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Abstract
The role of natural fractures in future reservoir performance is prominent. The fractured porous media is composed of an 
interconnected network of fractures and blocks of the porous medium where fractures occur in various scales and have a 
strong influence either when most of the flow is concentrated and them or when they act as barriers. A general numerical 
model for discrete fracture networks (DFN) is usually employed to handle the observed wide variety of fracture properties 
and the lack of direct fracture visualization. These models generally use fracture properties’ stochastic distribution based 
on sparse and seismic data without any physical model constraint. Alternatively, a DFN model includes usual numerical 
geomechanical approaches like boundary element and finite element. But here, a geostatistical methodology has been 
used to generate a DFN model. In this paper, an alternative modeling technique is employed to create the realization of an 
anisotropic fractured rock using simulated annealing (SA) optimization algorithm. There is a notable positive correlation 
between fracture length and position. There are three principal subjects in a study of fractured rocks. Firstly, the network’s 
connectivity, secondly, fluid flows through the system, and thirdly, dispersion. Here, connectivity of generated networks is 
considered. Continuum percolation is the mathematical model to study the geometry of connected components in a random 
subset of space. Different random realizations from the S.A. algorithm in four different sizes of L = 100, 150, 200, 250 at 
post-threshold condition are used as disordered media in percolation theory to compute percolation properties using Monte 
Carlo simulation. The percolation threshold (critical fracture density) and two crucial scaling exponents (β and υ) that dictate 
the model’s connectivity behavior are estimated to over 200 realizations.
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Introduction

Fractures, as discontinuities within rocks in the crust, 
appear in vast length scales (Naderi et al. 2019). There are 
three principal models for fractured media: discrete, multi-
continua, and hybrid models (Naderi et al. 2019). Discrete 
models are required when the continuum approach, where 
the whole system is modeled with an equivalent permeable 
medium characterized by permeability tensor, is not appli-
cable. One of the most important criteria to choose a model 
is the scale of fractures concerning the study scale. For sys-
tems where the fracture scale is much less than the inter-
est continuum approach’s scale is sensible. Otherwise, the 
fracture network’s geometry will be important, and discrete 
models would be considered (Kadkhodaei and Naderi 2017; 
Fathianpour et al. 2013). In most modeling of fractures and 
faults as part of heterogeneity models, fractures have been 
considered as discrete objects that have been given stochastic 
distributions often based on power-laws, calibrated either 
from the local core or seismic data or from more general 
correlations (Makel 2007; Darcel et al. 2003a, b; Heffer et al. 
1999). One way of fracture modeling is the full geomechani-
cal approach, i.e., modeling of the fracturing process, includ-
ing the initiation of cracks, their propagation, coalescence, 
and mechanical interaction (Masihi et al. 2005; Dreuzy et al. 
2004; Olson et al. 1998). Sahimi, Arbabi, and Tatomir used 
the minimization of an appropriate form of elastic energy 
along with geomechanics to model fractures (Tatomir 2007; 
Sahimi et al. 1993; Sahimi and Arbabi 1996). DFN has been 
successively used in recent years (Kang et al. 2019; Pichot 
et al. 2012; Berrone et al. 2013). Jing et al. (2017) devel-
oped a discrete fracture network for coal characterization. 
The model integrates the pore-scale roughness obtained 
from micro-computed tomography (micro-CT) imaging of 
coals into the fracture networks’ discrete representation. 
Analysis of the fracture surfaces obtained from micro-CT 
imaging demonstrates random isotropic surfaces following a 
Gaussian distribution. The developed rough-walled discrete 
fracture network (RW-DFN) models are not restricted by 
the imaging resolution, so that they are favorable for direct 
numerical simulation of permeability. Besides, RW-DFN 
models can be constructed with an extended domain size 
to be incorporated into existing reservoir characterization 
frameworks to predict coal properties. A novel approach was 
presented by Song et al. (2018) to locally optimize DFN 
by integrating field tracer data based on an improved simu-
lated annealing (SAW) process. Their approach has been 
validated with two field case examples by largely improving 
the performances of numerical simulation. The results of 
their work showed that optimization has a minimum effect 
on the original fracture density model. Additionally, the 
percentage of fractures updated in each perturbation of the 

proposed method decides the optimization’s speed and preci-
sion level. The improved simulated annealing algorithm can 
also be widely used for other optimization problems. Jiang 
et al. (2019) investigated the effect of in situ stresses on fluid 
flow in a natural fracture network. Their simulations show 
that anisotropic stress loading tends to reduce fracture aper-
tures and suppress fluid flow, resulting in decreased frac-
tured rock’s equivalent permeability. Anisotropic stresses 
may cause a significant sliding of fracture walls accompa-
nied by shear-induced dilation and some preferentially ori-
ented fractures, resulting in enhanced flow heterogeneity 
and channelization. In this study, a geostatistical approach 
is employed, which directly considers elastic energy in a 
fractured medium, a model that assumes all the fractures 
have existed, and the medium is in the equilibrium state. 
One main assumption is that elastic-free energy associated 
with fracture distribution follows a Boltzmann distribu-
tion. The simulated annealing (S.A.) algorithm is employed 
to minimize associated energy function. A mathematical 
model with which we can describe the connectivity and the 
percolation properties in complex geometries is called the 
percolation theory (Stauffer and Aharony 1992; Follin et al. 
2014). The system is composed of objects distributed ran-
domly and independently, which are not restricted to points 
on the fixed lattice (without any maximal concentration), 
such as fractured media, and continuum percolation gets 
rights into. Realizations of anisotropic random fracture net-
works produced by the simulated annealing algorithm will 
be used as a disordered system in the percolation theory’s 
basic methodology. The critical properties of the resulting 
network will be estimated for different realizations for dif-
ferent system sizes.

Modeling

Fracture network modeling

In this paper, we use simulated annealing technique 
(Belayneh et al. 2006; Kirkpatrick et al. 1983) as an optimi-
zation tool with energy (objective) function to generate the 
fracture network’s realization. Indeed, simulated annealing 
is a stochastic optimization technique that has been used in 
a variety of global optimization problems that involve objec-
tive functions with a large number of independent variables. 
Simulated annealing can be utilized with an energy func-
tion based on the covariance function to generate correlation 
in the system (Jing et al. 2017; Hamzehpour and Sahimi 
2006). In the following adjustment and implementation of 
simulated annealing technique for this particular problem, 
an optimized configuration of fractures is outlined.
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Simulated annealing algorithm

We can find an appropriate fracture configuration in 2D 
space with an anisotropic condition using simulated anneal-
ing. Application of simulated annealing needs to define sev-
eral terms: (1) a set of possible structures of fractures and 
an initial design (2) a method for a small random symmetric 
change to the configuration (system perturbation method) (3) 
an objective function to be minimized (cost function) (4) an 
annealing schedule of changing a temperature-like parameter 
T, so that the system can reach its minimum global energy 
(5) stopping criterion.

Possible configurations and  initial configuration  Con-
sidering constraints of three characteristic parameters of 
fractures, i.e., position, length, and orientation, any con-
figuration which obeys these constraints is possible. That is, 
fractures’ centers must lie in the square of the side L with 
x ∈ (0, L) and y ∈ (0, L) . There is no constraint for fractures’ 
orientation, and fractures may have any direction. One way 
of minimizing the energy function defined by Eq.  1 is to 
reduce fractures’ length.

where A = E/16πμ(1 − ν), N is the number of fractures in 
the system, and the components uk and ul are the displace-
ments on fractures in k and l direction. α, θk, and θl specify 
the orientations of the distance vector r and fracture vectors 
uk and ul concerning the horizontal x-axis. This equation 
relates to the pairwise interactions of fractures to the total 

(1)

E =

N∑

k=1

N∑

k≠l
l=1

(
Aukul[�| cos(�k − �l)| + | cos(� − �l) cos(� − �k)|]∕rkl

)

elastic energy of the system (Roy et al. 2010; Heffer and 
King 2005).

If simulated annealing procedure advances without any 
lower bound for fractures’ length, fractures’ size tends to 
zero. Two solutions have been proposed for this problem: 
(1) initializing model with large fractures (concerning square 
side) and defining a maturity control parameter and restric-
tion of simulated annealing procedure using this parameter 
which is called accepted ratio (2) renormalizing fracture 
length distribution and keeping mean fracture length fixed. 
In this work, the first method is used.

One of the significant advantages of the simulated anneal-
ing technique is the independence of its initial configuration 
and the algorithm’s convergence. As the fractures’ initial 
design’s choice does not affect the confluence, we can use 
different distributions for the fracture lengths and orienta-
tions in the algorithm. Here, Gaussian distribution for frac-
ture length and uniform distribution for fracture orientation 
and position on (0, π) and (0, L) are used, respectively. A 
realization of the initial fracture network configuration is 
shown as follows (Fig. 1).

System perturbation method  After defining the initial 
configuration to progress to lower energy levels, a simu-
lated annealing algorithm needs a new potential solution to 
evaluate. This new configuration must slightly differ from 
the prior accepted arrangement reached by the algorithm. 
The updating method for generating new near possible 
solutions from the currently accepted design (solution) may 
be fixed throughout, making the model mature or changed 
during algorithm progress. Contrary to the algorithm used 
by previous works, like, the updating method used to gen-
erate new potential solutions is not fixed and would change 
during algorithm progress. Model energy goes down, and 
the model becomes more mature, the number of further 
possible solution rejection will increase gradually. If the 
same schedule used for early iterations of the algorithm 
is used in late iterations, the number of overall rejection 
at the end of the process will be too high, and the model 
cannot reach a better configuration with lower energy. So a 
secondary schedule has been used to change the updating 
method. Thus, a more precise solution in more down run 
time is achieved.

To change the current solution and generate a new near 
potential solution, three characteristic properties of one ran-
domly chosen model element (fracture) are altered slightly, 
i.e., length, orientation, and position. The updating equa-
tions must have the stuff to generate new potential solu-
tions that differ somewhat from the current solution and 
be symmetric. Here, the Masihi and King (2007) equations 
are used. That is:

Fig. 1   Initial network configuration with Gaussian distribution for 
fracture length
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where R is the random number uniformly distributed on 
[0, 1]. The term (2R − 1) induces symmetry in simulated 
annealing algorithms. Fractures may get larger or smaller, 
rotate clockwise or counterclockwise, and move in the north, 
south, east, or west direction.

Objective function and transition  So far, an initial configu-
ration and an updating equation set have been presented. 
Now a decision-making criterion is required, so the model 
should transit to a new design or not. This criterion is the 
value or better change in the amount of some function called 
the objective function. Here, the objective function is the 
energy function presented in Eq. 1. To introduce anisotropy 
in this model, different η values have been assigned to x- 
and y-direction ηy = 2. Then, in the computation of energy 
between two fractures, an average of these values has been 
used. Averaging is based on length and orientation (pro-
jection of fractures on each axis). When a new configura-
tion is generated by updating equations, the change in the 
energy function is computed. Suppose ΔE < 0, the transi-
tion is accepted unconditionally. Otherwise, the new design 
is obtained or rejected based on the Metropolis–Hastings 
algorithm (with probability proportional to the Boltzmann’s 
factor e−ΔE/T). This flexibility allows the algorithm to escape 
from local minima.

Temperature lowering schedule  At any temperature, after 
a limited number of iterations system reaches a situation of 

(2)

�new
i

= �old
i

+ 0.05�(2R − 1)

lnew
i

= lold
i

+ 0.05(2R − 1)

rxnew
i

= rxold
i

+ 0.5(2R − 1)

rynew
i

= ryold
i

+ 0.5(2R − 1)

maturity where the temperature parameter must be lowered. 
If the temperature parameter does not get reduced, the sys-
tem maturity stays at that level captured into some loop, and 
algorithm progress would be too slow because of the high 
rate of acceptance for transitions with ΔE < 0. To increase 
progress speed, this temperature should get lowered based on 
some appropriate schedule. This schedule directly depends 
on the size of the systems. Here, approximately after ten vis-
its of each fracture in the system, the temperature gets low-
ered such that Tnew = kTold and k ranges from 0.94 to 0.97. 
The following figure illustrates the variation in temperature 
against algorithm iteration. Here, colors indicate the energy 
levels of the system. The brighter the color, the higher the 
system energy level (Fig. 2).

Stopping criteria  Depending on the particular system under 
study, time, computational limitations of available comput-
ers, and the study’s purpose, different stopping criteria may 
be used. In this specific fracture system, stopping criteria 
may be defined as the average value ΔE for last N iterations, 
mean fractures’ length, accepted, the total number of itera-
tions, etc.

Here, a maturity control parameter is used to terminate 
algorithm progress. Indeed, this parameter is the accept-
ance ratio (A.R.) defined over the last 50,000 iterations if 
AR < 0.01, the algorithm would be released.

Periodic boundary condition (PBC)

The fractures in the model are distributed over a square of 
sides L. The limited lateral extension of this square will 
introduce boundary effects in the final configuration of frac-
tures. This is because of the different stress experienced 
by fractures in the interior areas and the exterior areas. 

Fig. 2   Illustration of tem-
perature lowering schedule 
(Tnew = kTold)
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By looking at equation one, this difference is noticeable. 
When a fracture is positioned on areas near boundaries, 
the average distance between this fracture and other frac-
tures is smaller, and the contribution of this fracture in the 
total energy of the model will be smaller concerning other 
fractures in areas far from boundaries. Consider a simple 
boundary condition that replaces a fracture exiting from one 
side with exactly a similar fracture entering the other side. 
If this simple boundary condition that neglects the effect of 
boundaries is used, all the fractures would be distributed on 
the model’s limitations, maximizing their distances from 
each other. This is because of the lack of any other fracture 
beyond the limits.

Masihi and King (2007) used a simple periodic bound-
ary condition that considers the effect of boundaries using 
reflected imaginary fractures. In this boundary condi-
tion and the above simple one, if a fracture’s end exits 
the square, keeping this fracture from the other side, an 
imaginary fracture exactly similar to leaving fracture with 
the same distance of boundary would be introduced in the 
court. But here, a different periodic boundary condition is 
used, which is physically more meaningful. The square is 
surrounded with eight exactly equal squares plus replac-
ing exiting fractures from the other side. This boundary 
condition is shown as follows (Fig. 3).

MATLAB code for simulated annealing algorithm

In this work, the MATLAB programming language is 
used to write a simulated annealing algorithm. MATLAB 
(MATrix LABoratory) is a fourth-generation programming 
language and a software environment with various powerful 

computation and visualization tools in engineering projects. 
The primary data element is a matrix, so if you need a pro-
gram that manipulates array-based data, it is generally fast to 
write and run in MATLAB, or vice versa. To speed up itera-
tions of the simulated annealing algorithm’s main loop, the 
center block’s properties and eight surrounding blocks are 
unified in one matrix in a meaningful order such that there is 
only one length matrix for all fractures, whether in the center 
block or surrounding block. At least one-third of the whole 
time of this work has been spent writing code, especially 
in the percolation part. The first block of MATLAB codes 
for the simulated annealing algorithm, which initializes the 
model with 500 fractures, is given as follows. A full version 
of the MATLAB code of the algorithm is provided in the 
Appendix.

%This is the first lines of the main code that randomly initializes the model  

clear; 
rng('shuffle');                         %this command shuffles Random Number Generator 
tic %keeps track of time
Clock

%************** orientation matrix ***************** 
Teta=zeros(1,4500);
Tetar = pi*rand(1,500);                 %uniform distribution of orientation on [0,pi] 

for i=1:500                           %unifies all Teta values in one matrix 
for j=1:9 

Teta(i+(j-1)*500)=Tetar(i); 
end 

end 

Tetai=Teta;                             %keeps initial Teta values 

%****************** length matrix ****************** 
L=zeros(1,4500); 
Lr =abs(random('norm',6,2,1,500));      %normal distribution of length  M=6, SD=2 
for i=1:500

for j=1:9                           %unifies length values in one matrix 
L(i+(j-1)*500)=Lr(i); 

end 
end 

Li=L;                                   %keeps initial length matrix 

%************* position matrices ******************* 
rx=zeros(1,4500);   ry=zeros(1,4500); 
rxr = 100*rand(1,500);                  %uniform distribution for position [0,100] 
ryr=100*rand(1,500);                                      

for i=1:500                             %unifies positions 
for j=0:2 

rx(i+3*j*500)=rxr(i)-100;
rx(i+(3*j+1)*500)=rxr(i);                              
rx(i+(3*j+2)*500)=rxr(i)+100; 

end 
end 

for i=1:500 
for j=1:3 

ry(i+(j-1)*500)=ryr(i)+100; 
ry(i+(j+2)*500)=ryr(i); 
ry(i+(j+5)*500)=ryr(i)-100; 

end 
end 
rxi=rx; ryi=ry; %keeps initial fracture position

Fig. 3   Order and position of periodic boundary condition used in the 
algorithm in this work
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Results and discussion

Generation of model realizations

Different realizations for different model sizes (or better 
fractures number) are required to investigate the fracture 
network’s connectivity properties using percolation theory. 
In this work, totally 200 various realizations in four differ-
ent system sizes of 100, 150, 200, and 250 using the simu-
lated annealing algorithm have been generated. The final 
length distribution of fractures must be controlled between 
two extremes such that an investigation of connectivity is 
possible. Fractures in the final configuration must be in 
post-percolation threshold condition such that by randomly 
omitting fractures in the network, the particular percolation 
threshold can be extracted through the Monte Carlo tech-
nique. One extreme is when final fractures are too long, and 
the system is connected. The other height is when fractures 
are too short, and there is no spanning cluster of fractures.

Indeed, a balance between fracture number and fracture 
length in the final configuration must exist. So simulated 
annealing algorithm with various fractures number and ini-
tial length distribution (initial fracture density), perturba-
tions method, initial temperatures and temperature lowering 
schedules, and stopping criteria have been examined through 
trial and error to reach an optimum combination of these 
significant factors. Different settings (algorithm input) used 
for simulated annealing algorithms in three different model 
sizes are given in Table 1.

Energy minimization during algorithm progress

As it was said before, by progressing the simulation process, 
the system’s energy levels go down. This energy reduction 
process has two main phases. In the first phase, the model 
is at high energy levels, and the temperature is high. So the 
metropolis expression in the algorithm gives more chances 
for transitions, decreasing the system’s total energy and 
having more opportunities to escape from local minima 
toward the global minimum. In other words, the hill-climb-
ing property of the simulated annealing algorithm is more 
probable in this phase. Unlike the first phase, the system’s 

second-phase energy levels are low, and the system reaches 
relative stability. In this phase, the system’s opportunity to 
escape from traps is much shorter, and the system configu-
ration only changes slightly. The following figure shows a 
typical behavior of system total energy against iteration.

These two phases of the total energy of the system look 
like two steps. In the upper stage, the system is too unsta-
ble, and there are severe fluctuations in the virtue of higher 
temperatures (brighter colors). Then, by lowering the tem-
perature, system transits to a stable condition with lower 
energy levels and smooth changes because of relatively low 
temperature (darker colors).

The second useful graph is the graph of the energy differ-
ence between before and after perturbation. The two main 
phases of system energy here appear with a different char-
acteristic. In this graph, fluctuations are evident in Fig. 4. 
But there is another factor in this graph which separates 
two phases. This factor is the exact symmetry condition 
around the x-axis. In the early iterations of the algorithm, 
there is a high acceptance rate for energy increasing transi-
tions in virtue of the system’s high temperature. So there is 
approximately asymmetry about the x-axis because nearly 
any change in the system’s energy is accepted (brighter 
colors). As the number of iterations gets larger, the condi-
tions change. By increasing the rate of rejection of energy 
increasing transitions, the graph becomes asymmetric 
around the x-axis and tends to the upper half with DE > 0 
(darker colors) (Fig. 5).

The other useful graph is the cumulative number of 
accepted transitions against the cumulative number of itera-
tions, which shows these two phases. The chart looks like a 
boomerang with a nearly straight wing and a gently curved 
wing. The left wing represents the first phase. This wing’s 
slope is approximately 0.98, which means almost all per-
turbation has been accepted whether they have decreased 
energy or not. Then, the system transits to the second phase 
(curved region). Unlike a left wing, the right wing repre-
senting the second phase has a very gentle average slope of 
approximately 0.09. Nearly, only perturbations that reduce 
fracture length have been accepted (Fig. 6).

Table 1   Initial conditions of the 
simulated annealing algorithm

System size No. of fractures Mean SD Ti Temp. schedule No. of 
realiza-
tions

Stopping
criterion

100 500 25 5 500,000 0.97 50 AR < 0.01
150 1150 25 5 600,000 0.96 50 AR < 0.01
200 2000 25 5 700,000 0.95 50 AR < 0.01
250 3150 25 5 900,000 0.94 50 AR < 0.01
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The exploitation of statistics of the model

In the following figure, one realization of a fracture network 
configuration has been given. The questions that come up 
are: How are different fracture network parameters distrib-
uted? Is there any correlation between the parameters of the 
final fracture configuration?

First of all, let inspect fracture length distribution. In 
Fig. 7, fracture size distribution has been presented. The 
fracture size distribution for this particular realization can be 
fitted either standard exponential or power-law distributions. 

As it has been mentioned before several times, different ini-
tial conditions (e.g., other fracture length distributions, dif-
ferent initial orientation) may be used for simulated anneal-
ing algorithm, and subsequently, additional final output can 
be generated. The fractures’ absolute length values depend 
on initial values, and this model must be calibrated with 
local well log and core and seismic data. Figure 8 shows that 
the slope of fracture size distribution has been presented, 
which is a criterion of relative fracture size values.

Orientation is the other fundamental parameter of the 
final fracture network configuration. As shown in Fig. 8, 

Fig. 4   Variation in total system 
energy (E) as a function of 
algorithm iteration (sampled 
with ratio 1:50)

Fig. 5   Variation in energy dif-
ference before and after pertur-
bation with iteration (1:50)
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fractures generally constitute two fracture sets, a horizontal 
set and a vertical set. In the following figure, the distribution 
of orientation values of the fracture, the network has been 
given. In the upper part, distribution of all fracture sizes is 
offered, while relatively larger fractures have been shown. 
A diminution in all bars’ size means smaller fractures are 
randomly distributed in the lower part, which is reasonable 
because smaller fractures have smaller contributions to the 
system’s total energy. The metropolis term in the algorithm 
would have smaller values. This means smaller fractures 
have more chance to rotate randomly.

In the upper part of Fig. 9, the tall fracture orientation 
distribution on the model has been given. In this figure, two 
principal fracture sets have been shown as two modes of an 
asymmetric bimodal distribution, one more massive method 
in approximately 0 radians, the horizontal location, and the 
other in the approximately 1.6-radian vertical set. The latest 
height is nearly two times larger than the standing setting. 
The summary of the statistics of these two fracture sets is 
given as follows (Table 2).

Now, this question comes up: Is there any correlation 
between fracture length and fracture position? A particu-
lar type of correlation exists between these two parameters 
of the final fracture configuration. Bour and Davy (1999) 
and Lei et al. (2017) presented a new type of correlation 
in a fracture network between fracture length and fracture 
position. They defined parameter dc(l) to be the distance 
between the center of a fracture and its nearest neighbor. 
They showed there is a scaling law between this parameter 
and fractures length such that dc(l) ∝ lm where the exponent 
m varies in [0, 1]. The lower bound of this interval indi-
cates there should be no correlation between fracture length 
and fracture position, while the upper bound corresponds 

to space-filling objects such as the apollonian described 
by Mandelbrot (1982) and Lei et al. (2016). Darcel et al. 
(2003a, b) and Hardebol et al. (2015), by using natural frac-
ture network data, computed the exponent m from each frac-
ture map within the range [0.1, 0.3].

It is straightforward for a fracture network that the initial 
condition of simulated annealing algorithm m will be nearly 
zero because the fractures were distributed randomly. But 
as the following figure shows, there is a correlation between 
fracture length and fracture position in the fractures’ final 
configuration. There is a positive correlation between frac-
ture length and placement of its nearest neighbor. This 
means, the larger the fracture, the larger the space around 
it (Fig. 10).

Here, summary statistics of all realizations have been 
given. In Table 3, important statistic parameters of all 200 
realizations of fracture network such as relative number and 
length of two fracture sets, mean orientation angle for each 
fracture set separately, the slope of correlation between size 
and position of fractures have been computed.

Connectivity properties of the model

Eventually, in this section, the connectivity of this basic 
fracture model would be studied. Primarily, fracture net-
work models are considered continuum percolation model 
cases with definitions of equivalent terms, and the perco-
lation properties of these models are evaluated. Bour and 
Davy (1997) and Geiger (2019) modeled and quantified 
random fault networks’ percolation properties following 
power-law fault length distribution, which differed from 
values for equal size fractures systems. Here, in this work, 

Fig. 6   Cumulative number 
of accepted transition against 
iteration
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the percolation threshold ( p∞
c

 ), correlation length exponent 
(ν), and connectivity exponent (β) have been estimated.

Percolation threshold

From the practice point of view, all the systems under study 
are limited by size. As we know, percolation thresholds for 
these systems were defined as the occupancy where 50% 
of all realizations at that occupancy connect the system’s 
boundaries (boundaries), and it was called the apparent 
percolation threshold. The apparent percolation threshold 
slightly varies with the system size due to finite size effects, 
which is modeled by:

(3)pc(L) − p∞
c
∝ L−1∕�

The apparent percolation threshold p∞
c

 is the actual per-
colation threshold (i.e., for infinitely large systems) and ν 
denotes the correlation length exponent (Song et al. 2018; 
Stauffer and Aharony 1992). This proportionality means the 
more massive the system size is, the better is the estimate of 
the actual percolation threshold. The error Δ(L) associated 
with apparent percolation values due to finite size effects 
also varies like L−1/ν denotes the root mean square (RMS) 
deviation of apparent percolation threshold values for differ-
ent realizations with the same system size. So without any 
knowledge ν, one may obtain an estimate of the percolation 
threshold by plotting pc(L) against Δ(L) by extrapolation 
Δ = 0. This method works particularly well for percolation, 
where it was introduced by Levinshtein et al. (1975). The 
equations and expressions above are the average percola-
tion threshold by doing numerous Monte Carlo experiments 
for the same system size and check for when the spanning 
cluster appears for the first time when the system is getting 
filled slowly vice versa. In large networks, a standard method 
may be required. Here, an adapted version of the technique 
introduced by Stauffer and Aharony (1992) is used. First, 
check the connectivity for N/2 all fractures (randomly). If it 
does, decrease the number of fractures by N/4, otherwise, 
increase it by N/4. Now check again. If percolation occurs, 
reduce by N/8, otherwise increase it by N/8. Repeat this way 
to reach sufficient accuracy. After about ten such iterations, 
the onset of percolation is known with an accuracy sufficient 
for many purposes. This value is the threshold of this par-
ticular realization. By averaging over all realizations of this 
system size, one value pc(L) would be estimated (Fig. 11).

Correlation length exponent

There are three different ways to estimate the correlation 
length exponent. First is the scale dependency of the error 
associated with the apparent threshold. As mentioned in the 
previous section, it is sufficient to plot RMS deviation of 
apparent percolation threshold (Δ(L)) for different system 
sizes in log–log scale paper. The slope of the resulting graph 
gives an estimate for the exponent ν. The alternative way is 
to use pf and p1−f as the occupancy probabilities at which 
the fraction f and 1 − f of all realizations percolate, which is 
expected to have scale dependency given by Gawlinski and 
Stanley (1981) (Fig. 12),

Different values f give different estimates, which can be 
averaged to obtain a more reliable estimate of ν. Finally, one 
can use equation five and take a log–log plot ξ(p) against 
p − p∞

c
 a relatively large system size. 

(4)p1−f − pf ∝ L−1∕�

Fig. 7   a A final configuration of the fracture network with 1150 frac-
tures and L = 150. b Percolating cluster containing 453 fractures
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Here, in this work, the first method has been used.

Connectivity exponent

There are two ways to obtain an estimate of the connectiv-
ity exponent (β). To estimate this exponent, one can take a 
log–log plot of P(p, L) versus p − p∞

c
 for a relatively large 

system size. The gradient of the produced curve would give 
an estimate of the connectivity exponent of the system. 
Alternatively, as the relevant scale is the system size at the 
apparent threshold, one can estimate β the percolation prob-
ability’s finite size dependency (connected fraction), accord-
ing to the following equation (Fig. 13).

Discussion

Heterogeneity in fractured petroleum reservoir rock is such 
an extent that it is impossible to model it fully. So, the sig-
nificance of a statistical method is undeniable. Usually, dif-
ferent fracture network parameters such as size, orientation, 

(5)�(p) ∝ |p − p∞
c
|−�

(6)P(p,L) ∝ L−�∕�

and position are given statistical distributions and are cali-
brated using well log, seismic, and outcrop data of local 
reservoir rock. These models at least lack any physical 
constraint of the distribution of different characteristics of 
the network. In this work, a model was developed using a 
simulated annealing algorithm where it is the fundamen-
tal equation to be minimized was extracted from elastic-
ity theory. Thus, the resulting model would have physical 
constraints rather than random unrestricted full statistical 
models. Section “The exploitation of statistics of the model” 
is devoted to the exploitation of statistics of the realizations 
of the model. This model is not capable of modeling the 
aperture of fractures. However, for example, to investigate 
the model’s conductivity, one can use existing correlations 
between size and aperture of the fractures.

One of the most critical problems in the fractured res-
ervoir is their high rate of uncertainty and variability due 
to different scale fractures, and this problem would appear 
in various stages of reservoir life from the early stages of 
drilling through field development and management. Frac-
tures can act as hydraulic conductors or barriers to flow. 
The fracture network’s connectivity is a crucial parameter 
in controlling fluid movement, which depends on individual 
fractures and the system’s geometrical parameters.

One approach to investigating this extensively compli-
cated network’s connectivity is percolation theory as a basic 
mathematical model of a highly disordered media such as 
fracture networks. In Sect. “Fracture network modeling,” 

Fig. 8   Fracture length distribu-
tion of a typical realization. 
This distribution can be fitted 
with either exponential or 
power-law (slope ≈ −1.3)
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three crucial percolation properties were estimated overall 
realizations. The percolation threshold (critical density) of 
the resulting system was evaluated. The scaling law expo-
nents that appear in connectivity formulations and dictate 
the network’s connectivity behavior were assessed. Here, 
a limited number (200) of realizations have been used. The 
results may be improved using more realizations.

Conclusions

Fracture petroleum reservoirs provide over 20% of reserve 
globally, and this number is nearly 90% in Iran. The usual 
approach in reservoir numerical modeling for fractured 
reservoirs is to use the statistical distribution of different 
fracture network parameters and calibrating to local well 
log, seismic, and outcrop data, and consequently, these 
models lack any physical restrictions. In this work, gener-
alizations of a discrete fracture network for an anisotropic 
medium with different properties along each axis have been 
generated.

Fig. 9   Fracture orientation dis-
tribution on (above) all fractures 
(below) fractures larger than 
mean fracture length

Table 2   Summary statistics of 
two principal fracture sets

Set No. of fractures Length dist Mean (L) Orientation dist Mean (θ) SD (θ)

Horizontal 493 Exponential 7.083 Normal 0.010 0.31
Vertical 407 Exponential 4.271 Normal 1.563 0.37
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Fig. 10   Correlation between 
fracture length and position 
(slope ≈ 0.12)

Table 3   Summary statistics of 
all 200 realizations (M: Mean, 
SD: Standard deviation, R: 
Relative)

M (RN) SD (RN) M (M(RL)) SD (M(RL)) M (M(θ)) SD (M(θ)) M (slope) SD (slope)

1.203 0.080 1.513 0.073 H: 0.004 V: 1.575 H: 0.013
V: 0.072

0.117 0.302

Fig. 11   Estimation of p∞
c

 using 
extrapolation at Δ(L) = 0
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1.	 Fractures form two principal sets. Fractures along the 
x-axis are generally longer and more by number.

2.	 Fractures with length larger than fracture’s mean length 
are more polarized along two principal axes. Smaller 

fractures due to their relatively smaller contribution to 
total system energy are nearly randomly distributed.

3.	 Log–log plot of fracture’s length distributions has nearly 
linear form and can be fitted either power-law or harm-

Fig. 12   Using the slope of vari-
ations Δ(L) against L in estima-
tion of 1∕� ≈ 0.52 ± 0.016

Fig. 13   Variation in P against L, 
�∕� ≈ 0.05 ± 0.017
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ful exponential law. The mean slope of this line overall 
realizations is approximately −1.4.

4.	 There is a positive correlation between fracture’s posi-
tions and lengths. Fractures with more extensive meas-
urements are more robust to expel other fractures, and 
the nearest fracture would be more distance away.

5.	 There crucial parameter of the percolation model of the 
system has been estimated. These parameters were per-
colation threshold, correlation exponent, and connectiv-
ity exponent.

6.	 A new algorithm to identify fracture clusters has been 
developed (Appendix).

As future work, by reducing number of matrix which 
defines fracture network properties, for example, by unit-
ing length, orientation, and position matrices, the compu-
tation elapsed time will decrease significantly. And, using 
aspect ratio as stopping criterion makes the output final 
fracture configuration be in same range by different prop-
erties such as orientation distribution and can be used in 
percolation methodology of connectivity.

Appendix: Matlab Codes

1-SA algorithm 

rng('shuffle');       
clear; 
tic
clock 

%**************  orientation matrix *****************
Teta=zeros(1,4500); 
Tetar = pi*rand(1,500);                                        

for i=1:500                                                           
for j=1:9 

Teta(i+(j-1)*500)=Tetar(i); 
end

end

Tetai=Teta;                                                           

%******************  lenght matrix ******************
L=zeros(1,4500); 
Lr =abs(random('norm',25,5,1,500));                   
for i=1:500 

for j=1:9                                                          
L(i+(j-1)*500)=Lr(i); 

end
end

Li=L;                                                                    
%*************position matrices*******************
rx=zeros(1,4500);   ry=zeros(1,4500); 
rxr = 100*rand(1,500);                                        
ryr=100*rand(1,500);                                         

for i=1:500                                                            
for j=0:2 

rx(i+3*j*500)=rxr(i)-100;
rx(i+(3*j+1)*500)=rxr(i);                              
rx(i+(3*j+2)*500)=rxr(i)+100; 

end
end

for i=1:500 
for j=1:3 

ry(i+(j-1)*500)=ryr(i)+100; 
ry(i+(j+2)*500)=ryr(i); 
ry(i+(j+5)*500)=ryr(i)-100; 

end
end

rxi=rx;                                                                 
ryi=ry; 

ux=zeros(1,4500);   uy=zeros(1,4500); 

%*************fracture components*************
uxr= Lr .* cos(Tetar);                                              
uyr= Lr.* sin(Tetar);                                                 
for i=1:500 

for j=1:9 
ux(i+(j-1)*500)=uxr(i); 
uy(i+(j-1)*500)=uyr(i); 
end

end

uxi=ux; 
uyi=uy; 
A=1;                
K=0;                
E=zeros(1,1000000); 
Eti=0; 
E1=0; 
%*******************initial energy********************

for i=2001:2500 
for j=1:4500 

if (j<2001) || (j>2500) 
rij=[rx(i)-rx(j);ry(i)-ry(j)]; 

E1=energyfun(ux(i),ux(j),uy(i),uy(j),rij(1),rij(2),4*(sin(Teta(i)))^2+2*(cos(Teta(i)))^2,4*(sin(Teta(j)))^2+2*(co
s(Teta(j)))^2); 

Eti=Eti+E1; 
elseif i~=j 

rij=[rx(i)-rx(j);ry(i)-ry(j)]; 

E1=energyfun(ux(i),ux(j),uy(i),uy(j),rij(1),rij(2),4*(sin(Teta(i)))^2+2*(cos(Teta(i)))^2,4*(sin(Teta(j)))^2+2*(co
s(Teta(j)))^2); 
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Eti=Eti+E1/2; 
end

end
end

E(1)=Eti; 
disp(' ');
disp(['                                                                                                         Initial energy : ' ,num2str(E(1))]);                   

%*****************SA**************************

NT=0;                                                                               
na=0;                                                                              AR=1;                                                                              
Temp=500000;                                                                 
DEminuscount=0; 
Metgreaterone=0; 
Qcount=0; 
PEb=zeros(1,1000000); 
PEa=zeros(1,1000000); 
DE=zeros(1,1000000); 
NA=zeros(1,1000000); 
RAR=1; 
progmet=50000; 
Met=0; 

while (NT<1000000) && (RAR>0.01)                                    

n = unidrnd(500);                                                           
R1=rand;  R2=rand;   R3=rand;   R4=rand; 

TetaN=Teta(n+2000)+0.05*pi*(2*R1-1) ;     LN=abs(L(n+2000)+0.1*(2*R2-1)) ;     UXN=LN*cos(TetaN)  ;    
UYN=LN*sin(TetaN)  ; 

RXN=zeros(1,9); 

if rx(n+2000)+0.5*(2*R3-1)> 100                                   
RXNm=rx(n+2000)+0.5*(2*R3-1)-100;
for i=1:3 

RXN(1+(i-1)*3)=RXNm-100;
RXN(2+(i-1)*3)=RXNm; 
RXN(3+(i-1)*3)=RXNm+100; 

end

elseif rx(n+2000)+0.5*(2*R3-1)<0 
RXNm=rx(n+2000)+0.5*(2*R3-1)+100; 
for i=1:3 

RXN(1+(i-1)*3)=RXNm-100;
RXN(2+(i-1)*3)=RXNm; 
RXN(3+(i-1)*3)=RXNm+100; 

end
else

RXNm=rx(n+2000)+0.5*(2*R3-1); 

for i=1:3 
RXN(1+(i-1)*3)=RXNm-100;
RXN(2+(i-1)*3)=RXNm; 
RXN(3+(i-1)*3)=RXNm+100; 

end
end

RYN=zeros(1,9); 

if ry(n+2000)+0.5*(2*R4-1)> 100                                                
RYNm=ry(n+2000)+0.5*(2*R4-1)-100;
for i=1:3 

RYN(i)=RYNm+100; 
RYN(i+3)=RYNm; 
RYN(i+6)=RYNm-100;

end

elseif ry(n+2000)+0.5*(2*R4-1)<0 
RYNm=100+ry(n+2000)+0.5*(2*R4-1); 
for i=1:3 

RYN(i)=RYNm+100; 
RYN(i+3)=RYNm; 
RYN(i+6)=RYNm-100;

end
else

RYNm=ry(n+2000)+0.5*(2*R4-1); 
for i=1:3 

RYN(i)=RYNm+100; 
RYN(i+3)=RYNm; 
RYN(i+6)=RYNm-100;

end
end

Ep1=0; 
Ep21=0; 
Ep22=0; 
E1=0; 
E21=0; 
E22=0; 

%**************before*********************
for i=1:4500 

if (i~=n+2000) 

r1=[rx(n+2000)-rx(i);ry(n+2000)-ry(i)]; 

E1=energyfun(ux(n+2000),ux(i),uy(n+2000),uy(i),r1(1),r1(2),4*(sin(Teta(n+2000)))^2+2*(cos(Teta(n+2000)))^
2,4*(sin(Teta(i)))^2+2*(cos(Teta(i)))^2);                   

Ep1=Ep1+E1; 
end

end

PEb(NT+1)=Ep1; 

%***************after*********************
for i=1:9 

for j=1:500 
if j~=n 

k=(i-1)*500+j; 
r21=[RXNm-rx(k);RYNm-ry(k)]; 

E21=energyfun(UXN,ux(k),UYN,uy(k),r21(1),r21(2),4*(sin(TetaN))^2+2*(cos(TetaN))^2,4*(sin(Teta(j)))^2+2
*(cos(Teta(j)))^2); 
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Ep21=Ep21+E21; 
end

end
end

for i=1:9 
if i~=5 

r22=[RXN(i)-RXNm;RYN(i)-RYNm]; 

E22=energyfun(UXN,UXN,UYN,UYN,r22(1),r22(2),4*(sin(TetaN))^2+2*(cos(TetaN))^2,4*(sin(TetaN))^2+2
*(cos(TetaN))^2); 

Ep22=Ep22+E22; 
end

end

PEa(NT+1)=Ep21+Ep22; 

%**************** Transition : Yes or No ******************

DE(NT+1)=PEa(NT+1)-PEb(NT+1); 
Met=exp(-DE(NT+1)/(Temp*(0.96^(floor(na/5000))))); 

if DE(NT+1)<0                                                           
for i=1:9 

Teta(n+(i-1)*500)=TetaN; L(n+(i-1)*500)=LN; ux(n+(i-1)*500)=UXN; uy(n+(i-1)*500)=UYN;  
rx(n+(i-1)*500)=RXN(i); ry(n+(i-1)*500)=RYN(i); 

end
na=na+1; 
E(NT+2)=E(NT+1)+DE(NT+1); 
DEminuscount=DEminuscount+1; 
% Met was here

elseif Met >=1 
for i=1:9 

Teta(n+(i-1)*500)=TetaN; L(n+(i-1)*500)=LN; ux(n+(i-1)*500)=UXN; uy(n+(i-1)*500)=UYN;  
rx(n+(i-1)*500)=RXN(i); ry(n+(i-1)*500)=RYN(i); 

end
na=na+1; 
E(NT+2)=E(NT+1)+DE(NT+1); 
Metgreaterone=Metgreaterone+1; 

else
Q=rand; 
if Q<=Met 

for i=1:9 
Teta(n+(i-1)*500)=TetaN; L(n+(i-1)*500)=LN; ux(n+(i-1)*500)=UXN; uy(n+(i-1)*500)=UYN;  

rx(n+(i-1)*500)=RXN(i); ry(n+(i-1)*500)=RYN(i); 
end

      na=na+1; 
E(NT+2)=E(NT+1)+DE(NT+1); 
Qcount=Qcount+1; 

else
E(NT+2)=E(NT+1); 

end
end

NT= NT+1; 
AR= (na+1)/NT; 
NA(NT)=na; 

if floor(NT/progmet)-floor((NT-1)/progmet)>0 
D=floor(NT/progmet)*progmet; 
clock 
disp(' ');
disp(['                                                                                                    Now NT=  '  ,num2str(D)]); 
RAR=(NA(NT)-NA(NT-10000))/10000; 

End 
End 

2- Cluster identification script (Algorithm Developed by Authors) 

ClustNum=zeros(1,N); 
ClustNum(1)=1; 
fracint=zeros(1,N); 

for i=1:N 
ttt=0; 
zz=60000*ones(1,N); 
if ClustNum(i)==0 

zz(i)=max(ClustNum)+1; 
ClustNum(i)=max(ClustNum)+1; 
for j=1:N 

if j~=i 
Rij=sqrt((rx(i)-rx(j))^2+(ry(i)-ry(j))^2); 
alpha=atan((ry(i)-ry(j))/(rx(i)-rx(j))); 
Ai=Rij*abs(sin(alpha-Teta(j))/sin(Teta(i)-Teta(j))); 
Aj=Rij*abs(sin(alpha-Teta(i))/sin(Teta(i)-Teta(j))); 
if (Ai<=L(i)/2) && (Aj<=L(j)/2) 

ttt=ttt+1; 
if ClustNum(j)==0 

ClustNum(j)=ClustNum(i); 
zz(j)=ClustNum(i); 

elseif ClustNum(j)<=ClustNum(i) 
ClustNum(i)=ClustNum(j); 
for w=1:N 

if ClustNum(w)==ClustNum(j) 
zz(w)=ClustNum(j); 

end
end

else
for x=1:N 

if ClustNum(x)==ClustNum(j) 
zz(x)=ClustNum(j); 

end
end
ClustNum(j)=ClustNum(i); 

end
end

end
end
fracint(i)=ttt; 
for s=1:N                                                   

if zz(s)<60000 
ClustNum(s)=min(zz); 

end
end

elseif i==1 
for j=1:N 
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if j~=i 
Rij=sqrt((rx(i)-rx(j))^2+(ry(i)-ry(j))^2); 
alpha=atan((ry(i)-ry(j))/(rx(i)-rx(j))); 
Ai=Rij*abs(sin(alpha-Teta(j))/sin(Teta(i)-Teta(j))); 
Aj=Rij*abs(sin(alpha-Teta(i))/sin(Teta(i)-Teta(j))); 
if (Ai<=L(i)/2) && (Aj<=L(j)/2) 

ttt=ttt+1; 
ClustNum(j)=1; 

end
end

end
fracint(1)=ttt; 

else
for a=1:N 

if ClustNum(a)==ClustNum(i) 
zz(a)=ClustNum(i); 

end
end
for j=1:N 

if j~=i 
Rij=sqrt((rx(i)-rx(j))^2+(ry(i)-ry(j))^2); 
alpha=atan((ry(i)-ry(j))/(rx(i)-rx(j))); 
Ai=Rij*abs(sin(alpha-Teta(j))/sin(Teta(i)-Teta(j))); 
Aj=Rij*abs(sin(alpha-Teta(i))/sin(Teta(i)-Teta(j))); 
if (Ai<=L(i)/2) && (Aj<=L(j)/2) 

ttt=ttt+1; 
if ClustNum(j)==0 

ClustNum(j)=ClustNum(i); 
zz(j)=ClustNum(i); 

elseif ClustNum(j)<=ClustNum(i)
ClustNum(i)=ClustNum(j); 

for p=1:N                                                                
if ClustNum(p)==ClustNum(j) 

zz(p)=ClustNum(j); 
end

end

else
for q=1:N                                                                

if ClustNum(q)==ClustNum(j) 
ClustNum(q)=ClustNum(i); 
zz(q)=ClustNum(i); 

end
end
ClustNum(j)=ClustNum(i); 

end
end

end
end
fracint(i)=ttt; 
for s=1:N                                                    

if zz(s)<60000 
ClustNum(s)=min(zz); 

end
end

end
end

u=0; 
for i=1:max(ClustNum) 

z=0; 
for j=1:N 

if ClustNum(j)==i 
z=z+1; 

end
end
if z>0

u=u+1; 
ClustName(u)=i; 
ClustSize(u)=z; 

end
end
numberofcluster=length(ClustName); 
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