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Abstract
To predict the recovery factor (RF) in waterflooded layered oil reservoirs, two empirical relationships were derived. Both 
correlations use four independent variables. These are reservoir heterogeneity (characterized by permeability variation 
coefficient), permeability anisotropy (ratio of vertical to horizontal permeability), viscosity of the injected water, and water 
injection rate. One of the correlations estimates RF at water breakthrough time (RFBT) and the other evaluates RF at the 
end of project (RFEOP). Each correlation comes in an expanded form with more parameters and a reduced form with fewer 
parameters. Both models are based on the global linear model. Eclipse black-oil simulation was used to determine RF for 
generic reservoirs with different combinations of permeability variation, permeability anisotropy, injected water viscosities, 
and water injection rates. A total of 192 data sets have been generated. Out of these, 144 data sets (about 75% of the generated 
sets) were used for model development and 48 data sets (about 25% of the generated sets) were used for model testing and 
validation. The expanded forms of the new developed correlations gave reliable estimates of RFBT and RFEOP with absolute 
average percent difference (AAPCD) of 6.9 and 1.02, respectively. The reduced forms yielded slightly higher AAPCDs of 
8.30 and 1.04, respectively. When tested against 48 simulation-generated data sets, the expanded forms yielded excellent 
fits for RFBT and RFEOP with AAPCDs of 14 and 6.5, respectively. The reduced forms showed comparable fit with AAPCDs 
of 16.9 and 6.70, respectively. The highest RFEOP of 50.6% was achieved for a generic reservoir with a permeability varia-
tion in V = 0.1 and a permeability anisotropy of kz/kx = 1.0. This particular reservoir needs to be waterflooded using a water 
viscosity of µw = 1.0 cp and a water injection rate of qi = 10,000 bpd. Finally, when tested against the Guthrie–Greenberger 
and the API statistical study, using a single field data set, the proposed correlations gave higher absolute percent difference 
of 22.9 and 22.7 compared to 0.758 and 19.2 for Guthrie–Greenberger and the API statistical study, respectively.
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Abbreviations
AAPCD	� Absolute average percent difference
AI	� Artificial intelligence
AIC	� Akaike information criterion
APCD	� Average percent difference
BIC	� Bayesian information criterion
BT	� Breakthrough time
EOP	� End of project
GLM	� Global linear model
MLM	� Machine learning methods
MS	� Mean square

RF	� Recovery factor
SS	� Sum of squares

Introduction

Solving oil recovery problems requires the use of reser-
voir models. The computing time involved increases with 
increasing model complexity. One way of handling the 
increased computing time is to develop parallel algorithms 
that takes care of the heterogeneity of the computing sys-
tem. However, every time the initial data used for predicting 
oil recovery is changed the calculations must be changed 
which, could significantly increase the computing time and 
resources. Another way of doing things is to use machine 
learning methods (MLM), which can be used for big data 
processing. The application of MLM in the oil industry has 
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been expanding (Li et al. 2020). There were many attempts 
to apply MLM to oil recovery estimation in waterflooding 
systems. Guthrie and Greenberger (1955) related oil recov-
ery by water drive empirically to reservoir rock and fluid 
properties. The authors considered 73 sandstone reservoirs. 
Some had a water drive, others were under a combination 
drive. Oil recovery was expressed as a function of perme-
ability, porosity, oil viscosity, formation thickness, connate 
water saturation, depth, oil reservoir volume factor, drainage 
area, and well spacing. The developed correlation (Eq. 1) 
produced an excellent fit. It predicted oil recovery within 
6.2% of the reported value in 50% of the time and 9.0% of 
the reported value in 75% of the time.

In Guthrie–Greenberger’s empirical model, RF is the 
recovery factor, k is the absolute permeability in md, Swi is 
the initial water saturation, ϕ is the porosity, h is the forma-
tion thickness in ft, and µo is the oil viscosity in cp. This 
equation infers that water drive recovery efficiency is lower 
in reservoirs of higher porosity.

An API statistical study used a database from 312 reser-
voirs (Arps et al. 1967) undergoing water drive to develop 
an empirical equation to predict recovery efficiency. The 
correlation (Eq. 2) yielded a coefficient of determination, 
R2, of 0.958, indicating an impeccable data fit.

In the API empirical equation, RF is the recovery factor, 
ϕ is the porosity, µw is the water viscosity in cp, µo is the oil 
viscosity in cp, k is the absolute permeability in md, Swi is 
the initial water saturation, pi is the initial pressure in psia, 
pa is the abandonment pressure in psia, and Boi is the oil for-
mation volume factor at initial reservoir pressure in rb/stb.

Another secondary recovery model was developed to pre-
dict waterflood performance for different reservoir properties 
and under various design conditions (Khan 1971). Multiple 
regression equations used eight input variables to predict 
injection rate, ultimate secondary reserves, response time, 
peak oil rate, peak production year, and the production pro-
file as a function of time. Historical data from 12 waterfloods 
located in the San Jorge Basin were used to develop the 
regional predictive model. To generate five output variables, 
six geometrical factors and two reservoir quality parame-
ters were used. Input variables are reservoir depth, net sand 
thickness, pore volume, number of sand layers, number of 
injectors and producers, porosity, and primary recovery 
factor. Output variables are injectivity, secondary recovery 
factor, response time, project life, and recovered reserves 
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after injecting 28% of the required number of pore volumes 
(R28).

Recently, a new correlation for estimating oil recovery 
factor under waterflooding in core samples at constant water 
injection rate was proposed (Balhasan and Jumaa 2017). The 
coefficients of correlation and determination were calculated 
using nonlinear regression analysis. The empirical model 
(Eq. (3)) correlated RF to reservoir-to-surface temperature 
ratio, oil-to-water viscosity ratio, and oil specific gravity.

where RF is the recovery factor, %, Tr is the reservoir tem-
perature, °F, Ts is the surface temperature, °F, μo is the 
oil viscosity, cp, μw is the water viscosity, cp, γo is the oil 
specific gravity. The authors noted that oil recovery factor 
increased to 48.8% at 194 °F, compared to 38% at 95 °F 
when one pore volume was injected. Furthermore, the 
authors indicated that the developed correlation was also 
applicable for three sandstone reservoirs in Libya and one 
sandstone reservoir in Kuwait.

Artificial intelligence (AI) was also used in the estima-
tion of the oil recovery factor in waterflooded reservoirs 
(Mahmoud et al. 2019). In this study, the authors collected 
a data set of 173 cases and analyzed it statistically. Data 
outliers within ± 0.3 standard deviation (SD) were removed. 
Five cases were therefore discarded, and the remaining 168 
cases were used to develop the AI models. These models 
were trained using 77% of the data. The remaining 23% were 
used for model testing and validation. The parameters used 
are divided into four groups (asset size, rock parameters, 
fluid properties, and reservoir energy). The authors noted 
that their developed model outperformed all the available 
empirical equations in the literature. The model yielded a 
coefficient of determination of 0.94 compared to only 0.55 
obtained from Gulstad’s correlation (Gulstad 1995). Gul-
stad’s is considered as the industry standard. Sharma et al. 
(2010) used Tertiary Oil Recovery Information Systems 
(TORIS) for oil reservoirs and Gas Information System 
(GASIS) for gas reservoirs to match multivariant linear 
regression. These authors highlighted the accuracy of their 
linear model. Using descriptions of 34 low-permeability 
reservoirs, Han and Bian (2018) illustrated the application 
of a model based on support vector machine in combination 
with the particle swarm optimization (PSO-SVM) technique 
for oil recovery. Aliyuda and Howell (2019) demonstrated 
their successful application of support vector machine using 
a data set of 93 reservoirs descriptions from the Norwegian 
continental shelf. Using a huge data set of more than 2000 
reservoirs, Makhotin et al. (2020) applied advanced MLMs 
to estimate oil recovery factor. They concluded that their 
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proposed data-driven approach overcomes several limita-
tions of the traditional methods and that, it is suitable for 
reliable and rapid estimation of oil recovery factor.

In this work, new models were developed for predicting 
oil recovery factors at water breakthrough time and at end 
of project in waterflooded multilayered reservoirs. The new 
models incorporate four key parameters believed to impact 
the performance of such reservoirs. The statistical database 
was generated using ECLIPSE black-oil simulation, and 
the new empirical models were developed through multiple 
regression analysis using Global Linear Model.

Proposed design methodology

Data preparation for the simulator and assumptions

The Dykstra–Parsons method (Ahmed 2002) was applied to 
generate permeability distribution across reservoir thickness 
for different reservoir heterogeneities. Each reservoir hetero-
geneity corresponds to a specific value of Dykstra–Parsons 
permeability variation coefficient (V). By setting an average 
permeability of a 10-layer reservoir (k50) equal to 68 md and 
selecting several values of V, the corresponding permeabil-
ity distributions in a descending order are determined using 
Eqs. 4 and 5. For each selected value of V, Eq. 4 is solved 
for k84.1 (at one standard deviation from the average value) as 
depicted in Eq. 5. Results of these calculations are presented 
in Table 1. Using a log-probability graph paper with perme-
ability on the log scale and percent cumulative frequency on 
the probability scale and assuming log-normal permeability 
distribution, Fig. 1 is generated. The permeability distribu-
tion for each selected value of V was then deduced from 
Fig. 1 and the results are listed in Table 2.

(4)V =
(

k50−k84.1
)

∕k50

(5)k84.1 = k50(1 − V)

Table 1   Values of k50 and k84.1 V k50 (md) k84.1(md)

0.1 68 61.2
0.3 68 47.6
0.5 68 34
0.7 68 20.4

Fig. 1   Dykstra–Parsons perme-
ability variation plot for V 
values between 0.1 and 0.7
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Corey’s correlations (Ahmed 2002) were used to gener-
ate the relative permeability curves as presented in Eqs. (6) 
and (7), and the results of calculations are shown in Fig. 2.

Additional input data for the simulator were necessary 
to generate the various recovery performances for various 
scenarios. The assumed data are listed in Table 3.

The basic assumptions made in this work are as follows: 
(1) water-wet reservoir, (2) no free gas saturation at all times 
during the flooding process, (3) waterflooding affects one 
quadrant of a five spot pattern with one injector and one pro-
ducer, (4) capillary pressure effect is ignored, (5) constant 

(6)kro =
[(

1 − Sw
)

∕(1 − Swi)
]4

(7)krw =
[(

Sw − Swi
)

∕(1 − Swi)
]4

porosity, thickness and initial water saturation for all layers, 
(6) low volatility black oil, homogeneous individual layers, 
and (7) a lateral sweep efficiency of 100%.

Combination scenarios of various key parameters

Eclipse black-oil simulation was used to generate production 
performance profiles for various combination scenarios. In 
this work, four key parameters with a dominant impact on 
waterflooding projects were considered. These parameters 
are water injection rate, water viscosity, reservoir anisotropy, 
and reservoir heterogeneity. Table 4 presents values of key 
parameters used in the combination scenarios and thus, a 
total of 192 combination scenarios were obtained.

Generation of simulation data for statistical analysis

In addition to other performance profiles, the main output 
from eclipse after running the above combination scenarios 
includes water cut versus time and oil recovery factor versus 
time. A complete set of results of simulator calculations can 
be found in Ref. Al-Jifri (2020).

Application of minitab to develop the new empirical 
correlation

The simulator-generated data were then used as input data 
for the Minitab software for further statistical analysis. The 
objective of using the GLM is to generate the proposed 
empirical correlation for oil recovery factor in terms of the 
four key parameters listed in Table 4. The Global Linear 
Model (GLM) was implemented because it predicts values 
for new observations, identify the combination of predic-
tor values that jointly optimize one or more fitted values, 

Table 2   Permeability distributions

k, md

V = 0.1 V = 0.3 V = 0.5 V = 0.7

78 130 190 400
76 110 160 300
74 97 130 220
73 93 120 170
71 87 110 140
70 84 95 130
69 78 87 105
68 75 78 87
67 72 72 75
66 68 65 65

Fig. 2   Relative permeability 
curves generated by Corey’s 
correlations
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and create surface plots, contour plots, and factorial plots. 
Also, it can identify the key parameters of highest and lowest 
impact on the predicted oil recovery, water cut, cumulative 
oil production, and reservoir pressure.

Validation of the new empirical correlation

The empirical correlation (s) thus developed by the GLM 
using the simulator-generated data were then validated using 
simulation-generated data not considered in their develop-
ment. Further validation was accomplished using field data.

Simulated reservoir performance 
during waterflooding

Plots of specific performances for selected combination sce-
narios are shown in Figs. 3, 4, 5, 6, 7, 8, 9, and 10. These 
plots show the simulated performances of oil recovery factor 
and water cut during the waterflooding project.        

Effect of water viscosity

Selected combination scenario: V = 0.5, kz/kx = 1, qi = 10,000 
stb/day, and µw = 0.25–1.0 cp.

This selected scenario investigates the effect of changing 
water viscosity on the waterflood performance. In this sce-
nario, all parameters were held constant and only water vis-
cosity was changed and the results of the predicted perfor-
mances are shown in Figs. 3 and 4. As can be observed from 
these plots, the most effective case is when the water vis-
cosity approaches the oil viscosity which leads to favorable 
mobility ratio of one or less than one. Under such conditions, 
the highest RF of 45% is achieved for µw = 1.0 cp as shown 
in Fig. 3 at end of project. In addition, a water viscosity of 1 
cp has been found to yield later breakthrough time and lower 
water cut than those predicted for the lower water viscosities 
as depicted in Fig. 4. Thus, favorable mobility ratio can be 
achieved as the water viscosity approaches the oil viscosity 
resulting in improved overall waterflooding performance.

Table 3   Eclipse input data

Parameter Value

Number of cells in x-direction 10
Number of cells in y-direction 10
Number of layers 10
Depth 8000 ft
Reservoir pressure 4500 psia
Reservoir temperature 240 °F
Reservoir thickness 50 ft
Area 72 acres
Porosity 0.20
Water formation volume factor 1.02 rb/stb
Oil viscosity at reservoir pressure 2.0 cp
Water compressibility 3E−06 psi−1

Water density 49 lbs/cf
Oil density 63 lbs/cf
Gas density 0.01 lbs/cf
Pore compaction 4E−06 psi−1

Water oil contact 8050 ft

Table 4   Values of key parameters used in the combination scenarios

Variables Scenarios

Reservoir heterogeneity V = 0.1; 0.3; 0.5 and 0.7
Water injection rate qi = 2000; 5000 and 10,000 stb/day
Permeability anisotropy kz/kx = 0.1; 0.3; 0.5 and 1
Water viscosity µw = 0.25; 0.5; 0.75 and 1 cp

Fig. 3   Oil recovery factor 
performance
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Effect of water injection rate

Selected combination scenario: V = 0.7, kz/kx = 1, µw = 1 cp, 
and qi = 2000–10,000 stb/day.

In this scenario, the effect of water injection rate on oil 
recovery factor and water cut was investigated as illustrated 
in Figs. 5 and 6. In these plots, the water injection rate was 
changed between 2000 and 10,000 stb/d. From Fig. 5, it can 
be observed that the oil recovery factor is increased from 23 
to 51% as the water injection increased from 2000 to 10,000 
stb/day. The negative aspect of injecting water at high rate, 
however, is revealed in Fig. 6, as it leads to earlier water 
breakthrough at the producing end and significant increase 
in the produced water cut. This negative aspect of high water 
injection rate of 10,000 stb/d may well be counterbalanced 

by the significant increase in cumulative oil production of 
around 40 million stb at the end of the project (not shown). 
Therefore, the feasibility of any waterflooding project should 
be assessed based on similar performances as described 
above, and the final decision would be a compromise of the 
above effects.

Effect of reservoir heterogeneity

Selected combination scenario: kz/kx = 1, µw = 0.5 cp, qi = 
10,000 stb/day, and V = 0.1–0.7

In this scenario, the effect of changing permeability vari-
ation coefficient on waterflooding performance was inves-
tigated and the results are plotted in Figs. 7 and 8. In these 
plots, V varied between 0.1 and 0.7 and other parameters 

Fig. 4   Water cut performance

Fig. 5   Oil recovery factor 
performance
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were held constants to observe the significance of reservoir 
heterogeneity on waterflooding performances. From Fig. 7, 
it can be observed that the highest RF of 46% is achieved in 
a homogeneous reservoir with V = 0.1 and that the lowest RF 
of 33% is realized in a heterogeneous reservoir with V = 0.7. 
The effect of reservoir heterogeneity on water cut perfor-
mance is not as pronounced as shown in Fig. 8. The selected 
combination scenario addresses conditions of full cross-flow 
between layers and high water injection rate. In addition, 
the descending order of permeability across reservoir leads 
to what is known as coarsening upward situation in layered 
reservoirs which would normally lead to the development 
of piston-like displacement across the macroscopic section 

(Dake 2001). The high injection rate of water, however, 
reduces the effect of gravity and thus the displacement front 
will not become so perfect which may explain the lower RF 
and later BT for V = 0.7 as shown in Fig. 8.

Effect of permeability anisotropy ratio

Selected combination scenario: V = 0.7, µw = 0.25 cp, 
qi = 10,000 stb/day, and kz/kx = 0.1–1.

In this scenario, the effect of changing permeability ani-
sotropy on the performance of waterflood projects was stud-
ied. It can be observed in Figs. 9 and 10 that changing kz/
kx from 0.1 (limited cross-flow between layers) to one (full 

Fig. 6   Water cut performance

Fig. 7   Oil recovery factor 
performance
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Fig. 8   Water cut performance

Fig. 9   Oil recovery factor 
performance

Fig. 10   Water cut performance
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cross-flow between layers) can have significant impacts on 
the various performances considered in this work. For exam-
ple, in Fig. 9, the RF is increased from 35 to 45% for kz/kx 
values of 0.1 and 1, respectively. In addition, higher water 
cuts are observed limited cross-flow which is indicative of 
unfavorable waterflood performances as shown in Fig. 10. 
The coarsening upward of permeability and the water injec-
tion rate-gravity relationship dictates the favorable displace-
ment in layered reservoirs with cross-flow.

Predicting RF at water breakthrough time (RFBT)

A total of 144 simulation data sets have been generated, 
96 data sets (about 75% of the generated sets) were used 
to develop the correlations and 48 data sets (about 25% of 
the generated sets) were used to test for the accuracy of the 
derived empirical models. The first correlation (Eq. 8), the 
expanded form, uses the four key parameters considered in 
this work. The second correlation (Eq. 9), the reduced form, 
which is based on the GLM analysis, still uses the same 
independent variables but considers fewer parameters.

In Eqs. 8 and 9, RFBT is the oil recovery factor at break-
through, kz/kx is the anisotropy, µw is the water viscosity in 
cp, V is the permeability variation coefficient, and qi is the 
water injection rate in Mstb/d.

The results of Minitab software in terms of significance 
of parameters and model summary for RFBT are illustrated 
in Table 8 and Fig. 19 of "Appendix".

Predicting the RF at end of project (RFEOP).

Similar developments for oil recovery factor at the end of 
project were attempted and the resulting correlations include 
an expanded form (Eq. 10) and a reduced form (Eq. 11).
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Development of new empirical correlations

Generating the new empirical correlation(s)

To develop new correlations for the oil recovery factor, sim-
ulation-generated data were used in Minitab.
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Fig. 11   Comparison between predicted and simulated values of RFBT

Fig. 12   Comparison between predicted and simulated values of 
RFEOP

Fig. 13   Comparison between predicted and simulated values of RFBT

Fig. 14   Comparison between predicted and simulated values of 
RFEOP
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The results of Minitab software in terms of significance 
of parameters and model summary for RFEOP are illustrated 
in Table 9 and Fig. 20 of "Appendix".

Validation of the new correlations

Validation of the expanded forms using 144 data points

The accuracy of the proposed correlations developed in the 
previous section was tested by comparing the values of RF 

generated by the simulator with those predicted by the new 
correlations. The results of these comparisons are illustrated 
in Figs. 11 and 12.

Validation of the reduced forms using 144 data points

Similar comparisons were performed for testing the reduced 
forms expressed in Eqs. 9 and 11 and the results are shown 
in Figs. 13 and 14. The 45° line in Figs. 11, 12, 13, 14, 15, 

Fig. 15   Comparison between predicted and simulated values of RFBT

Fig. 16   Comparison between predicted and simulated values of 
RFEOP

Fig. 17   Comparison between predicted and simulated values of RFBT

Fig. 18   Comparison between predicted and simulated values of 
RFEOP
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16, 17, and 18 represents the perfect match location between 
the simulated and predicted RF values.

Validation of the expanded forms using the remaining 48 
data points

The second part of the validation was accomplished by con-
sidering the remaining 48 data of the total 192 data points. 
These 48 data points represent data which were not used 
in the development of the new correlations. Equation 8 is 
applied to calculate the RFBT for the 48 data points and the 
results were compared with the simulation-generated results. 
The results of this comparison are shown in Fig. 15.

A similar comparison between RFEOP predicted by Eq. 10 
and by simulation is illustrated in Fig. 16.

In addition, the reduced forms, Eqs. 9 and 11, have been 
applied for the 48 data points and the results of the compari-
son are shown in Figs. 17 and 18.

A summary of the results of calculations of average abso-
lute percent difference (AAPCD) for the individual com-
bination scenarios of RFBT and RFEOP is listed in Table 5.

Validation of the new correlations using field data

The new correlations were also validated using Field A 
data listed in Table 6 (Espinel 2010). The recovery factor 
at end of project, RFEOP, for this field has been determined 
by Visual Basic for Applications (VBA) program and found 
equal to 0.396. The value of RFBT is not available for this 
field and thus, the only possible comparison was between 
the predicted values of RFEOP by various methods and the 
above field value. 

The value of RFEOP was estimated by three empirical cor-
relations, namely Guthrie–Greenberger correlation, Eq. 1, 
API Statistical Study, Eq. 2, and the proposed new correla-
tions, Eqs. 10 and 11. The predicted values of RFEOP were 
then compared with the field observation and the absolute 
percent difference for each method was calculated. The 
results of these calculations are illustrated in Table 7.

Discussion of results

Eclipse simulation results

The relative permeability curves generated by Corey’s cor-
relations (Fig. 2) intersect at water saturation of 0.65 which 
is indicative of a water-wet system. The reservoir is assumed 
to consist of ten layers which have different permeabilities 
and that there is a significant variation in the values of per-
meability of these layers across the reservoir thickness. 
This variation is illustrated in Table 2 which shows that as 
the permeability variation coefficient (V) increases from 
0.1 to 0.7, the reservoir becomes more heterogeneous. For 
all selected values of V, the permeabilities of the ten lay-
ers were arranged in a descending order which represents a 
situation known as coarsening upward across the reservoir 
(Dake 2001). Such permeability arrangement scenario would 
promote gravity effects during the process of waterflooding 
provided that cross-flow exists between layers. The net effect 
of gravity and rate of water injection would significantly 
impact the shape of the advancing displacement front during 
the process of waterflooding. To a lesser importance is the 
water–oil end point mobility ratio impact on the develop-
ment of the shape of the displacement front in flooding het-
erogeneous reservoirs. These factors, namely rate of water 

Table 5   Results of calculations of AAPCD for various cases investi-
gated in this work

Case RFBT by 
Eq. 8

RFBT by 
Eq. 9

RFEOP by 
Eq. 10

RFEOP by 
Eq. 11

144 data 
points

6.90 8.30 1.02 1.04

48 data 
points

14.00 16.90 6.50 6.70

Table 6   Field case data (Espinel 2010)

Reservoir name Field A

Oil viscosity, cp 1.2
Water viscosity, cp 0.9
Corey exponent for oil (no) 3.017
Corey exponent for water (nw) 1.8045
End point-relative permeability to oil (kroe) 0.96865
End point-relative permeability to water (krwe) 0.551
Residual oil saturation (Sor) 0.23
Connate water saturation (Swc) 0.38
Dykstra–Parson coefficient (V) 0.8
Wettability index: water wet = 1 and oil wet = 2 1.0
Estimated max operational WOR 26.3
Permeability anisotropy ratio (kz/kx) 1.0
Injection rate, stb/day 8000

Table 7   Predicted values of RFEOP versus field value

Correla-
tion

Field case Guthrie–
Green-
berger 
method 
(Eq. 1)

API statis-
tical study 
(Eq. 2)

New cor-
relation 
(Eq. 10)

New 
cor-
relation 
(Eq. 11)

RFEOP 0.396 0.399 0.472 0.308 0.309
APCD – 0.758 19.2 22.9 22.7
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injection, gravity, layering, cross-flow, and end point mobil-
ity ratio, are the key parameters in waterflooding projects. 
The success of a waterflood project significantly relies on the 
right combination of these parameters. Accordingly, these 
key parameters were considered in this work to develop the 
new correlations and to interpret the simulator results pre-
sented in Figs. 3, 4, 5, 6, 7, 8, 9, and 10. For the hypothetical 
layered reservoir considered in this study, the lateral sweep 
efficiency has been assumed equal to 1.0.

Validity of proposed correlations (GLM results)

The GLM was used to generate the new correlations for pre-
dicting RFBT and RFEOP. The program can also identify the 
relative importance of the four key parameters which were 
included in the developed correlations. Using Global Linear 
Model (GLM), the water injection rate has been found as the 
most effective parameter and that water viscosity as the least 
effective parameter as far as the recovery factor is concerned.

The accuracy of the expanded forms of the new proposed 
correlations (Eq. 8 for predicting RFBT, and Eq. 10 for pre-
dicting RFEOP), which include all four key parameters, was 
tested against: (1) the 144 simulation-generated data points 
used in their development, (2) against the remaining 48 
simulation-generated data points not included in the devel-
opment of the new correlations, and (3) against real field 
case data. Similarly, the reduced forms of the new proposed 
correlations (Eq. 9 for predicting RFBT and Eq. 11 for pre-
dicting RFEOP) were tested as described above. The results of 
comparisons of (1) and (2) are shown in Figs. 11, 12, 15, and 
16. From Figs. 11 and 12, one can observe that the nearly 
perfect match between the predicted values and simulator-
generated values of RFBT and RFEOP, respectively. From 
Figs. 15 and 16, however, the new correlation Eqs. 8 and 
10 seem to generally under predict the values of RFBT and 
RFEOP, respectively. Similar results were observed for Eqs. 9 
and 11 as shown in Figs. 13, 14, 17, and 18. A summary 
of the AAPCD of comparisons of (1) and (2) is shown in 
Table 5. For both validity cases considered in this study, and 
as expected, it can be observed that the proposed expanded 
forms yield more accurate results than the proposed reduced 
forms. For the 144 data points case, an AAPCD as low as 
1.02 has been obtained for predicting RFEOP with Eq. 10.

The reliability of the proposed correlations was further 
tested using published data of a waterflood project with data 
listed in Table 6 (Espinel 2010). The value of field RFEOP 
was compared with RFEOP predicted by three methods, 
namely Guthrie–Greenberger method, API Statistical Study, 
and the proposed correlations. The results of these compari-
sons are presented in Table 7. These results are not indica-
tive of the superiority of any of the methods considered in 
this study simply because a single field data point has been 
used. Nevertheless, the high APCD values of the proposed 

correlations are comparable to those of the API method. The 
fact that the permeability variation coefficient for this field 
data (V = 0.8) is higher than the maximum value considered 
in the development of the proposed correlations (V = 0.7) 
may explain the relatively high APCD values in Table 7. 
Another reason for the relatively high APCD obtained by 
the new proposed correlations can be realized by observing 
Figs. 16 and 18. In these two figures, the proposed new cor-
relation under predicts the RFEOP and noticeably at higher 
values of this parameter. Additional field data are necessary 
to examine the proposed correlations.

Limitations of the proposed correlations

The new empirical correlations developed in this study are 
based on four key parameters believed to impact the overall 
performance of waterflood operations. Therefore, the pro-
posed correlations will depend very much on the availability 
of these key parameters, which puts a limitation on their 
application. Moreover, the selected four parameters may not 
be enough to evaluate the effectiveness of the waterflood 
performance in terms of oil recovery and water cut profiles. 
Other reservoir characteristics, such as wettability prefer-
ence, initial free gas saturation, dip angle, and rock consoli-
dation, could very much affect the accuracy of the proposed 
correlations. The proposed empirical correlations were 
developed for specific ranges of key parameters as shown 
in Table 4. Therefore, the application of Eqs. 8 through 11 
outside these ranges, and specifically for V and qi, may not 
yield accurate RFBT and RFEOP.

Conclusion and recommendation

Conclusion

Based on the results of this study, the following conclusions 
are drawn:

•	 Two sets of new empirical correlations have been devel-
oped to predict the performance of a five-spot waterflood 
in a stratified reservoir. These correlations encompass 
four key parameters believed to significantly affect the 
oil recovery factors in waterflood operations. These key 
parameters include water injection rate, water viscosity, 
permeability anisotropy, and reservoir heterogeneity.

•	 When tested against 144 simulation-generated data 
points, the expanded forms of the new correlations have 
been found to give reliable estimates of RFBT and RFEOP 
with AAPCD of 6.9 and 1.02, respectively. The reduced 
forms were found to yield slightly higher AAPCDs for 
the same data set.
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•	 When tested against 48 simulation-generated data points 
representing ranges of key parameters outside the ones 
used in their development, the expanded forms of the 
new correlations gave fairly good estimates of RFBT and 
RFEOP with AAPCDs of 14 and 6.5, respectively.

•	 The new correlations gave more accurate estimates of 
RFEOP than for RFBT. The highest RFEOP of 50.6% was 
achieved for a combination scenario with qi = 10,000 
bpd, µw = 1.0 cp, kz/kx = 1.0, and V = 0.1.

•	 When tested against two published empirical correla-
tions, using a single field data point, the proposed cor-
relations were found to produce a comparable fit with the 
API statistical study.

•	 The new developed correlations can be used to get quick 
and reliable estimates of RFBT and RFEOP.

•	 The water injection rate has been found as the most effec-
tive parameter in predicting the oil recovery factor, fol-
lowed by the Dykstra–Parson coefficient, followed by the 
k-anisotropy. The water viscosity has been found to be 
the least effective parameter as far as the recovery factor 
is concerned.

Recommended measures to improve the accuracy 
of the proposed correlations

To improve the accuracy and reliability of the proposed cor-
relations, it is recommended to:

•	 Include the effects of free gas saturation, angle of dip, 
and wettability preference indicator.

•	 Benchmark with other analytical methods and simulation 
results using more field data.

•	 Increase the total number of simulation-generated data 
points and consider additional combination scenarios.

Appendix

Results of GLM for RFBT

See Table 8 and Fig. 19.

Table 8   Significance of parameters

Source DF Seq. SS % Contribution Adj. SS Adj. MS F-value P value

Analysis of variance
kz/kx 1 873.89 22.27 93.033 93.033 103.32 0.000
µw 1 953.41 24.30 31.514 31.514 35.00 0.000
V 1 18.56 0.470 56.650 56.650 62.91 0.000
qi 1 1002.93 25.56 234.966 234.966 260.95 0.000
(kz/kx)2 1 209.58 5.340 50.857 50.857 56.48 0.000
(µw)2 1 21.13 0.540 21.134 21.134 23.47 0.000
(V)2 1 26.93 0.690 18.829 18.829 20.91 0.000
(qi)2 1 111.67 2.850 151.254 151.254 167.98 0.000
(kz/kx)(µw) 1 38.96 0.990 17.161 17.161 19.06 0.000
(kz/kx)(V) 1 79.40 2.020 79.405 79.405 88.19 0.000
(µw)(V) 1 10.73 0.27 10.726 10.726 11.91 0.001
(V)(qi) 1 205.46 5.24 38.299 38.299 42.53 0.000
(kz/kx)3 1 26.17 0.67 26.175 26.175 29.07 0.000
(kz/kx)2(µw) 1 4.38 0.11 4.379 4.379 4.86 0.029
(kz/kx)2(qi) 1 1.25 0.03 156.338 156.338 173.63 0.000
(kz/kx)(qi)(µw) 1 40.63 1.04 14.626 14.626 16.24 0.000
(kz/kx)(qi)2 1 124.82 3.18 124.816 124.816 138.62 0.000
(V)2(qi) 1 4.00 0.10 3.999 3.999 4.44 0.037
(V)(qi)2 1 15.01 0.38 15.011 15.011 16.67 0.000
Error 172 154.87 3.95 154.874 0.900
Total 191 3923.78 100

S R-sq R-sq(adj) PRESS R-sq(pred) AIC BIC

Model summary
0.948911 96.05% 95.62% 193.604 95.07% 551.05 614.02
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Results of GLM for RFEOP

See Table 9 and Fig. 20.

Fig. 19   Residual plots for RFBT
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Table 9   Significance of parameters

Source DF Seq. SS % Contribution Adj. SS Adj. MS F-value P value

Analysis of variance
kz/kx 1 685.40 6.29 10.355 10.3545 39.19 0.000
µw 1 246.30 2.26 18.657 18.6574 70.61 0.000
V 1 1530.9 14.05 23.845 23.8451 90.24 0.000
qi 1 6682.7 61.33 62.016 62.014 234.69 0.000
(kz/kx)2 1 99.80 0.92 11.539 11.5392 43.67 0.000
(V)2 1 0.20 0.00 17.623 17.6227 66.69 0.000
(qi)2 1 704.90 6.47 26.775 26.7753 101.33 0.000
(kz/kx)(µw) 1 15.70 0.14 8.453 8.4533 31.99 0.000
(kz/kx)(V) 1 72.80 0.67 12.221 12.2206 46.25 0.000
(kz/kx)(qi) 1 205.90 1.89 57.042 57.0419 215.87 0.000
(µw)(V) 1 0.30 0.00 21.216 21.2161 80.29 0.000
(µw)(qi) 1 0.50 0.00 22.096 22.0959 83.62 0.000
(kz/kx)3 1 5.90 0.05 5.891 5.891 22.29 0.000
(V)3 1 11.90 0.11 11.948 11.9483 45.22 0.000
(kz/kx)2(V) 1 12.40 0.11 12.421 12.4214 47.01 0.000
(kz/kx)2(qi) 1 3.80 0.04 3.847 3.8472 14.56 0.000
(kz/kx)(µw)2 1 20.70 0.19 4.437 4.4372 16.79 0.000
(kz/kx)(V)2 1 1.70 0.02 1.705 1.7054 6.45 0.012
(kz/kx)(V)(qi) 1 387.60 3.56 16.846 16.8457 63.75 0.000
(kz/kx)(qi)2 1 21.60 0.20 21.571 21.5708 81.63 0.000
(µw)2(qi) 1 2.50 0.02 2.472 2.4724 9.36 0.003
(µw)(V)2 1 8.20 0.08 8.196 8.1955 31.01 0.000
(µw)(V)(qi) 1 113.8 1.04 37.884 37.884 143.37 0.000
(µw)(qi)2 1 8.40 0.08 8.428 8.4279 31.89 0.000
(V)2(qi) 1 3.70 0.03 7.837 7.8372 29.66 0.000
(V)(qi)2 1 4.20 0.04 4.165 4.1649 15.76 0.000
Error 165 43.60 0.40 43.601 0.2642
Total 191 10,895.6 100

S R-sq R-sq(adj) PRESS R-sq(pred) AIC BIC

Model summary
0.514049 99.60% 99.54% 58.6762 99.46% 326.21 407.46
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