model predicted 
W

eD
 with Lagrangian interpolation

Fig. 7  Comparison of edge-water finite aquifer ANN model predicted 
P
D
 with other models

Fig. 8  Comparison of bottom-water finite aquifer ANN model pre-
dicted W

eD
 with Lagrangian interpolation
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Finite aquifer models

The generalization performance of the developed edge-water 
and bottom-water finite aquifer models was determined 
using 105 and 213, respectively, randomly generated tD 
datasets. Table 20 and Figs. 6, 7 and 8 present the gener-
alization and comparison performance of these developed 
ANN models for the finite aquifer. From the table, the sta-
tistical measure results and the cross-plots in Figs. 6 and 8, 
the developed ANN models predicted WeD were very close 
to the Lagrangian interpolated WeD . These models close 
predictions with the Lagrangian interpolation are visible in 
the diagonal trends of the data points along a unit slope 
(i.e., 45° from the origin). According to Al-Bulushi et al. 
(2009), this observation means a good agreement between 
the ANN models predicted WeD and Lagrangian interpo-
lated WeD . Hence, the statistical measures of these devel-
oped models performance resulted in R2, R, MSE, RMSE 
and AARE of 0.9984, 0.9992, 0.3496, 0.5913 and 0.2414 for 
edge-water ANN model and 0.9993, 0.9996, 0.1863, 0.4316 
and 0.2215 for bottom-water model. This implies that the 
developed ANN models would conveniently predict WeD for 

the edge-water and bottom-water finite aquifer with about 
99% accuracy without any vEH table look-up. Also, com-
paring the developed edge-water ANN model predicted PD 
with some existing models: Chatas (1953) and Fanchi (1985) 
equations for evaluating PD showed that the developed ANN 
model predictions fit close to the Chatas (1953) and Fanchi 
(1985) models estimated PD . A comparison of the ANN 

Table 21  Statistical 
performance of the developed 
infinite-acting aquifer ANN 
models

Reservoir drive Parameter ANN model Statistical measures

R2 R MSE RMSE AARE

Edge-water W
eD

Model-1 0.9999 0.9999 0.5447 0.7380 0.2329
P
D

0.9996 0.9998 4.740 ×  10–4 2.178 ×  10–2 1.470 ×  10–2

W
eD

Model-2 0.9999 0.9999 36.5811 6.0482 3.6096
P
D

0.9999 0.9999 4.627 ×  10–7 6.802 ×  10–4 5.548 ×  10–4

W
eD

Model-3 0.9999 0.9999 2.353 ×  107 4.850 ×  103 4.039 ×  103

P
D

0.9997 0.9999 2.180 ×  10–4 1.476 ×  10–2 1.177 ×  10–2

W
eD

Model-4 0.9999 0.9999 8.576 ×  109 9.261 ×  104 8.459 ×  103

P
D

0.9999 0.9999 1.722 ×  10–6 1.312 ×  10–3 1.0 ×  10–3

W
eD

Model-5 0.9998 0.9999 3.531 ×  1017 5.942 ×  108 2.010 ×  108

P
D

0.9999 0.9999 5.546 ×  10–5 7.447 ×  10–3 4.246 ×  10–3

Bottom-water W
eD

Model-1 0.9999 0.9999 0.2299 0.4795 0.1282
Model-2 0.9999 0.9999 67.1527 8.1947 3.8671
Model-3 0.9999 0.9999 3.914 ×  108 1.978 ×  104 4.617 ×  103

Model-4 0.9999 0.9999 2.921 ×  1011 5.410 ×  105 4.240 ×  105

Model-5 0.9999 0.9994 3.160 ×  1017 5.620 ×  108 3.870 ×  108

Table 22  Statistical 
performance of the overall 
edge- and bottom-water infinite-
acting aquifer ANN models 
with other models

Infinite-acting 
aquifer type

Parameter/model comparison Statistical measures

R2 R MSE RMSE AARE

Edge-water W
eD

 : Lang_ANN 0.9999 0.9999 6.329 ×  1016 2.516 ×  108 3.601 ×  107

W
eD

 : Edwardson_ANN 0.9999 0.9999 8.367 ×  1015 9.147 ×  107 2.702 ×  107

P
D
 : Edwardson_ANN 0.9999 0.9999 1.75 ×  10–4 1.325 ×  10–2 7.333 ×  10–3

P
D
 : Fanchi_ANN 0.9991 0.9996 1.079 ×  10–3 3.284 ×  10–2 2.823 ×  10–2

Bottom-water P
D
 : Lee_ANN 0.9865 0.9933 1.425 ×  10–2 1.194 ×  10–1 8.31 ×  10–2

W
eD

 : Lang_ANN 0.9999 0.9999 5.718 ×  1016 2.390 ×  108 7.0 ×  107

Fig. 9  Comparison of edge-water infinite-acting aquifer ANN model 
predicted W

eD
 with other models
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model predicted PD with the existing models estimated PD 
resulted in the statistical performance of R2 of 0.9985, R 
of 0.9993, MSE of 0.0125, RMSE of 0.1117 and AARE of 
0.0678 with Chatas (1953) model and R2, R, MSE, RMSE 
and AARE of 0.9863, 0.9931, 0.1411, 0.3756 and 0.2310, 
respectively, with Fanchi (1985) equation. Therefore, these 
developed ANN models can predict WeD and PD for edge-
water and the bottom-water finite aquifer that could be used 
to estimate water influx into the reservoir using van Everdin-
gen–Hurst approach or Carter–Tracy method.

Infinite‑acting aquifer

The developed edge-water and bottom-water infinite-acting 
aquifer ANN models generalization capacity was determined 
using 106 and 735 randomly generated tD datasets. These 
generated tD datasets were divided to fall within the five 
models (Model-1–5) data ranges in Table 3. Table 21 pre-
sents the statistical performance of the developed edge-water 
and bottom-water infinite-acting aquifer models predictions 
(i.e., WeD and PD ) with the new tD datasets when compared 
with Lagrangian interpolation for WeD and Chatas (1953) 

estimation for PD . The R2 and R values obtained for these 
ANN models indicate close predictions between the ANN 
models and these estimation methods. Furthermore, the 
developed infinite-acting aquifer ANN models overall gener-
alization potentials were compared with other existing mod-
els. The results of this evaluation are visible in Table 22 as 
well as cross-plots in Figs. 9, 10 and 11. For the edge-water, 
the developed ANN model predictions were very close to 
Lagrangian interpolation and Edwardson et al. (1962) poly-
nomial estimation of WeD ; this closeness is noted in the unit 
slope in Fig. 9. Again, the efficient performance of this ANN 
model is seen in its predicted PD values, as they are com-
parable to Edwardson et al. (1962), Fanchi (1985) and Lee 
(1982) models estimated PD . Also, in Table 22, the over-
all performance of the bottom-water infinite-acting model 
is close to the Lagrangian interpolation for WeD . In other 
words, these developed ANN models will predict WeD and 
PD that could be functional for the calculation of water influx 
in edge-water and bottom-water infinite-acting reservoir.

In all, the advantages and novelty of the developed ANN 
models over some existing models are as follows:

1. Compared to Nashawi and Elkamel (1999) ANN models 
that are multiple-inputs single-output (MISO), the devel-
oped models in this study for WeD and PD prediction for 
edge-water drive finite and infinite-acting aquifers are 
multiple-inputs multiple-outputs (MIMO) ANN models.

2. Unlike existing models, namely Lee (1982), Fanchi 
(1985), etc., that are correlation range limited and do 
not provide values for all the aquifer sizes presented by 
vEH, the developed ANN models cover the entire vEH 
datasets. Again, the ANN models can predict the WeD 
and PD values for aquifer sizes that are not provided by 
vEH but are within the reD and zD data ranges.

3. The challenges of table look-up and interpolation between 
time entries and preloading of the vEH data table into 
reservoir engineering software are taken care of with the 
developed ANN models for water influx calculation.

The application of the developed ANN models 
in water influx calculations in reservoir engineering 
software

Any model be it empirical, analytical or numerical is devel-
oped to drive home some or specific problems. According 
to Okon et al. (2020), any developed model is useless if 
it lacks an area of application. Therefore, these developed 
ANN models would be useful for the prediction of dimen-
sionless influx ( WeD ) and dimensionless pressure ( PD ) for 
the calculation of water influx ( We ) into the reservoir when 
incorporated into the software. Worthy to note that the avail-
able reservoir engineering software, like, ECLIPSE-100, 

Fig. 10  Comparison of edge-water infinite-acting aquifer ANN model 
predicted P

D
 with other models

Fig. 11  Comparison of bottom-water infinite-acting aquifer ANN 
model predicted W

eD
 with Lagrangian interpolation
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PETREL, RESOLVE, etc., calculate water influx into the 
reservoir using an approximate solution to diffusivity equa-
tion—Carter–Tracy model or pseudo-state aquifer produc-
tivity index—Fetkovich model. The limitations of these 
approaches are that Fetkovich model applies to finite aqui-
fer edge-water and bottom-water drive reservoirs, as Carter-
Tracy aquifer model applies to edge-water drive reservoir 
finite-acting and infinite-acting aquifers (Okotie and Ikporo 
2019). Again, Fetkovich approach underestimates the water 
influx into the reservoir, while Carter–Tracy method over-
estimates the water influx. Regrettably, the exact solution 
to diffusivity equation—van Everdingen–Hurst model that 
applies for both finite and infinite-acting aquifers edge-water 
and bottom-water drive reservoirs is limited in the reservoir 
engineering software. The reason is because of the chal-
lenge of table look-up in most tD entries to interpolate for 
WeD . In this direction, intelligent models that predict WeD for 
the calculation of We using vEH approach were necessary. 
The conceptual schematic of the developed ANN models 
for reservoir engineering software for the prediction of WeD 

and PD , and then the calculation of We using vEH or Carter-
Tracy method is as shown in Fig. 12. The software takes 
basic reservoir-aquifer properties and computes reservoir-
aquifer dimensionless variables, namely, tD , reD , zD and P′

D
 . 

It then checks the computed reD to determine the aquifer 
outer boundary to establish the aquifer type, that is, finite 
aquifer or infinite-acting aquifer. The computer program 
further assesses the computed zD to determine the reser-
voir drive type: edge-water or bottom-water, and the ANN 
model to be used for the prediction. For instance, if the men-
tioned conditions established finite aquifer edge-water drive, 
then the developed ANN model takes input variables (i.e., 
computed tD and reD ) to predict WeD and PD . Then, vEH or 
Carter–Tracy model could beused to estimate the We into the 
reservoir. Again, if the conditions established infinite-acting 
aquifer bottom-water drive, the developed ANN model takes 
the computed input variables (i.e., tD and zD ) and used the tD 
value to check for the appropriate ANN model’s weights and 
biases to predict the WeD . Hence, the We into the reservoir 
can be determined using vEH method.

Fig. 12  Software conceptual schematic of the developed ANN models
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Conclusion

Water influx calculation is an indispensable evaluation in 
reservoir engineering as an alternative method to assess 
reservoir underground withdrawal performance. The most 
reliable approach by vEH-based models is hindered by 
table look-up and interpolation between time entries to 
determine the reservoir-aquifer dimensionless variables: 
influx and pressure. In this study, the feed-forward back-
propagation (FFBP) artificial neural network (ANN) mod-
els were developed for the edge- and bottom-water drive 
finite and infinite-acting aquifers. The developed models 
are reproducible, as their weights and biases required to 
replicate the models are visible in this work. From the per-
formance of these developed ANN models, the following 
conclusions can be drawn:

1. the developed ANN models predicted reservoir-aquifer 
dimensionless variables: WeD and PD were fitted to the 
original vEH-based model datasets, as the overall per-
formance R values obtained for the edge- and bottom-
water finite aquifer models are 0.99983 and 0.99978, 
while edge- and bottom-water infinite-acting aquifer 
models are 0.99992 and 0.99997, respectively;

2. the developed finite aquifer ANN models predicted 
WeD values are comparable with the Lagrangian inter-
polation approach, as the obtained statistical measures 
between them resulted in the R2 of 0.9984, R of 0.9992, 
MSE of 0.3496, RMSE of 0.5913 and AARE of 0.2414 
for edge-water drive model, while bottom-water drive 
model resulted in the R2, R, MSE, RMSE and AARE of 
0.9993, 0.9996, 0.1863, 0.4316 and 0.2215, respectively;

3. for the infinite-acting aquifer models, their predicted 
WeD and Lagrangian interpolated WeD resulted in the R2, 
R, MSE, RMSE and AARE of 0.9999, 0.9999, 0.5447, 
0.7380 and 0.2329 for edge-water drive model (Model-
1); with an overall performance R2 value of 0.9999, R 
of 0.9999, MSE of 6.329 ×  1016, RMSE of 2.516 ×  108 
and AARE of 3.601 ×  107. The bottom-water model 
(Model-1) had R2 of 0.9999, R of 0.9999, MSE of 
0.2299, RMSE of 0.4795 and AARE of 0.1282; with 
an overall performance R2 value of 0.9999, R of 0.9999, 
MSE of 5.718 ×  1016, RMSE of 2.390 ×  108 and AARE 
of 7.0 ×  107;

4. again, the developed edge-water infinite-acting aqui-
fer ANN model predicted WeD were comparable with 
Edwardson et  al. (1962) polynomial estimated WeD , 
as the obtained R2 value of 0.9996, R of 0.9998, MSE 
of 4.740 ×  10–4, RMSE of 2.178 ×  10–2 and AARE of 
1.470 ×  10–2 for Model-1; and overall performance 
of R2, R, MSE, RMSE and AARE of 0.9999, 0.9999, 
8.367 ×  1015, 9.147 ×  107 and 2.702 ×  107, respectively;

5. the developed edge-water ANN models predicted PD 
were closed to some existing models, namely Cha-
tas (1953), Edwardson et al. (1962), Lee (1982) and 
Fanchi (1985) estimations, as the overall statistical 
performance: R2, R, MSE, RMSE and AARE obtained 
for finite aquifer were 0.9985, 0.9993, 1.250 ×  10–2, 
0.1117 and 6.780 ×  10–2 with Chatas (1953) model and 
0.9863, 0.9931, 0.1411, 0.3756 and 0.2310 with Fanchi 
(1985) equation, while the infinite-acting aquifer was 
0.9999, 0.9999, 0.1750, 1.325 ×  10–2 and 7.333 ×  10–3 
with Edwardson et al. (1962) polynomial, then 0.9865, 
09,933, 1.425 ×  10–2, 0.1194 and 8.310 ×  10–2 with 
Lee (1982) model, and 0.9991, 0.9996, 1.079 ×  10–3, 
3.284 ×  10–2 and 2.823 ×  10–2 with Fanchi (1985) model;

6. the developed ANN models would perform better than 
the existing models since they are not correlation range 
limited and can predict the dimensionless variables: WeD 
and PD , for aquifer sizes not provided in the vEH datasets.

For future work, as observed in the infinite-acting aqui-
fer edge- and bottom-water models prediction, developing 
hybridize ANN models that minimize this aquifer-type 
dimensionless variables prediction error is important for 
water influx calculation in infinite-acting aquifers.
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