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Abstract
In this study, the correlation between geometric properties of the fracture network and stress variability in a fractured rock 
was studied. Initially, discrete fracture networks were generated using a stochastic approach, then, considering the tenso-
rial nature of stress, the stress field under various tectonic stress conditions was determined using finite-difference method. 
Ultimately, stress data were analyzed using tensor-based mathematical relations. Subsequently, the effects of four parameters 
including rock tensile strength, rock cohesion, fracture normal stiffness and fracture dilation angle on the stress perturba-
tion distribution were evaluated. The obtained results indicated that stress perturbation and dispersion are directly related 
to fracture density, which is expressed as the number of fractures per unit area utilizing the window sampling approach. It 
was also demonstrated that they are inversely related to power-law length exponent which represents the length of fracture. 
It was observed that stress distribution, among the evaluated parameters, is more sensitive to the fracture normal stiffness 
and the effects of rock parameters on stress distribution are negligible. It was concluded that the highest stress distribution 
is created when the fracture network is dense with fractures having high length and low normal stiffness value.

Keywords  Stress variability · Local stress perturbation · Fracture density · Fracture frequency

Introduction

One of the most crucial issues in rock mechanics studies 
and geomechanical topics in hydrocarbon reservoir engi-
neering is the evaluation of in-situ stresses and factors affect-
ing stress perturbation. These geomechanical topics include 
hydraulic fracturing, wellbore stability, determination of 
rock mass permeability and optimum mud weight, preven-
tion of sand production, selection of appropriate strategies 
for well completion, reservoir production rate, as well as 
the evaluation of earthquake potential (Zoback 2007; Hud-
son et al. 1988; Latham et al. 2013; Matsumoto et al. 2015; 
Zang et al. 2009; Dehghan et al. 2017; Farsimadan et al. 

2020). Moreover, it is important to consider the stress condi-
tions for accurate prediction of the mechanical behavior of 
jointed rock mass (Wu et al. 2019). Many studies have been 
conducted to measure in-situ stresses and research shows 
that fractures play an important role in the distribution and 
perturbation of tectonic stresses (Bruno et al. 1994; Day-
Lewis et al. 2010; Rajabi et al. 2017; Schoenball et al. 2017; 
Hickman et al. 2004; Barton et al. 1994; Sahara et al. 2014; 
Khodaei et al. 2020).

Bruno et al. (1994) showed significant azimuth changes 
of maximum horizontal stress in a reservoir with the depth 
and location of a subsurface structure using field data ana-
lytically and finite element modeling. Day-Lewis et  al. 
(2010) investigated the direction of maximum horizontal 
compressive stress as a function of depth in two research 
wells near the San Andreas Fault in central and southern 
California. They found that the stress orientation shows the 
scale-invariant fluctuations at distances of 10 cm to several 
kilometers of the fault. The similarity between the scale of 
stress orientation fluctuations and the magnitude of earth-
quake frequency with the size of faults showed that these 
fluctuations are controlled by the stress perturbation that is 

 *	 Ebrahim Biniaz Delijani 
	 biniaz@srbiau.ac.ir

1	 Department of Petroleum and Chemical Engineering, 
Science and Research Branch, Islamic Azad University, 
Tehran, Iran

2	 Department of Mining Engineering, Science and Research 
Branch, Islamic Azad University, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-020-01076-z&domain=pdf


686	 Journal of Petroleum Exploration and Production Technology (2021) 11:685–702

1 3

due to the slip of faults in the crust under critical stress in 
the proximity of faults. Sahara et al. (2014) performed an 
analysis on the occurrence of breakout, breakout orientation 
and fracture characteristics. They observed that breakout ori-
entation in the form of anomalies, centrally occurs adjacent 
to the fault cores and decreases with distance from the fault 
core. The pattern of breakout orientation in the proxim-
ity of natural fractures shows that the rotation of breakout 
relative to the direction of mean horizontal stress (Shmin) is 
strongly influenced by the fracture orientation. Breakouts 
are also commonly found asymmetrically in zones with 
high fracture densities. In addition to the principal stresses 
heterogeneities, breakout heterogeneities are affected by 
mechanical heterogeneities, such as weak zones with dif-
ferent elastic modulus, rock strength and fracture patterns. 
Rajabi et al. (2017) performed the first analysis of tectonic 
stress in Clarence-Moreton Basin in New South Wales area 
of Australia. Their observations suggested that structures 
can play an important role in controlling stresses so that 
stress perturbation as a result of faults and fractures highly 
influences wellbore stability and permeability of reservoir 
rock, especially for safe and sustainable extraction of meth-
ane gas from gas reservoirs in this region.

Extensive research has been previously done on the 
generation of discrete fractures networks using stochastic 
approaches to determine the properties of jointed rock and 
their geomechanical and hydromechanical behavior (Min 
et al. 2004; Baghbanan et al. 2007, 2008; Li et al. 2019), 
as well as geomechanical modeling using finite difference 
method (Oda et al. 1993; Kobayashi et al. 2001; Rutqvist 
et al. 2013). Among the most important researches on gener-
ating a discrete fracture network using stochastic approaches 
is the generation of a two-dimensional stochastic fracture 
pattern using field data in the Sellafield area of the United 
Kingdom to determine the equivalent permeability tensor 
of the fractured rock mass by Min et al. (2004). Also, Bagh-
banan et al. (2007, 2008), generated a discrete fracture net-
work with the assumption that the geometry of the fractures 
are stochastically distributed in the network; therefore, they 
could investigate the hydraulic and hydromechanical behav-
iors that are dependent on the rock mass size and estimate 
the representative elementary volume.

Concerning geomechanical continuum modeling, Oda 
et  al. (1993) developed an elastic stress/strain relation-
ship using crack tensor method to determine the influ-
ence of joints on the elastic behavior of rock mass in a 
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Fig. 1   Flowchart of the methodologies and analyses implemented in this study
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Fig. 2   Different realizations of the discrete fracture network for (a) fracture density of P20 = 80 m−2, (b) fracture density of P20 = 160 m−2 and (c) 
fracture density of P20 = 320 m−2
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three-dimensional finite element model. Kobayashi et al. 
(2001) investigated the coupling of mechanical and hydrau-
lic behavior of fractured rock mass during a hypothetical 
shaft sinking in the Sellafield area of the United Kingdom 
using a continuum approach (finite element method) and 
combining the crack tensor theory and the Barton and Ban-
dis model. Rutqvist et al. (2013) investigated the coupling 
of geomechanical model and fluid flow in the fractured rock 
using a continuum model and crack tensor approach.

In these studies, the investigation of stress perturbation is 
based on an approach that utilizes scalar/vector formulations 
which analyzes the magnitude and orientation of principal 
stresses, individually. However, in nature, stress is a tensor 
and its magnitude and orientation must be taken into consid-
eration simultaneously. As far as we are aware, the first use 
of a tensor-based approach in this matter can be credited to 
Lei et al. (2018). In this study, by combining numerical and 
mathematical analysis, local stress variability in fractured 

rocks was investigated under static stress loading conditions. 
Moreover, in previous studies, limited research has been 
done on the effect of different rock and fracture parameters 
on the stress field perturbation (regarding the geometrical 
properties of fracture). In this study, four different param-
eters including rock tensile strength, rock cohesion, fracture 
normal stiffness and fracture dilation angle were evaluated.

Research methodology

In this section, in order to determine the correlation between 
the geometric properties of fracture network (including 
fracture density and fracture length) and stress variabil-
ity, as well as to investigate the effects of rock and fracture 
parameters on the distribution of local stress perturbation, 
a similar approach to the one that was proposed by Lei 
et al. (2018) was followed. They generated different DFN 
realizations based on the fracture intensity. Then, they 
used FEM–DEM approach as the numerical method and Fig. 3   Types of loading effective tectonic stresses at different ratios

Fig. 4   Comparison of changes in the fracture network pattern after meshing in FLAC2D software and the backbone

Table 1   Rock and fracture parameters (Figueiredo et al. 2015)

Rock Elastic modulus ER = 20 GPa
Poisson’s ratio υ = 0.3
Tensile strength σtR = 5 MPa
Cohesion CR = 30 MPa
Friction angle ϕR = 25°

Fracture Elastic modulus EF = 4.0 GPa
Poisson’s ratio υ = 0.18
Tensile strength σtF = 0
Friction coefficient μF = 0.85
Dilation angle ψF = 0°
Normal stiffness kn = 1000 GPa/m
Cohesion CF = 0
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tensor-based mathematical formulation to analyze the stress 
data. Their study aimed to investigate how the intensity and 
the connectivity of the fracture network would affect the 
stress variability. Of all the rock and fracture parameters, 
they studied only the effect of friction coefficient parameter 
on the stress distribution. In this work, the discrete fracture 
network was first generated by stochastic realization based 
on the fracture density. Then, the finite difference method 
in the continuum approach was utilized as the geomechani-
cal modeling and numerical method. Subsequently, different 
realizations of the discrete fracture network were subjected 
to orthogonal tectonic stress loading. Finally, in order to 
analyze the stress, the correlations between the geometric 
properties of fracture and stress distribution and the effects 
of different parameters were evaluated using tensor-based 
equations. Figure 1 shows the methodologies and analyses 
used to achieve the goals of this research.

Stochastic approach in the generation of fracture 
network

In the stochastic approach, fractures are considered as 
straight lines in two-dimensional model and as planar discs/
polygons in three-dimensional model and the geometrical 
properties, such as location, frequency, length, orientation 
and fracture aperture are considered as dependent variables 
on the probability distribution of the outcrop mapping. Ori-
entational data can be processed using Fisher, normal, or 
even uniform distribution functions (Einstein et al. 1983) 
and fracture lengths may display negative exponential, log-
normal, gamma, or power-law distributions (Davy 1993; 
Bonnet et al. 2001).

In the present study, the fracture network length was 
determined using the power-law according to the following 
equations (Bonnet et al. 2001; Lei et al. 2016):

Fig. 5   Calculated mean stress tensor in the fractured rock model under different tectonic stress conditions
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whereas in this equation, n(l) is the number of fractures, a 
is the power-law length exponent, α is the density term, l 
is the fracture length and lmin and lmax are the smallest and 
largest fracture lengths.

In theory, in two-dimensional model, a is limited to the 
interval of [1, ∞), however extensive measurements based 
on navigation maps show that in natural fracture systems, a 
generally varies between 1.3 and 3.5 (Bonnet et al. 2001). 
The density term (i.e., α) is dependent on the total number of 
fractures in the system and is a function of different fracture 
orientations (Davy et al. 2010).

(1)n(l) = �l−a =
�

la
, l ∈ [lmin, lmax]

The fracture frequency can be described from two aspects 
of fracture density and fracture intensity and can be deter-
mined using the Pij system, where i is the dimension of the 
sample and j is the dimension of the measurement. In this 
paper, the fracture density (P20) was determined using a 
window sampling approach that is defined as the number of 
fractures per unit area (Zeeb et al. 2013):

In this equation, N is the number of fractures, A is the 
surface area and L is the size of the model.

In this study, using open-source software of Alghalandis 
Discrete Fracture Network Engineering (ADFNE) (Algha-
landis 2014, 2016, 2017), a fracture network in the size of 
1 m × 1 m was stochastically generated. Determination of 
the location and orientation of fractures were done using a 
uniform distribution function and Fisher distribution func-
tion completely randomly. The largest and smallest fracture 
lengths were calculated using the power-law model to be 
50 m and 0.02 m, respectively. Considering five different 
values for the power-law length exponent from 1.5 to 3.5 and 
3 fracture densities of 80 m−2, 2 × 80 m−2 and 4 × 80 m−2, a 
total of 15 different fracture network realizations were gen-
erated. Figure 2 illustrates the different realizations of the 
fracture networks randomly generated at different densities.

Numerical method and geomechanical parameters

In this study, FLAC2D software (Itasca Consulting Group Inc 
2017) was employed to determine the stress distribution in 
response to tectonic stress loading that included three types 
of orthogonal effective principal tectonic stress loading at 
stress ratios of SR = 1, SR = 2 and SR = 3 (Fig. 3). The most 

(2)
P20 = PWS =

N

A

A = L2

Fig. 6   Geometry and meshing in the finite-difference model and 
determination of local stress tensor in two different positions

Table 2   Method of calculation 
for local stress tensor and d(S, 
S̅) for a fracture sample with 
SR = 3, a = 1.5 and P20 = 80 m−2

Stress number Sxx (MPa) Syy (MPa) Sxy (MPa) d(Si, S̅) (MPa)

S1 29.93 9.93 0.089 0.159
S2 29.93 9.59 0.288 0.577
…
S99 36.16 19.77 6.35 14.63
S100 20.80 16.89 0.62 11.52
…
S9999 36.52 10.02 0.39 6.55
S10000 36.86 10 0.11 6.86
…
S39999 29.97 9.91 0.059 0.12
S40000 29.99 9.90 0.003 0.01

Mean d(Si, S̅) = 5.00 MPa
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SR = 1

SR = 2

SR = 3

Fig. 7   Curves of mean stress perturbation (md(S, S̅)) and effective variance (Ve) in terms of power-law length exponent (a) at different values of 
normal stiffness and fracture density
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SR = 1

SR = 2

SR = 3

Fig. 8   Curves of mean stress perturbation (md(S, S̅)) and effective variance (Ve) in terms of power-law length exponent (a) at different values of 
angle of dilation and fracture density
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SR = 1

SR = 2

SR = 3

Fig. 9   Curves of mean stress perturbation (md(S, S̅)) and effective variance (Ve) in terms of power-law length exponent (a) at different values of 
rock cohesion and fracture density
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SR = 1

SR = 2

SR = 3

Fig. 10   Curves of mean stress perturbation (md(S, S̅)) and effective variance (Ve) in terms of power-law length exponent (a) at different values of 
rock tensile strength and fracture density
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important advantage of this software is the complete perse-
verance of not only the fracture dead-ends after meshing but 
also the backbone of the fracture. Figure 4 shows a compari-
son of the shape of the fracture network after meshing using 
finite difference method (FLAC2D software) and solely the 
backbone.

For intact rock and fracture shear stress/strain behavior, 
the Mohr–Coulomb model was used. Characteristics of a 
limestone sample were considered as rock mechanical prop-
erties. Table 1 presents the main parameters of rock and frac-
ture for the geomechanical model. Four parameters including 
rock cohesion, CR, at values of 15 MPa, 20 MPa and 30 MPa, 
tensile strength of rock, σtR, at values of 5 MPa, 10 MPa 
and 20 MPa, normal stiffness, kn, at values of 500 GPa/m, 
1000 GPa/m and 2000 GPa/m and fracture dilation angle, 
ψF, at 0 and 15° were evaluated.

Fractures with material fillings can be considered as an 
equivalent model of solids in which the elastic modulus of 
fracture is calculated using the following equation:

whereas in this equation, d is the size of the mesh element.
Figueiredo et al. (2015) developed a simple model with a 

vertical fracture to validate the use of mesh element size and 
quantity and whether it has the ability to estimate the stress 
correctly or not. It was found that the difference between the 
model made with the analytical solution was less than 5% 
and this model is quite suitable for the calculation of stress 
distribution and stress concentration around the fracture.

In this paper, the model size is considered to be 1 m × 1 m 
with 40,000 meshes per square meter (200 × 200 mesh) and 
with the mesh element length of d = 0.5 cm in accordance 
with the geometry and model in the study of Figueiredo 
et al. (2015).

Determination of perturbation and dispersion 
of stress field using mathematical equations

Stress data analysis was performed using the recent devel-
oped tensor-based mathematical formulas (Gao 2017; Gao 

(3)
1

EF

=
1

ER

+
1

knd

and Harrison 2016, 2018). Euclidean distance was used for 
the distribution of local stress perturbation, which represents 
the distance between the local stress tensor, Si and the mean 
stress tensor, S ̅.

where ‖.‖ represents the Euclidean norm.
In two-dimensional models of the stress tensor field S, 

which is comprised of n part of the stress size, the stress 
tensor of part i is formulated as follows:

The mean stress field is also determined using the fol-
lowing equation:

Figure 5 shows that the mean stress tensor is equivalent 
to the far-field stress tensor (different ratios of tectonic stress 
loading).

Figure 6 illustrates the geometry and meshing of the finite 
difference model used in the present study in a discrete frac-
ture network sample (a = 1.5 and P20 = 80 m−2) and the way 
of determination of the local stress tensor at two different 
positions. Table 2 presents the way of calculation of local 
stress tensor and d(Si, S ̅) for the same fracture sample at the 
stress ratio SR = 3, (in the main parameters).

The effective variance was used to describe the variability 
and dispersion of the stress field in the fractured rock:

(4)d
(
Si, S

)
=
‖‖‖Si − S

‖‖‖F

(5)2D → Si =

[
Sxx,i Sxy,i

symmetric Syy,i

]

(6)2D → S =
1

n

n�
i=1

Si =
1

n

⎡⎢⎢⎢⎣

n∑
i=1

Sxx,i

n∑
i=1

Sxy,i

symmetric
n∑
i=1

Syy,i

⎤⎥⎥⎥⎦

S =
1

n

n∑
i=1

Si =

[
29.99 0.00054

0.00054 10

]

(7)Ve(S) =
1
2
p(p+1)
√�Ω�

Table 3   Comparison of md(S, 
S̅) and Ve sensitivity to P20, kn 
and a 

kn = cte a = cte P20 = cte

(md(S, S̄))a=1.5,P=80 < (md(S, 
S̅))a=3.5,P=320

(md(S, S̄))kn=500,P=80 < (md(S, 
S̅))kn=2000,P=320

(md(S, S̄))kn=2000,a=1.5 < (md(S, 
S̅))kn=500,a=3.5

(Ve)a=1.5,P=80 < (Ve)a=3.5,P=320 (Ve)kn=500,P=80 < (Ve)kn=2000,P=320 (Ve)kn=2000,a=1.5 < (Ve)kn=500,a=3.5
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where |.| is the determinant of matrix Ω, p is the stress ten-
sor dimension (here p = 2 for two-dimensional model), s ̄ is 
the mean stress vector and Ω is the covariance matrix of the 
stress vector.

For the Si stress tensor, the form of the distinct compo-
nents of the si stress vector is as follows:

Results and data analysis

The analysis of results obtained regarding the effect of 
different rock and fracture parameters on 2D fractured 
rock’s mechanical behavior under several different tec-
tonic stress loading conditions is presented. In the next 
step, following the stochastic generation of the fracture 
network, which comprised different realizations that were 
differentiated considering the various distinct lengths and 
densities of fractures that were considered, the numerical 
modeling was performed. In this process finite-difference 
method was employed and three boundary loading condi-
tions of 1) Sxx = 10 MPa, Syy = 10 MPa, 2) Sxx = 20 MPa, 
Syy = 10 MPa and 3) Sxx = 30 MPa, Syy = 10 MPa were applied 
orthogonally.

Sequentially, the analysis of stress data was carried out 
using mathematical formulations to examine the effect of 
the fracture network’s geometric properties and rock and 

(8)Ω = cov(s, s) =
1

n

n∑
i=1

[
(si − s).(si − s)T

]
, s =

1

n

n∑
i=1

si

(9)si =
[
Sxx,i Sxy,i Syy,i

]T
=
[
Sxx,i Syx,i Syy,i

]T

fracture parameters on the distribution of stress. Figures 7, 8, 
9 and 10 show the relationship between the fracture density 
and the power-law length exponent a (fracture length indica-
tor) with the mean local stress perturbation md(S, S̅) and the 
effective variance Ve (stress distribution scattering indicator) 
at different values of kn, ψF, CR and σtR, respectively.

It is conspicuous that two rock mass parameters, CR and 
σtR, have minimal effect on the variations of md(S, S ̅) and Ve 
therefore, their influence can be ignored. The fracture nor-
mal stiffness, kn, can be defined as the normal spring stiff-
ness of each joint element. It mainly acts as the link between 
the normal stress on each element to the normal displace-
ment. The data explicitly indicate that the fracture normal 
stiffness has a significant influence on the stress perturbation 
distribution, md(S, S ̅) and Ve. In general, as kn increases, 
the values of md(S, S ̅) and Ve decrease (the difference in 
the decrease in Ve values is more significant from kn = 500 
GPa/m to kn = 1000 GPa/m than from the kn = 1000 GPa/m 
to kn = 2000 GPa/m). Also, the difference in Ve values for dif-
ferent ψF is higher at high fracture density (P20 = 320 m−2). 
In this study, no change in md(S, S ̅) and Ve was observed 
in all fracture network realizations by varying the tensile 
strength (σtF) from zero to 5 MPa.

Moreover, from these figures and Table 3, it was found 
that the mean local stress perturbation and effective vari-
ance, in the order of highest to lowest, are sensitive to frac-
ture density, fracture length and fracture normal stiffness.

Figures 11, 12 and 13 show the distribution of local stress 
perturbation in fractured rocks at different kn values (as the 
most important parameter affecting the perturbation and 
distribution of the local stress) at tectonic stress ratios of 
1, 2 and 3, respectively. The stress distribution at the stress 
ratio of 1 (SR = 1), which is isotropic, is quite uniform, while 
fluctuations are observed in anisotropic stresses (SR = 2 and 
SR = 3). With the increase in tectonic stress, local stress 
perturbations are detected at the tip and intersection of frac-
tures. Generally, in the generated fracture networks, local 

Fig. 11   Distribution of local stress perturbation at stress ratio of 
1 at different normal stiffness values for (a) fracture density of 
P20 = 80  m−2, (b) fracture density of P20 = 160  m−2 and (c) fracture 
density of P20 = 320 m−2

◂
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stress perturbations decreased with the increase in power-
law length exponent (a) (decrease in fracture length) and 
normal stiffness (kn) and it increased with an increase in 
fracture density (P20).

Conclusion

The geometrical properties of fracture network and differ-
ent rock and fracture parameters have a significant influ-
ence on the behavior of fractured rocks. In this study, these 
effects on stress distribution in a geological environment 
were investigated.

1.	 The fracture network with fracture density of 320 m−2, 
power length exponent of 1.5, at 30–10 tectonic stress 
loading and normal stiffness of 500  GPa/m (as the 
parameter that most critically affects the stress distribu-
tion), has the highest local stress perturbation compared 
to other fracture networks presented in this study.

2.	 As the stress ratio S∞
xx
∕S∞

yy
 increases, the stress perturba-

tion becomes more noticeable at the tip and intersection 
of fractures.

3.	 The mean distribution of local stress perturbation (md(S, 
S ̅)) and effective variance (Ve) have a direct relationship 
with the increase in stress ratio and fracture density and 
an inverse relationship with increasing power-law length 
exponent (fracture length reduction).

4.	 Investigation of the effect of four different parameters of 
rock and fracture revealed that kn has a significant effect 
on stress distribution. The rock parameters, including CR 
and σtR, have minute effect on the variations of md(S, S ̅) 
and Ve. Generally, with increasing kn, the values of md(S, 
S ̅) and Ve are decreased.

5.	 To give an instance, in one of the studied cases 
(P20 = 320 m−2, a = 1.5 and SR = 3), with increasing kn 
value from 500 to 2000 GPa/m, md(S, S ̅) and Ve were 
decreased from 11.5 to 8.2 MPa (28.69%) and from 30 
to 12.1 MPa2 (59.66%), respectively. It can be stated that 
the difference in the decrease of Ve for kn = 500 GPa/m 
to kn = 1000 GPa/m is higher than kn = 1000 GPa/m to 
kn = 2000 GPa/m and the difference in values of Ve for 
ψF = 0° and ψF = 15° is observed to a certain extent at the 
highest fracture density studied (P20 = 320 m−2).

Fig. 12   Distribution of local stress perturbation at stress ratio of 
2 at different normal stiffness values for (a) fracture density of 
P20 = 80  m−2, (b) fracture density of P20 = 160  m−2 and (c) fracture 
density of P20 = 320 m−2

◂
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