
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2021) 11:839–856
https://doi.org/10.1007/s13202-020-01079-w

ORIGINAL PAPER-EXPLORATION ENGINEERING

Developing a new algorithm for numerical modeling of discrete
fracture network (DFN) for anisotropic rock and percolation properties

Erfan Hosseini1 · Mohammad Sarmadivaleh2 · Zhongwei Chen3

Received: 11 June 2020 / Accepted: 23 December 2020 / Published online: 22 January 2021
© The Author(s) 2021

Abstract
The role of natural fractures in future reservoir performance is prominent. The fractured porous media is composed of an
interconnected network of fractures and blocks of the porous medium where fractures occur in various scales and have a
strong influence either when most of the flow is concentrated and them or when they act as barriers. A general numerical
model for discrete fracture networks (DFN) is usually employed to handle the observed wide variety of fracture properties
and the lack of direct fracture visualization. These models generally use fracture properties’ stochastic distribution based
on sparse and seismic data without any physical model constraint. Alternatively, a DFN model includes usual numerical
geomechanical approaches like boundary element and finite element. But here, a geostatistical methodology has been
used to generate a DFN model. In this paper, an alternative modeling technique is employed to create the realization of an
anisotropic fractured rock using simulated annealing (SA) optimization algorithm. There is a notable positive correlation
between fracture length and position. There are three principal subjects in a study of fractured rocks. Firstly, the network’s
connectivity, secondly, fluid flows through the system, and thirdly, dispersion. Here, connectivity of generated networks is
considered. Continuum percolation is the mathematical model to study the geometry of connected components in a random
subset of space. Different random realizations from the S.A. algorithm in four different sizes of L = 100, 150, 200, 250 at
post-threshold condition are used as disordered media in percolation theory to compute percolation properties using Monte
Carlo simulation. The percolation threshold (critical fracture density) and two crucial scaling exponents (β and υ) that dictate
the model’s connectivity behavior are estimated to over 200 realizations.

Keywords Discrete fracture networks (DFN) · Simulated annealing (S.A.) · Numerical modeling · Fluid flow · Monte Carlo
simulation

 * Erfan Hosseini
 e.hosseini19@gmail.com

1 Oil Industries Engineering and Construction Company
(OIEC Group), Tehran, Iran

2 Department of Petroleum Engineering, Curtin University,
Perth, Australia

3 School of Mechanical and Mining Engineering, Queensland
University (UQ), Brisbane, Australia

http://orcid.org/0000-0003-1508-3577
http://orcid.org/0000-0002-6369-3137
http://orcid.org/0000-0002-0782-0648
http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-020-01079-w&domain=pdf

840 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

Introduction

Fractures, as discontinuities within rocks in the crust,
appear in vast length scales (Naderi et al. 2019). There are
three principal models for fractured media: discrete, multi-
continua, and hybrid models (Naderi et al. 2019). Discrete
models are required when the continuum approach, where
the whole system is modeled with an equivalent permeable
medium characterized by permeability tensor, is not appli-
cable. One of the most important criteria to choose a model
is the scale of fractures concerning the study scale. For sys-
tems where the fracture scale is much less than the inter-
est continuum approach’s scale is sensible. Otherwise, the
fracture network’s geometry will be important, and discrete
models would be considered (Kadkhodaei and Naderi 2017;
Fathianpour et al. 2013). In most modeling of fractures and
faults as part of heterogeneity models, fractures have been
considered as discrete objects that have been given stochastic
distributions often based on power-laws, calibrated either
from the local core or seismic data or from more general
correlations (Makel 2007; Darcel et al. 2003a, b; Heffer et al.
1999). One way of fracture modeling is the full geomechani-
cal approach, i.e., modeling of the fracturing process, includ-
ing the initiation of cracks, their propagation, coalescence,
and mechanical interaction (Masihi et al. 2005; Dreuzy et al.
2004; Olson et al. 1998). Sahimi, Arbabi, and Tatomir used
the minimization of an appropriate form of elastic energy
along with geomechanics to model fractures (Tatomir 2007;
Sahimi et al. 1993; Sahimi and Arbabi 1996). DFN has been
successively used in recent years (Kang et al. 2019; Pichot
et al. 2012; Berrone et al. 2013). Jing et al. (2017) devel-
oped a discrete fracture network for coal characterization.
The model integrates the pore-scale roughness obtained
from micro-computed tomography (micro-CT) imaging of
coals into the fracture networks’ discrete representation.
Analysis of the fracture surfaces obtained from micro-CT
imaging demonstrates random isotropic surfaces following a
Gaussian distribution. The developed rough-walled discrete
fracture network (RW-DFN) models are not restricted by
the imaging resolution, so that they are favorable for direct
numerical simulation of permeability. Besides, RW-DFN
models can be constructed with an extended domain size
to be incorporated into existing reservoir characterization
frameworks to predict coal properties. A novel approach was
presented by Song et al. (2018) to locally optimize DFN
by integrating field tracer data based on an improved simu-
lated annealing (SAW) process. Their approach has been
validated with two field case examples by largely improving
the performances of numerical simulation. The results of
their work showed that optimization has a minimum effect
on the original fracture density model. Additionally, the
percentage of fractures updated in each perturbation of the

proposed method decides the optimization’s speed and preci-
sion level. The improved simulated annealing algorithm can
also be widely used for other optimization problems. Jiang
et al. (2019) investigated the effect of in situ stresses on fluid
flow in a natural fracture network. Their simulations show
that anisotropic stress loading tends to reduce fracture aper-
tures and suppress fluid flow, resulting in decreased frac-
tured rock’s equivalent permeability. Anisotropic stresses
may cause a significant sliding of fracture walls accompa-
nied by shear-induced dilation and some preferentially ori-
ented fractures, resulting in enhanced flow heterogeneity
and channelization. In this study, a geostatistical approach
is employed, which directly considers elastic energy in a
fractured medium, a model that assumes all the fractures
have existed, and the medium is in the equilibrium state.
One main assumption is that elastic-free energy associated
with fracture distribution follows a Boltzmann distribu-
tion. The simulated annealing (S.A.) algorithm is employed
to minimize associated energy function. A mathematical
model with which we can describe the connectivity and the
percolation properties in complex geometries is called the
percolation theory (Stauffer and Aharony 1992; Follin et al.
2014). The system is composed of objects distributed ran-
domly and independently, which are not restricted to points
on the fixed lattice (without any maximal concentration),
such as fractured media, and continuum percolation gets
rights into. Realizations of anisotropic random fracture net-
works produced by the simulated annealing algorithm will
be used as a disordered system in the percolation theory’s
basic methodology. The critical properties of the resulting
network will be estimated for different realizations for dif-
ferent system sizes.

Modeling

Fracture network modeling

In this paper, we use simulated annealing technique
(Belayneh et al. 2006; Kirkpatrick et al. 1983) as an optimi-
zation tool with energy (objective) function to generate the
fracture network’s realization. Indeed, simulated annealing
is a stochastic optimization technique that has been used in
a variety of global optimization problems that involve objec-
tive functions with a large number of independent variables.
Simulated annealing can be utilized with an energy func-
tion based on the covariance function to generate correlation
in the system (Jing et al. 2017; Hamzehpour and Sahimi
2006). In the following adjustment and implementation of
simulated annealing technique for this particular problem,
an optimized configuration of fractures is outlined.

841Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

Simulated annealing algorithm

We can find an appropriate fracture configuration in 2D
space with an anisotropic condition using simulated anneal-
ing. Application of simulated annealing needs to define sev-
eral terms: (1) a set of possible structures of fractures and
an initial design (2) a method for a small random symmetric
change to the configuration (system perturbation method) (3)
an objective function to be minimized (cost function) (4) an
annealing schedule of changing a temperature-like parameter
T, so that the system can reach its minimum global energy
(5) stopping criterion.

Possible configurations and initial configuration Con-
sidering constraints of three characteristic parameters of
fractures, i.e., position, length, and orientation, any con-
figuration which obeys these constraints is possible. That is,
fractures’ centers must lie in the square of the side L with
x ∈ (0, L) and y ∈ (0, L) . There is no constraint for fractures’
orientation, and fractures may have any direction. One way
of minimizing the energy function defined by Eq. 1 is to
reduce fractures’ length.

where A = E/16πμ(1 − ν), N is the number of fractures in
the system, and the components uk and ul are the displace-
ments on fractures in k and l direction. α, θk, and θl specify
the orientations of the distance vector r and fracture vectors
uk and ul concerning the horizontal x-axis. This equation
relates to the pairwise interactions of fractures to the total

(1)

E =

N∑

k=1

N∑

k≠l
l=1

(
Aukul[�| cos(�k − �l)| + | cos(� − �l) cos(� − �k)|]∕rkl

)

elastic energy of the system (Roy et al. 2010; Heffer and
King 2005).

If simulated annealing procedure advances without any
lower bound for fractures’ length, fractures’ size tends to
zero. Two solutions have been proposed for this problem:
(1) initializing model with large fractures (concerning square
side) and defining a maturity control parameter and restric-
tion of simulated annealing procedure using this parameter
which is called accepted ratio (2) renormalizing fracture
length distribution and keeping mean fracture length fixed.
In this work, the first method is used.

One of the significant advantages of the simulated anneal-
ing technique is the independence of its initial configuration
and the algorithm’s convergence. As the fractures’ initial
design’s choice does not affect the confluence, we can use
different distributions for the fracture lengths and orienta-
tions in the algorithm. Here, Gaussian distribution for frac-
ture length and uniform distribution for fracture orientation
and position on (0, π) and (0, L) are used, respectively. A
realization of the initial fracture network configuration is
shown as follows (Fig. 1).

System perturbation method After defining the initial
configuration to progress to lower energy levels, a simu-
lated annealing algorithm needs a new potential solution to
evaluate. This new configuration must slightly differ from
the prior accepted arrangement reached by the algorithm.
The updating method for generating new near possible
solutions from the currently accepted design (solution) may
be fixed throughout, making the model mature or changed
during algorithm progress. Contrary to the algorithm used
by previous works, like, the updating method used to gen-
erate new potential solutions is not fixed and would change
during algorithm progress. Model energy goes down, and
the model becomes more mature, the number of further
possible solution rejection will increase gradually. If the
same schedule used for early iterations of the algorithm
is used in late iterations, the number of overall rejection
at the end of the process will be too high, and the model
cannot reach a better configuration with lower energy. So a
secondary schedule has been used to change the updating
method. Thus, a more precise solution in more down run
time is achieved.

To change the current solution and generate a new near
potential solution, three characteristic properties of one ran-
domly chosen model element (fracture) are altered slightly,
i.e., length, orientation, and position. The updating equa-
tions must have the stuff to generate new potential solu-
tions that differ somewhat from the current solution and
be symmetric. Here, the Masihi and King (2007) equations
are used. That is:

Fig. 1 Initial network configuration with Gaussian distribution for
fracture length

842 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

where R is the random number uniformly distributed on
[0, 1]. The term (2R − 1) induces symmetry in simulated
annealing algorithms. Fractures may get larger or smaller,
rotate clockwise or counterclockwise, and move in the north,
south, east, or west direction.

Objective function and transition So far, an initial configu-
ration and an updating equation set have been presented.
Now a decision-making criterion is required, so the model
should transit to a new design or not. This criterion is the
value or better change in the amount of some function called
the objective function. Here, the objective function is the
energy function presented in Eq. 1. To introduce anisotropy
in this model, different η values have been assigned to x-
and y-direction ηy = 2. Then, in the computation of energy
between two fractures, an average of these values has been
used. Averaging is based on length and orientation (pro-
jection of fractures on each axis). When a new configura-
tion is generated by updating equations, the change in the
energy function is computed. Suppose ΔE < 0, the transi-
tion is accepted unconditionally. Otherwise, the new design
is obtained or rejected based on the Metropolis–Hastings
algorithm (with probability proportional to the Boltzmann’s
factor e−ΔE/T). This flexibility allows the algorithm to escape
from local minima.

Temperature lowering schedule At any temperature, after
a limited number of iterations system reaches a situation of

(2)

�new
i

= �old
i

+ 0.05�(2R − 1)

lnew
i

= lold
i

+ 0.05(2R − 1)

rxnew
i

= rxold
i

+ 0.5(2R − 1)

rynew
i

= ryold
i

+ 0.5(2R − 1)

maturity where the temperature parameter must be lowered.
If the temperature parameter does not get reduced, the sys-
tem maturity stays at that level captured into some loop, and
algorithm progress would be too slow because of the high
rate of acceptance for transitions with ΔE < 0. To increase
progress speed, this temperature should get lowered based on
some appropriate schedule. This schedule directly depends
on the size of the systems. Here, approximately after ten vis-
its of each fracture in the system, the temperature gets low-
ered such that Tnew = kTold and k ranges from 0.94 to 0.97.
The following figure illustrates the variation in temperature
against algorithm iteration. Here, colors indicate the energy
levels of the system. The brighter the color, the higher the
system energy level (Fig. 2).

Stopping criteria Depending on the particular system under
study, time, computational limitations of available comput-
ers, and the study’s purpose, different stopping criteria may
be used. In this specific fracture system, stopping criteria
may be defined as the average value ΔE for last N iterations,
mean fractures’ length, accepted, the total number of itera-
tions, etc.

Here, a maturity control parameter is used to terminate
algorithm progress. Indeed, this parameter is the accept-
ance ratio (A.R.) defined over the last 50,000 iterations if
AR < 0.01, the algorithm would be released.

Periodic boundary condition (PBC)

The fractures in the model are distributed over a square of
sides L. The limited lateral extension of this square will
introduce boundary effects in the final configuration of frac-
tures. This is because of the different stress experienced
by fractures in the interior areas and the exterior areas.

Fig. 2 Illustration of tem-
perature lowering schedule
(Tnew = kTold)

843Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

By looking at equation one, this difference is noticeable.
When a fracture is positioned on areas near boundaries,
the average distance between this fracture and other frac-
tures is smaller, and the contribution of this fracture in the
total energy of the model will be smaller concerning other
fractures in areas far from boundaries. Consider a simple
boundary condition that replaces a fracture exiting from one
side with exactly a similar fracture entering the other side.
If this simple boundary condition that neglects the effect of
boundaries is used, all the fractures would be distributed on
the model’s limitations, maximizing their distances from
each other. This is because of the lack of any other fracture
beyond the limits.

Masihi and King (2007) used a simple periodic bound-
ary condition that considers the effect of boundaries using
reflected imaginary fractures. In this boundary condi-
tion and the above simple one, if a fracture’s end exits
the square, keeping this fracture from the other side, an
imaginary fracture exactly similar to leaving fracture with
the same distance of boundary would be introduced in the
court. But here, a different periodic boundary condition is
used, which is physically more meaningful. The square is
surrounded with eight exactly equal squares plus replac-
ing exiting fractures from the other side. This boundary
condition is shown as follows (Fig. 3).

MATLAB code for simulated annealing algorithm

In this work, the MATLAB programming language is
used to write a simulated annealing algorithm. MATLAB
(MATrix LABoratory) is a fourth-generation programming
language and a software environment with various powerful

computation and visualization tools in engineering projects.
The primary data element is a matrix, so if you need a pro-
gram that manipulates array-based data, it is generally fast to
write and run in MATLAB, or vice versa. To speed up itera-
tions of the simulated annealing algorithm’s main loop, the
center block’s properties and eight surrounding blocks are
unified in one matrix in a meaningful order such that there is
only one length matrix for all fractures, whether in the center
block or surrounding block. At least one-third of the whole
time of this work has been spent writing code, especially
in the percolation part. The first block of MATLAB codes
for the simulated annealing algorithm, which initializes the
model with 500 fractures, is given as follows. A full version
of the MATLAB code of the algorithm is provided in the
Appendix.

%This is the first lines of the main code that randomly initializes the model

clear;
rng('shuffle'); %this command shuffles Random Number Generator
tic %keeps track of time
Clock

%************** orientation matrix *****************
Teta=zeros(1,4500);
Tetar = pi*rand(1,500); %uniform distribution of orientation on [0,pi]

for i=1:500 %unifies all Teta values in one matrix
for j=1:9

Teta(i+(j-1)*500)=Tetar(i);
end

end

Tetai=Teta; %keeps initial Teta values

%****************** length matrix ******************
L=zeros(1,4500);
Lr =abs(random('norm',6,2,1,500)); %normal distribution of length M=6, SD=2
for i=1:500

for j=1:9 %unifies length values in one matrix
L(i+(j-1)*500)=Lr(i);

end
end

Li=L; %keeps initial length matrix

%************* position matrices *******************
rx=zeros(1,4500); ry=zeros(1,4500);
rxr = 100*rand(1,500); %uniform distribution for position [0,100]
ryr=100*rand(1,500);

for i=1:500 %unifies positions
for j=0:2

rx(i+3*j*500)=rxr(i)-100;
rx(i+(3*j+1)*500)=rxr(i);
rx(i+(3*j+2)*500)=rxr(i)+100;

end
end

for i=1:500
for j=1:3

ry(i+(j-1)*500)=ryr(i)+100;
ry(i+(j+2)*500)=ryr(i);
ry(i+(j+5)*500)=ryr(i)-100;

end
end
rxi=rx; ryi=ry; %keeps initial fracture position

Fig. 3 Order and position of periodic boundary condition used in the
algorithm in this work

844 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

Results and discussion

Generation of model realizations

Different realizations for different model sizes (or better
fractures number) are required to investigate the fracture
network’s connectivity properties using percolation theory.
In this work, totally 200 various realizations in four differ-
ent system sizes of 100, 150, 200, and 250 using the simu-
lated annealing algorithm have been generated. The final
length distribution of fractures must be controlled between
two extremes such that an investigation of connectivity is
possible. Fractures in the final configuration must be in
post-percolation threshold condition such that by randomly
omitting fractures in the network, the particular percolation
threshold can be extracted through the Monte Carlo tech-
nique. One extreme is when final fractures are too long, and
the system is connected. The other height is when fractures
are too short, and there is no spanning cluster of fractures.

Indeed, a balance between fracture number and fracture
length in the final configuration must exist. So simulated
annealing algorithm with various fractures number and ini-
tial length distribution (initial fracture density), perturba-
tions method, initial temperatures and temperature lowering
schedules, and stopping criteria have been examined through
trial and error to reach an optimum combination of these
significant factors. Different settings (algorithm input) used
for simulated annealing algorithms in three different model
sizes are given in Table 1.

Energy minimization during algorithm progress

As it was said before, by progressing the simulation process,
the system’s energy levels go down. This energy reduction
process has two main phases. In the first phase, the model
is at high energy levels, and the temperature is high. So the
metropolis expression in the algorithm gives more chances
for transitions, decreasing the system’s total energy and
having more opportunities to escape from local minima
toward the global minimum. In other words, the hill-climb-
ing property of the simulated annealing algorithm is more
probable in this phase. Unlike the first phase, the system’s

second-phase energy levels are low, and the system reaches
relative stability. In this phase, the system’s opportunity to
escape from traps is much shorter, and the system configu-
ration only changes slightly. The following figure shows a
typical behavior of system total energy against iteration.

These two phases of the total energy of the system look
like two steps. In the upper stage, the system is too unsta-
ble, and there are severe fluctuations in the virtue of higher
temperatures (brighter colors). Then, by lowering the tem-
perature, system transits to a stable condition with lower
energy levels and smooth changes because of relatively low
temperature (darker colors).

The second useful graph is the graph of the energy differ-
ence between before and after perturbation. The two main
phases of system energy here appear with a different char-
acteristic. In this graph, fluctuations are evident in Fig. 4.
But there is another factor in this graph which separates
two phases. This factor is the exact symmetry condition
around the x-axis. In the early iterations of the algorithm,
there is a high acceptance rate for energy increasing transi-
tions in virtue of the system’s high temperature. So there is
approximately asymmetry about the x-axis because nearly
any change in the system’s energy is accepted (brighter
colors). As the number of iterations gets larger, the condi-
tions change. By increasing the rate of rejection of energy
increasing transitions, the graph becomes asymmetric
around the x-axis and tends to the upper half with DE > 0
(darker colors) (Fig. 5).

The other useful graph is the cumulative number of
accepted transitions against the cumulative number of itera-
tions, which shows these two phases. The chart looks like a
boomerang with a nearly straight wing and a gently curved
wing. The left wing represents the first phase. This wing’s
slope is approximately 0.98, which means almost all per-
turbation has been accepted whether they have decreased
energy or not. Then, the system transits to the second phase
(curved region). Unlike a left wing, the right wing repre-
senting the second phase has a very gentle average slope of
approximately 0.09. Nearly, only perturbations that reduce
fracture length have been accepted (Fig. 6).

Table 1 Initial conditions of the
simulated annealing algorithm

System size No. of fractures Mean SD Ti Temp. schedule No. of
realiza-
tions

Stopping
criterion

100 500 25 5 500,000 0.97 50 AR < 0.01
150 1150 25 5 600,000 0.96 50 AR < 0.01
200 2000 25 5 700,000 0.95 50 AR < 0.01
250 3150 25 5 900,000 0.94 50 AR < 0.01

845Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

The exploitation of statistics of the model

In the following figure, one realization of a fracture network
configuration has been given. The questions that come up
are: How are different fracture network parameters distrib-
uted? Is there any correlation between the parameters of the
final fracture configuration?

First of all, let inspect fracture length distribution. In
Fig. 7, fracture size distribution has been presented. The
fracture size distribution for this particular realization can be
fitted either standard exponential or power-law distributions.

As it has been mentioned before several times, different ini-
tial conditions (e.g., other fracture length distributions, dif-
ferent initial orientation) may be used for simulated anneal-
ing algorithm, and subsequently, additional final output can
be generated. The fractures’ absolute length values depend
on initial values, and this model must be calibrated with
local well log and core and seismic data. Figure 8 shows that
the slope of fracture size distribution has been presented,
which is a criterion of relative fracture size values.

Orientation is the other fundamental parameter of the
final fracture network configuration. As shown in Fig. 8,

Fig. 4 Variation in total system
energy (E) as a function of
algorithm iteration (sampled
with ratio 1:50)

Fig. 5 Variation in energy dif-
ference before and after pertur-
bation with iteration (1:50)

846 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

fractures generally constitute two fracture sets, a horizontal
set and a vertical set. In the following figure, the distribution
of orientation values of the fracture, the network has been
given. In the upper part, distribution of all fracture sizes is
offered, while relatively larger fractures have been shown.
A diminution in all bars’ size means smaller fractures are
randomly distributed in the lower part, which is reasonable
because smaller fractures have smaller contributions to the
system’s total energy. The metropolis term in the algorithm
would have smaller values. This means smaller fractures
have more chance to rotate randomly.

In the upper part of Fig. 9, the tall fracture orientation
distribution on the model has been given. In this figure, two
principal fracture sets have been shown as two modes of an
asymmetric bimodal distribution, one more massive method
in approximately 0 radians, the horizontal location, and the
other in the approximately 1.6-radian vertical set. The latest
height is nearly two times larger than the standing setting.
The summary of the statistics of these two fracture sets is
given as follows (Table 2).

Now, this question comes up: Is there any correlation
between fracture length and fracture position? A particu-
lar type of correlation exists between these two parameters
of the final fracture configuration. Bour and Davy (1999)
and Lei et al. (2017) presented a new type of correlation
in a fracture network between fracture length and fracture
position. They defined parameter dc(l) to be the distance
between the center of a fracture and its nearest neighbor.
They showed there is a scaling law between this parameter
and fractures length such that dc(l) ∝ lm where the exponent
m varies in [0, 1]. The lower bound of this interval indi-
cates there should be no correlation between fracture length
and fracture position, while the upper bound corresponds

to space-filling objects such as the apollonian described
by Mandelbrot (1982) and Lei et al. (2016). Darcel et al.
(2003a, b) and Hardebol et al. (2015), by using natural frac-
ture network data, computed the exponent m from each frac-
ture map within the range [0.1, 0.3].

It is straightforward for a fracture network that the initial
condition of simulated annealing algorithm m will be nearly
zero because the fractures were distributed randomly. But
as the following figure shows, there is a correlation between
fracture length and fracture position in the fractures’ final
configuration. There is a positive correlation between frac-
ture length and placement of its nearest neighbor. This
means, the larger the fracture, the larger the space around
it (Fig. 10).

Here, summary statistics of all realizations have been
given. In Table 3, important statistic parameters of all 200
realizations of fracture network such as relative number and
length of two fracture sets, mean orientation angle for each
fracture set separately, the slope of correlation between size
and position of fractures have been computed.

Connectivity properties of the model

Eventually, in this section, the connectivity of this basic
fracture model would be studied. Primarily, fracture net-
work models are considered continuum percolation model
cases with definitions of equivalent terms, and the perco-
lation properties of these models are evaluated. Bour and
Davy (1997) and Geiger (2019) modeled and quantified
random fault networks’ percolation properties following
power-law fault length distribution, which differed from
values for equal size fractures systems. Here, in this work,

Fig. 6 Cumulative number
of accepted transition against
iteration

847Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

the percolation threshold (p∞
c

), correlation length exponent
(ν), and connectivity exponent (β) have been estimated.

Percolation threshold

From the practice point of view, all the systems under study
are limited by size. As we know, percolation thresholds for
these systems were defined as the occupancy where 50%
of all realizations at that occupancy connect the system’s
boundaries (boundaries), and it was called the apparent
percolation threshold. The apparent percolation threshold
slightly varies with the system size due to finite size effects,
which is modeled by:

(3)pc(L) − p∞
c
∝ L−1∕�

The apparent percolation threshold p∞
c

 is the actual per-
colation threshold (i.e., for infinitely large systems) and ν
denotes the correlation length exponent (Song et al. 2018;
Stauffer and Aharony 1992). This proportionality means the
more massive the system size is, the better is the estimate of
the actual percolation threshold. The error Δ(L) associated
with apparent percolation values due to finite size effects
also varies like L−1/ν denotes the root mean square (RMS)
deviation of apparent percolation threshold values for differ-
ent realizations with the same system size. So without any
knowledge ν, one may obtain an estimate of the percolation
threshold by plotting pc(L) against Δ(L) by extrapolation
Δ = 0. This method works particularly well for percolation,
where it was introduced by Levinshtein et al. (1975). The
equations and expressions above are the average percola-
tion threshold by doing numerous Monte Carlo experiments
for the same system size and check for when the spanning
cluster appears for the first time when the system is getting
filled slowly vice versa. In large networks, a standard method
may be required. Here, an adapted version of the technique
introduced by Stauffer and Aharony (1992) is used. First,
check the connectivity for N/2 all fractures (randomly). If it
does, decrease the number of fractures by N/4, otherwise,
increase it by N/4. Now check again. If percolation occurs,
reduce by N/8, otherwise increase it by N/8. Repeat this way
to reach sufficient accuracy. After about ten such iterations,
the onset of percolation is known with an accuracy sufficient
for many purposes. This value is the threshold of this par-
ticular realization. By averaging over all realizations of this
system size, one value pc(L) would be estimated (Fig. 11).

Correlation length exponent

There are three different ways to estimate the correlation
length exponent. First is the scale dependency of the error
associated with the apparent threshold. As mentioned in the
previous section, it is sufficient to plot RMS deviation of
apparent percolation threshold (Δ(L)) for different system
sizes in log–log scale paper. The slope of the resulting graph
gives an estimate for the exponent ν. The alternative way is
to use pf and p1−f as the occupancy probabilities at which
the fraction f and 1 − f of all realizations percolate, which is
expected to have scale dependency given by Gawlinski and
Stanley (1981) (Fig. 12),

Different values f give different estimates, which can be
averaged to obtain a more reliable estimate of ν. Finally, one
can use equation five and take a log–log plot ξ(p) against
p − p∞

c
 a relatively large system size.

(4)p1−f − pf ∝ L−1∕�

Fig. 7 a A final configuration of the fracture network with 1150 frac-
tures and L = 150. b Percolating cluster containing 453 fractures

848 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

Here, in this work, the first method has been used.

Connectivity exponent

There are two ways to obtain an estimate of the connectiv-
ity exponent (β). To estimate this exponent, one can take a
log–log plot of P(p, L) versus p − p∞

c
 for a relatively large

system size. The gradient of the produced curve would give
an estimate of the connectivity exponent of the system.
Alternatively, as the relevant scale is the system size at the
apparent threshold, one can estimate β the percolation prob-
ability’s finite size dependency (connected fraction), accord-
ing to the following equation (Fig. 13).

Discussion

Heterogeneity in fractured petroleum reservoir rock is such
an extent that it is impossible to model it fully. So, the sig-
nificance of a statistical method is undeniable. Usually, dif-
ferent fracture network parameters such as size, orientation,

(5)�(p) ∝ |p − p∞
c
|−�

(6)P(p,L) ∝ L−�∕�

and position are given statistical distributions and are cali-
brated using well log, seismic, and outcrop data of local
reservoir rock. These models at least lack any physical
constraint of the distribution of different characteristics of
the network. In this work, a model was developed using a
simulated annealing algorithm where it is the fundamen-
tal equation to be minimized was extracted from elastic-
ity theory. Thus, the resulting model would have physical
constraints rather than random unrestricted full statistical
models. Section “The exploitation of statistics of the model”
is devoted to the exploitation of statistics of the realizations
of the model. This model is not capable of modeling the
aperture of fractures. However, for example, to investigate
the model’s conductivity, one can use existing correlations
between size and aperture of the fractures.

One of the most critical problems in the fractured res-
ervoir is their high rate of uncertainty and variability due
to different scale fractures, and this problem would appear
in various stages of reservoir life from the early stages of
drilling through field development and management. Frac-
tures can act as hydraulic conductors or barriers to flow.
The fracture network’s connectivity is a crucial parameter
in controlling fluid movement, which depends on individual
fractures and the system’s geometrical parameters.

One approach to investigating this extensively compli-
cated network’s connectivity is percolation theory as a basic
mathematical model of a highly disordered media such as
fracture networks. In Sect. “Fracture network modeling,”

Fig. 8 Fracture length distribu-
tion of a typical realization.
This distribution can be fitted
with either exponential or
power-law (slope ≈ −1.3)

849Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

three crucial percolation properties were estimated overall
realizations. The percolation threshold (critical density) of
the resulting system was evaluated. The scaling law expo-
nents that appear in connectivity formulations and dictate
the network’s connectivity behavior were assessed. Here,
a limited number (200) of realizations have been used. The
results may be improved using more realizations.

Conclusions

Fracture petroleum reservoirs provide over 20% of reserve
globally, and this number is nearly 90% in Iran. The usual
approach in reservoir numerical modeling for fractured
reservoirs is to use the statistical distribution of different
fracture network parameters and calibrating to local well
log, seismic, and outcrop data, and consequently, these
models lack any physical restrictions. In this work, gener-
alizations of a discrete fracture network for an anisotropic
medium with different properties along each axis have been
generated.

Fig. 9 Fracture orientation dis-
tribution on (above) all fractures
(below) fractures larger than
mean fracture length

Table 2 Summary statistics of
two principal fracture sets

Set No. of fractures Length dist Mean (L) Orientation dist Mean (θ) SD (θ)

Horizontal 493 Exponential 7.083 Normal 0.010 0.31
Vertical 407 Exponential 4.271 Normal 1.563 0.37

850 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

Fig. 10 Correlation between
fracture length and position
(slope ≈ 0.12)

Table 3 Summary statistics of
all 200 realizations (M: Mean,
SD: Standard deviation, R:
Relative)

M (RN) SD (RN) M (M(RL)) SD (M(RL)) M (M(θ)) SD (M(θ)) M (slope) SD (slope)

1.203 0.080 1.513 0.073 H: 0.004 V: 1.575 H: 0.013
V: 0.072

0.117 0.302

Fig. 11 Estimation of p∞
c

 using
extrapolation at Δ(L) = 0

851Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

1. Fractures form two principal sets. Fractures along the
x-axis are generally longer and more by number.

2. Fractures with length larger than fracture’s mean length
are more polarized along two principal axes. Smaller

fractures due to their relatively smaller contribution to
total system energy are nearly randomly distributed.

3. Log–log plot of fracture’s length distributions has nearly
linear form and can be fitted either power-law or harm-

Fig. 12 Using the slope of vari-
ations Δ(L) against L in estima-
tion of 1∕� ≈ 0.52 ± 0.016

Fig. 13 Variation in P against L,
�∕� ≈ 0.05 ± 0.017

852 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

ful exponential law. The mean slope of this line overall
realizations is approximately −1.4.

4. There is a positive correlation between fracture’s posi-
tions and lengths. Fractures with more extensive meas-
urements are more robust to expel other fractures, and
the nearest fracture would be more distance away.

5. There crucial parameter of the percolation model of the
system has been estimated. These parameters were per-
colation threshold, correlation exponent, and connectiv-
ity exponent.

6. A new algorithm to identify fracture clusters has been
developed (Appendix).

As future work, by reducing number of matrix which
defines fracture network properties, for example, by unit-
ing length, orientation, and position matrices, the compu-
tation elapsed time will decrease significantly. And, using
aspect ratio as stopping criterion makes the output final
fracture configuration be in same range by different prop-
erties such as orientation distribution and can be used in
percolation methodology of connectivity.

Appendix: Matlab Codes

1-SA algorithm

rng('shuffle');
clear;
tic
clock

%************** orientation matrix *****************
Teta=zeros(1,4500);
Tetar = pi*rand(1,500);

for i=1:500
for j=1:9

Teta(i+(j-1)*500)=Tetar(i);
end

end

Tetai=Teta;

%****************** lenght matrix ******************
L=zeros(1,4500);
Lr =abs(random('norm',25,5,1,500));
for i=1:500

for j=1:9
L(i+(j-1)*500)=Lr(i);

end
end

Li=L;
%*************position matrices*******************
rx=zeros(1,4500); ry=zeros(1,4500);
rxr = 100*rand(1,500);
ryr=100*rand(1,500);

for i=1:500
for j=0:2

rx(i+3*j*500)=rxr(i)-100;
rx(i+(3*j+1)*500)=rxr(i);
rx(i+(3*j+2)*500)=rxr(i)+100;

end
end

for i=1:500
for j=1:3

ry(i+(j-1)*500)=ryr(i)+100;
ry(i+(j+2)*500)=ryr(i);
ry(i+(j+5)*500)=ryr(i)-100;

end
end

rxi=rx;
ryi=ry;

ux=zeros(1,4500); uy=zeros(1,4500);

%*************fracture components*************
uxr= Lr .* cos(Tetar);
uyr= Lr.* sin(Tetar);
for i=1:500

for j=1:9
ux(i+(j-1)*500)=uxr(i);
uy(i+(j-1)*500)=uyr(i);
end

end

uxi=ux;
uyi=uy;
A=1;
K=0;
E=zeros(1,1000000);
Eti=0;
E1=0;
%*******************initial energy********************

for i=2001:2500
for j=1:4500

if (j<2001) || (j>2500)
rij=[rx(i)-rx(j);ry(i)-ry(j)];

E1=energyfun(ux(i),ux(j),uy(i),uy(j),rij(1),rij(2),4*(sin(Teta(i)))^2+2*(cos(Teta(i)))^2,4*(sin(Teta(j)))^2+2*(co
s(Teta(j)))^2);

Eti=Eti+E1;
elseif i~=j

rij=[rx(i)-rx(j);ry(i)-ry(j)];

E1=energyfun(ux(i),ux(j),uy(i),uy(j),rij(1),rij(2),4*(sin(Teta(i)))^2+2*(cos(Teta(i)))^2,4*(sin(Teta(j)))^2+2*(co
s(Teta(j)))^2);

853Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

Eti=Eti+E1/2;
end

end
end

E(1)=Eti;
disp(' ');
disp([' Initial energy : ' ,num2str(E(1))]);

%*****************SA**************************

NT=0;
na=0; AR=1;
Temp=500000;
DEminuscount=0;
Metgreaterone=0;
Qcount=0;
PEb=zeros(1,1000000);
PEa=zeros(1,1000000);
DE=zeros(1,1000000);
NA=zeros(1,1000000);
RAR=1;
progmet=50000;
Met=0;

while (NT<1000000) && (RAR>0.01)

n = unidrnd(500);
R1=rand; R2=rand; R3=rand; R4=rand;

TetaN=Teta(n+2000)+0.05*pi*(2*R1-1) ; LN=abs(L(n+2000)+0.1*(2*R2-1)) ; UXN=LN*cos(TetaN) ;
UYN=LN*sin(TetaN) ;

RXN=zeros(1,9);

if rx(n+2000)+0.5*(2*R3-1)> 100
RXNm=rx(n+2000)+0.5*(2*R3-1)-100;
for i=1:3

RXN(1+(i-1)*3)=RXNm-100;
RXN(2+(i-1)*3)=RXNm;
RXN(3+(i-1)*3)=RXNm+100;

end

elseif rx(n+2000)+0.5*(2*R3-1)<0
RXNm=rx(n+2000)+0.5*(2*R3-1)+100;
for i=1:3

RXN(1+(i-1)*3)=RXNm-100;
RXN(2+(i-1)*3)=RXNm;
RXN(3+(i-1)*3)=RXNm+100;

end
else

RXNm=rx(n+2000)+0.5*(2*R3-1);

for i=1:3
RXN(1+(i-1)*3)=RXNm-100;
RXN(2+(i-1)*3)=RXNm;
RXN(3+(i-1)*3)=RXNm+100;

end
end

RYN=zeros(1,9);

if ry(n+2000)+0.5*(2*R4-1)> 100
RYNm=ry(n+2000)+0.5*(2*R4-1)-100;
for i=1:3

RYN(i)=RYNm+100;
RYN(i+3)=RYNm;
RYN(i+6)=RYNm-100;

end

elseif ry(n+2000)+0.5*(2*R4-1)<0
RYNm=100+ry(n+2000)+0.5*(2*R4-1);
for i=1:3

RYN(i)=RYNm+100;
RYN(i+3)=RYNm;
RYN(i+6)=RYNm-100;

end
else

RYNm=ry(n+2000)+0.5*(2*R4-1);
for i=1:3

RYN(i)=RYNm+100;
RYN(i+3)=RYNm;
RYN(i+6)=RYNm-100;

end
end

Ep1=0;
Ep21=0;
Ep22=0;
E1=0;
E21=0;
E22=0;

%**************before*********************
for i=1:4500

if (i~=n+2000)

r1=[rx(n+2000)-rx(i);ry(n+2000)-ry(i)];

E1=energyfun(ux(n+2000),ux(i),uy(n+2000),uy(i),r1(1),r1(2),4*(sin(Teta(n+2000)))^2+2*(cos(Teta(n+2000)))^
2,4*(sin(Teta(i)))^2+2*(cos(Teta(i)))^2);

Ep1=Ep1+E1;
end

end

PEb(NT+1)=Ep1;

%***************after*********************
for i=1:9

for j=1:500
if j~=n

k=(i-1)*500+j;
r21=[RXNm-rx(k);RYNm-ry(k)];

E21=energyfun(UXN,ux(k),UYN,uy(k),r21(1),r21(2),4*(sin(TetaN))^2+2*(cos(TetaN))^2,4*(sin(Teta(j)))^2+2
*(cos(Teta(j)))^2);

854 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

Ep21=Ep21+E21;
end

end
end

for i=1:9
if i~=5

r22=[RXN(i)-RXNm;RYN(i)-RYNm];

E22=energyfun(UXN,UXN,UYN,UYN,r22(1),r22(2),4*(sin(TetaN))^2+2*(cos(TetaN))^2,4*(sin(TetaN))^2+2
*(cos(TetaN))^2);

Ep22=Ep22+E22;
end

end

PEa(NT+1)=Ep21+Ep22;

%**************** Transition : Yes or No ******************

DE(NT+1)=PEa(NT+1)-PEb(NT+1);
Met=exp(-DE(NT+1)/(Temp*(0.96^(floor(na/5000)))));

if DE(NT+1)<0
for i=1:9

Teta(n+(i-1)*500)=TetaN; L(n+(i-1)*500)=LN; ux(n+(i-1)*500)=UXN; uy(n+(i-1)*500)=UYN;
rx(n+(i-1)*500)=RXN(i); ry(n+(i-1)*500)=RYN(i);

end
na=na+1;
E(NT+2)=E(NT+1)+DE(NT+1);
DEminuscount=DEminuscount+1;
% Met was here

elseif Met >=1
for i=1:9

Teta(n+(i-1)*500)=TetaN; L(n+(i-1)*500)=LN; ux(n+(i-1)*500)=UXN; uy(n+(i-1)*500)=UYN;
rx(n+(i-1)*500)=RXN(i); ry(n+(i-1)*500)=RYN(i);

end
na=na+1;
E(NT+2)=E(NT+1)+DE(NT+1);
Metgreaterone=Metgreaterone+1;

else
Q=rand;
if Q<=Met

for i=1:9
Teta(n+(i-1)*500)=TetaN; L(n+(i-1)*500)=LN; ux(n+(i-1)*500)=UXN; uy(n+(i-1)*500)=UYN;

rx(n+(i-1)*500)=RXN(i); ry(n+(i-1)*500)=RYN(i);
end

 na=na+1;
E(NT+2)=E(NT+1)+DE(NT+1);
Qcount=Qcount+1;

else
E(NT+2)=E(NT+1);

end
end

NT= NT+1;
AR= (na+1)/NT;
NA(NT)=na;

if floor(NT/progmet)-floor((NT-1)/progmet)>0
D=floor(NT/progmet)*progmet;
clock
disp(' ');
disp([' Now NT= ' ,num2str(D)]);
RAR=(NA(NT)-NA(NT-10000))/10000;

End
End

2- Cluster identification script (Algorithm Developed by Authors)

ClustNum=zeros(1,N);
ClustNum(1)=1;
fracint=zeros(1,N);

for i=1:N
ttt=0;
zz=60000*ones(1,N);
if ClustNum(i)==0

zz(i)=max(ClustNum)+1;
ClustNum(i)=max(ClustNum)+1;
for j=1:N

if j~=i
Rij=sqrt((rx(i)-rx(j))^2+(ry(i)-ry(j))^2);
alpha=atan((ry(i)-ry(j))/(rx(i)-rx(j)));
Ai=Rij*abs(sin(alpha-Teta(j))/sin(Teta(i)-Teta(j)));
Aj=Rij*abs(sin(alpha-Teta(i))/sin(Teta(i)-Teta(j)));
if (Ai<=L(i)/2) && (Aj<=L(j)/2)

ttt=ttt+1;
if ClustNum(j)==0

ClustNum(j)=ClustNum(i);
zz(j)=ClustNum(i);

elseif ClustNum(j)<=ClustNum(i)
ClustNum(i)=ClustNum(j);
for w=1:N

if ClustNum(w)==ClustNum(j)
zz(w)=ClustNum(j);

end
end

else
for x=1:N

if ClustNum(x)==ClustNum(j)
zz(x)=ClustNum(j);

end
end
ClustNum(j)=ClustNum(i);

end
end

end
end
fracint(i)=ttt;
for s=1:N

if zz(s)<60000
ClustNum(s)=min(zz);

end
end

elseif i==1
for j=1:N

855Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

if j~=i
Rij=sqrt((rx(i)-rx(j))^2+(ry(i)-ry(j))^2);
alpha=atan((ry(i)-ry(j))/(rx(i)-rx(j)));
Ai=Rij*abs(sin(alpha-Teta(j))/sin(Teta(i)-Teta(j)));
Aj=Rij*abs(sin(alpha-Teta(i))/sin(Teta(i)-Teta(j)));
if (Ai<=L(i)/2) && (Aj<=L(j)/2)

ttt=ttt+1;
ClustNum(j)=1;

end
end

end
fracint(1)=ttt;

else
for a=1:N

if ClustNum(a)==ClustNum(i)
zz(a)=ClustNum(i);

end
end
for j=1:N

if j~=i
Rij=sqrt((rx(i)-rx(j))^2+(ry(i)-ry(j))^2);
alpha=atan((ry(i)-ry(j))/(rx(i)-rx(j)));
Ai=Rij*abs(sin(alpha-Teta(j))/sin(Teta(i)-Teta(j)));
Aj=Rij*abs(sin(alpha-Teta(i))/sin(Teta(i)-Teta(j)));
if (Ai<=L(i)/2) && (Aj<=L(j)/2)

ttt=ttt+1;
if ClustNum(j)==0

ClustNum(j)=ClustNum(i);
zz(j)=ClustNum(i);

elseif ClustNum(j)<=ClustNum(i)
ClustNum(i)=ClustNum(j);

for p=1:N
if ClustNum(p)==ClustNum(j)

zz(p)=ClustNum(j);
end

end

else
for q=1:N

if ClustNum(q)==ClustNum(j)
ClustNum(q)=ClustNum(i);
zz(q)=ClustNum(i);

end
end
ClustNum(j)=ClustNum(i);

end
end

end
end
fracint(i)=ttt;
for s=1:N

if zz(s)<60000
ClustNum(s)=min(zz);

end
end

end
end

u=0;
for i=1:max(ClustNum)

z=0;
for j=1:N

if ClustNum(j)==i
z=z+1;

end
end
if z>0

u=u+1;
ClustName(u)=i;
ClustSize(u)=z;

end
end
numberofcluster=length(ClustName);

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Belayneh M, Masihi M, Matthäi SK, King PR (2006) Prediction of vein
connectivity using the percolation approach: model test with field
data. J Geophys Eng 3(3):219–229

Berrone S, Pieraccini S, Scialo S (2013) A PDE-constrained optimiza-
tion formulation for discrete fracture network flows. SIAM J Sci
Comput. https ://doi.org/10.1137/12086 5884

Bour O, Davy P (1999) Clustering and size distributions of fault pattern:
theory and measurements. Geophys Res Lett 26(13):2001–2004

Darcel C, Bour O, Davy P, de Dreuzy JR (2003) Connectivity proper-
ties of two-dimensional fracture networks with stochastic fractal
correlation. Water Resour Res

Darcel C, Bour O, Davy P (2003) Cross-correlation between length and
position in real fracture networks. Geophys Res Lett.

Dreuzy JR, Darcel C, Davy P, Bour O (2004) Influence of spatial cor-
relation of fracture centers on the permeability of two dimensional
fracture networks following a power law length distribution. Water
Resour Res

Fathianpour N, Mokhtari AR, Naderi H (2013) Improving estimation
of STOIIP in one of Iranian South oil field using porosity pattern
simulation through filtersim algorithm. In: Proceedings of the 4th
Iranian mining engineering conference, mining engineering fac-
ulty, University of Tehran.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/120865884

856 Journal of Petroleum Exploration and Production Technology (2021) 11:839–856

1 3

Follin S, Hartley L, Rhén I et al (2014) A methodology to constrain the
parameters of a hydrogeological discrete fracture network model
for sparsely fractured crystalline rock, exemplified by data from
the proposed high-level nuclear waste repository site at Forsmark.
Sweden Hydrogeol J 22(2):313–331

Hardebol NJ, Maier C, Nick H, Geiger S, Bertotti G, Boro H (2015)
Multiscale fracture network characterization and impact on flow:
a case study on the Latemar carbonate platform. J Geophys Res
Solid Earth 120(12):8197–8222

Heffer KJ, King PR, Jones ADW (1999) Fracturing modelling as part
of integrated reservoir characterization. In: SPE paper, Middle
East Oil Show and Conference, 20–23 February 1999, Bahrain.

Jiang C, Wang X, Sun Z, Lei Q (2019) The role of in situ stress in
organizing flow pathways in natural fracture networks at the per-
colation threshold. Geofluids 2019:1–14

Jing Y, Armstrong RT, Mostaghimi P (2017) Rough-walled dis-
crete fracture network modelling for coal characterization. Fuel
191:442–453

Kadkhodaei A, Naderi H (2017) Investigation on effect of natural frac-
tures on experienced breakdown pressures in comparison with
expected pressures based on geomechanic study in one of Iranian
south oilfields. In: Proceedings of the 2nd national conference on
petroleum geomechanics.

Kang PK, Lei Q, Dentz M, Juanes R (2019) Stress-induced anoma-
lous transport in natural fracture networks. Water Resour Res
55(5):4163–4185

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. Science 220(4598):671–680

Lei Q, Latham JP, Xiang J (2016) Implementation of an Empirical Joint
Constitutive Model into Finite-Discrete Element Analysis of the
Geomechanical Behaviour of Fractured Rocks. Rock Mech Rock
Eng 49(12):4799–4816

Lei Q, Latham JP, Tsang CF (2017) The use of discrete fracture net-
works for modeling coupled geomechanical and hydrological
behavior of fractured rocks. Comput Geotech 85:151–176

Mäkel GH (2007) The modeling of fractured reservoirs: constraints and
potential for fracture network geometry and hydraulics analysis.
Geol Soc 292(1):375–403

Masihi M, King P (2007) Connectivity of spatially correlated
fractures:simulation and ield studies. In: Paper SPE 107132 pre-
sented at the SPE EUROPEC/EAGE Conference and Exhibition,
London

Masihi M, King PR, Nurafza P (2005) Fast estimation of performance
in fractured reservoirs using percolation theory. In: SPE Paper.

Naderi H, Fathianpour N, Tabaei M (2019) MORPHSIM: a new multi-
ple-point pattern-based unconditional simulation algorithm using
morphological image processing tools. J Pet Sci Eng 173:1417–
1437. https ://doi.org/10.1016/j.petro l.2018.09.028

Song S, Hou J, Sun S, Li Y, Wang X, Dou L, Liu Y, Kang Q, Huang S
(2018) Local optimization of DFN by integrating tracer data based
on improved simulated annealing. J Pet Sci Eng 170:858–872

Stauffer D, Aharony A (1992) Introduction to percolation theory. Tay-
lor and Francis, London, p 181

Tatomir AB (2007) Numerical investigations of flow through fractured
porous media. In: Master Thesis.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.petrol.2018.09.028

	Developing a new algorithm for numerical modeling of discrete fracture network (DFN) for anisotropic rock and percolation properties
	Abstract
	Introduction
	Modeling
	Fracture network modeling
	Simulated annealing algorithm
	Possible configurations and initial configuration
	System perturbation method
	Objective function and transition
	Temperature lowering schedule
	Stopping criteria

	Periodic boundary condition (PBC)
	MATLAB code for simulated annealing algorithm

	Results and discussion
	Generation of model realizations
	Energy minimization during algorithm progress
	The exploitation of statistics of the model

	Connectivity properties of the model
	Percolation threshold
	Correlation length exponent
	Connectivity exponent

	Discussion
	Conclusions
	References

