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Abstract
Vitrinite reflectance (VR) is considered the most used maturity indicator of source rocks. Although vitrinite reflectance 
is an acceptable parameter for maturity and is widely used, it is sometimes difficult to measure. Furthermore, Rock-Eval 
pyrolysis is a current technique for geochemical investigations and evaluating source rock by their quality and quantity of 
organic matter, which provide low cost, quick, and valid information. Predicting vitrinite reflectance by using a quick and 
straightforward method like Rock-Eval pyrolysis results in determining accurate and reliable values of VR with consuming 
low cost and time. Previous studies used empirical equations for vitrinite reflectance prediction by the Tmax data, which was 
accompanied by poor results. Therefore, finding a way for precise vitrinite reflectance prediction by Rock-Eval data seems 
useful. For this aim, vitrinite reflectance values are predicted by 15 distinct machine learning models of the decision tree, 
random forest, support vector machine, group method of data handling, radial basis function, multilayer perceptron, adaptive 
neuro-fuzzy inference system, and multilayer perceptron and adaptive neuro-fuzzy inference system, which are coupled with 
evolutionary optimization methods such as grasshopper optimization algorithm, bat algorithm, particle swarm optimization, 
and genetic algorithm, with four inputs of Rock-Eval pyrolysis parameters of Tmax, S1/TOC, HI, and depth for the first time. 
Statistical evaluations indicate that the decision tree is the most precise model for VR prediction, which can estimate vitrinite 
reflectance precisely. The comparison between the decision tree and previous proposed empirical equations indicates that 
the machine learning method performs much more accurately.
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Introduction

Rock-Eval pyrolysis is considered one of the most power-
ful and influential geochemical techniques which can pro-
vide valuable information about organic matter sediments 
promptly (Espitalié et al. 1977; Behar et al. 2001). This tech-
nique is also used extensively in petroleum source rock eval-
uation through the determination of organic matter types, 
generation potential, and level of maturity (Dembicki 2016). 
S1 (formerly generated hydrocarbon), S2 (remain potential of 
hydrocarbon generation), TOC (total organic carbon), Tmax 
(temperature of S2 maximum), HI (hydrogen index), and OI 
(oxygen index) are some parameters which are obtained by 
Rock-Eval pyrolysis. Despite all Rock-Eval advantages, this 

method is associated with some obstacles for maturity inter-
pretations as well as the determination of organic matter type 
(Katz 1983). Tmax is a parameter which varies with depth 
and is used for thermal maturity determination (Espitalié 
et al. 1977). Changing of Rock-Eval apparatus condition, 
the matrix of analyzed sample, and heavy components of 
bitumen are factors which influence on Tmax determination. 
As a consequence, this parameter can sometimes result in 
inverted and fallacious conclusions toward the actual level 
of maturity (Espitalié 1986). Furthermore, in situations in 
which the S2 peak has more than one maximum, or suffers 
weak intensity, Tmax determination will be complicated 
(Peters 1986). It should also be noted that maturity deter-
mination through the Tmax parameter is changed by some 
other factors such as bitumen or kerogen in adjacent units 
(Snowdon 1995). Therefore, Tmax can’t be considered as a 
dependable indicator for thermal maturity interpretation. 
In the cases that the Tmax is affected by the facies effects, 
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vitrinite reflectance can provide more reliable results (Peters 
and Cassa 1994).

In addition to the Rock-Eval parameters, time alteration 
index (TAI), conodont alteration index (CAI), and vitrinite 
reflectance (VR) are considered as other maturity indica-
tors. TAI is defined based on color variations of kerogen. 
The color range of spore and pollen from yellow to black 
(immature to mature) is then converted to a numerical scale. 
Since spore and pollen belong to terrigenous plants that are 
absent before the middle Paleozoic, this parameter has some 
problems (Staplin 1961). Also, CAI is defined similarly. The 
color of conodonts is studied by binocular microscopes. 
These types of fossils are found in carbonate rocks so this 
index is improper for maturity assessment of shale rocks. 
Moreover, CAI cannot be used in cases earlier than Jurassic 
(Epstein et al. 1976). Zooclast and solid bitumen reflectivi-
ties are 2 other known petrographic methods for this aim. It 
should be noted that these methods are not free of problems. 
The identification of the correct Zooclast is always difficult. 
Also, different sources cause this problem in solid bitumen 
assessment (Bertrand 1990; Cole 1994; Petersen et al. 2013; 
Curiale 1986).

Vitrinite particle as a diagenetic product of higher plant 
remnant is one of the most significant macerals of petro-
leum source rock that can be found dispersed in other clas-
tic sedimentary rocks and majorly in coals (Suggate 1959; 
Taylor et al. 1998). The light reflection phenomenon from 
a polished vitrinite surface is known as vitrinite reflectance 
(Mukhopadhyay 1994). Vitrinite reflectance (Ro%) is sen-
sitive to temperature variations. In 1982, for the first time, 
it was discovered that vitrinite reflectance increases with 
time and temperature (Teichmuller and Teichmuller 1982). 
Thus, vitrinite reflectance varies based on maturity and is 
assumed to be the traditional and most robust diagnostic 
tool for maturity investigation, which can be applicable in 
a wide range of maturity levels (Mählmann and Le Bayon 
2016). Data of this parameter can be applied for source rock 
evaluation or coal rank assessment (Kadkhodaie and Rezaee 
2017; Jiang et al. 2019).

Vitrinite reflectance (VR) is the most applied factor for 
maturity determination (Cheshire et al. 2017; Peters et al. 
2018). In addition to geological evaluation of petroleum 
source rocks as well as the coal rank assessment, VR pos-
sesses a significant role in basin modeling. Vitrinite reflec-
tance data are the most known calibration parameters in the 
modeling procedure. Kinetic maturation of source rocks 
modeling also requires maturation data (Mukhopadhyay 
1994). Vitrinite reflectance data are commonly used in 
three forms of empirical, single reaction kinetic, and paral-
lel reactions kinetic (Barker and Elders 1981; Waples 1984; 
Welte and Yalcin 1988; Sweeney and Burnham 1990). The 
VR values of hydrocarbon generation in different types of 
kerogen can be helpful for source rock potential evaluation. 

For instance, type II-S kerogen starts generating earlier 
than other types (Dembicki 2009). Moreover, the method 
of EASY %Ro as the most famous and reputable concept 
of maturation in basin modeling considers a defined range 
for activation energy distribution (Sweeney and Burnham 
1990) and tectonic history determination (Middleton 1982) 
and seeking hidden pluton in sedimentary rocks (Chen et al. 
2017).

According to the aforementioned issue, finding a way 
to relate Tmax to vitrinite reflectance can cover deficits of 
imperfect maturity interpretations based on the Tmax param-
eter and results in more precise outcomes. In other words, 
there are several associated problems with measuring vit-
rinite reflectance such as time-consuming, lack of vitrin-
ite particles in some cases, and the anisotropy of vitrinite 
(Wust et al. 2013; Dembicki 2016). Also, the vitrinite mac-
eral belongs to after Devonian plants, and samples that are 
older than this time don’t have any vitrinite. In addition to 
problems with the age of source rock samples, low amounts 
of incoming plants result in low quantities of vitrinite val-
ues (Peters and Cassa 1994), and oxidation of this maceral 
also results in high values (Liu et al. 2020). In other words, 
two maturity indicators of VR and Tmax have some prob-
lems, but the shortcoming of the first one is in measuring 
and the second one in the final result. Therefore, finding 
a way of predicting vitrinite reflectance through the sim-
ple procedure of Rock-Eval pyrolysis can be considered as 
a novel and efficient method that can dispel the problem 
of VR measuring by using several Rock-Eval parameters. 
Because of challenges in VR determination, finding a way 
for maturity estimation had been an interesting subject for 
researchers. Some of them have studied the relationship 
between Tmax and VR parameters and proposed equations 
that can calculate vitrinite reflectance based on Tmax data 
(Galimov and Rabbani 2001; Jarvie et al. 2001; Wust et al. 
2013; Peters 1986; Jarvie 2012). It must be emphasized that 
all these equations suffer from some deficits, such as a low 
coefficient of determination or incorrect predictions in some 
cases. Also, these types of VR calculations are simple cor-
relations just on the basis of one parameter (Tmax), and this 
issue increases uncertainties. Some efforts have been made 
to determine vitrinite reflectance values by spectroscopic 
techniques which are also based on equations (Cheshmeh 
Sefidi and Ajorkaran 2019; Wilkins et al. 2015, 2018; Kibria 
et al. 2020). Moreover, Lupoi et al. (2019) and Hou et al. 
(2020) used the partial least squares model by Raman spec-
tra of shale samples and modified the EASY% Ro model for 
vitrinite reflectance prediction, respectively.

The main objective of this paper is the precise predic-
tion of vitrinite reflectance based on Rock-Eval parameters, 
not just Tmax data or equation-based methods. Contrary to 
limited previous researches that have merely used the Tmax 
parameter for vitrinite reflectance predictions or some simple 



653Journal of Petroleum Exploration and Production Technology (2021) 11:651–671	

1 3

equations, this paper, for the first time, uses machine learn-
ing methods by using depth, Tmax, S1/TOC, and HI. Also, 
using machine learning for determining vitrinite reflectance 
values has been unprecedented. Previous researches for 
predicting geochemical parameters using machine learning 
methods were done to predict rock eval data such as TOC 
(Khoshnoodkia et al. 2011; Shalaby et al. 2019; Ge et al. 
2015), S1, and S2 (Johnson et al. 2018; Wang et al. 2019). 
None of the earlier studies were about vitrinite reflectance 
prediction. Also, all machine learning methods in this article 
are assessed, which is unprecedented.

Artificial intelligence methods can learn the pattern of 
data and use multiple inputs, but previous attempts were 
merely based on one input without any learning (just sim-
ple regression). Also, this paper applies not only one way 
but also 15 distinct methods for this purpose. Moreover, 
the results of these methods are compared to finding the 
most proper model. The final result of the best machine 
learning method is then compared with the previously pre-
sented equations. The depth, Tmax, S1/TOC, and HI param-
eters are applied as inputs of constructed models by 15 
machine learning methods of decision tree (DT), random 
forest (RF), support vector machine (SVM), group method 
of data handling (GMDH), radial basis function (RBF), 
multilayer perceptron (MLP), multilayer perceptron couple 
with grasshopper optimization algorithm (MLP + GOA), 
bat algorithm (MLP + BAT), particle swarm optimization 
algorithm (MLP + PSO), and genetic algorithm (MLP + GA) 
as well as adaptive neuro-fuzzy inference system (ANFIS), 
ANFIS + GOA, ANFIS + BAT, ANFIS + PSO and 
ANFIS + GA for VR determination. Then, the accuracy of 
all methods was compared through four statistical param-
eters of average absolute relative deviation (AARD), coeffi-
cient of determination (R2), root mean square error (RMSE), 

and standard deviation (SD). Eventually, the most accurate 
model was selected. The final results of this paper were then 
compared with the results of previous efforts. A schematic 
form of the methodology of this paper is shown in Fig. 1.

Materials and methods

Data gathering and preparation

As mentioned in this paper, the required data for predict-
ing VR are depth, Tmax, S1/TOC, and HI. To that end, 54 
data sets of these aforementioned data are extracted from 
a broad area of the Persian Gulf as can be seen in Fig. 2. 
The Persian Gulf, as the most significant foreland basin 

Fig. 1   Schematic of applied methodology in this paper

Fig. 2   Location map of studied wells in the Persian Gulf
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of hydrocarbon resources in the world, is located at the 
confluence of Arabian and Eurasian plates. This contains 
more than two-thirds of the proven oil reserves of the world 
(Rabbani 2007; Haghi et al. 2013). Pabdeh (Paleocene), 
Gurpi (Campanian–Paleocene), Ahmadi member of Sarvak 
(Cenomanian), and Kazhdumi (Albian) are considered as the 
most probable source rocks of the Middle Cretaceous–Early 
Miocene petroleum system of the studied area (Mashhadi 
et al. 2015). These formations are illustrated in Fig. 3 in the 
form of a simple stratigraphic column. Pabdeh Formation 
consists mainly of shale, argillaceous limestone, and marls, 
which overlies Gurpi Formation. Gurpi is another probable 
source rock of this area that can also act as cap rock of lower 
reserves and includes marl and marly limestone. Ahmadi 
Member contains shaly facies, especially in northern parts of 
the Persian Gulf, and can be considered as one of the prob-
able intervals for hydrocarbon generation. Eventually, Kazh-
dumi, as the most crucial source layer, generally consists 
of calcareous shale as well as dark bituminous limestone 
(Ghazban 2009; Homke et al. 2009; Soleimani et al. 2013).

After selecting proper and complete data, 54 Rock-Eval 
pyrolysis data (depth, Tmax, S1/TOC, and HI) belong to ten 
oil fields in the Iranian sector of the Persian Gulf (Fig. 2) 
were extracted (Mashhadi et al. 2015). Minimum, maxi-
mum, and average values of selected data are summarized 
in Table 1. Twenty-one samples belong to Pabdeh Forma-
tion, whereas contributions of Gurpi Formation, Ahmadi 
member, and Kazhdumi Formation are 6, 4, and 23 samples, 
respectively. In this paper, data of depth, Tmax, S1/TOC, and 
HI are considered as inputs of constructed models, and VR 
is the output. Data normalizing, which improves the perfor-
mance of constructed models, has been done through the 
below equation:

where nzi refers to the normalized value, i is the number of 
parameters, zmin is the minimum value of z series, and zmax 
refers to the maximum value of them.

Machine learning systems methodology

Machine learning methods are currently excessively used in 
various fields of science and industry. They are straightfor-
ward and flexible tools for accurate prediction. Also, they 
don’t consume so much time for modeling (Lary et al. 2015; 
Mohaghegh 2017; Al-Fatlawi 2018). These aforementioned 
factors result in their complete application, especially in 
oil industries (Anifowose et al. 2017; Kahani et al. 2018; 
Sabah et al. 2019; Ghaffarkhah et al. 2019; Amin et al. 2019; 
Cheshmeh Sefidi and Ajorkaran 2019; Esfandiarian et al. 
2019). Despite abundant researches based on soft comput-
ing methods, no studies have been done in VR prediction 
through Rock-Eval data, and this article is considered as 
the first attempt for this purpose which applies 15 distinct 
intelligent methods of decision tree (DT), support vector 
machine (SVM), group method of data handling (GMDH), 
radial basis function (RBF), random forest (RF), multilayer 
perceptron (MLP), as well as MLP + GOA, MLP + BAT, 
MLP + PSO, and MLP + GA as well as adaptive neuro-fuzzy 
inference system (ANFIS), ANFIS + GOA, ANFIS + BAT, 
ANFIS + PSO, and ANFIS + GA.

Decision tree as supervised learning with a technique 
of classification and regression tree or CART consists of 
branches and nodes in a graphical form that is considered 
as a predictive model in data mining (JiaWei and Micheline 
2001; Taylor 2019). The flowchart of the decision tree is 
illustrated in Fig. 4.

The support vector machine is one of the artificial neu-
ral network branches that can be applied for regression and 
classification purposes through a theory of statistical learn-
ing. This approach is also considered as an efficient tool 
in machine learning as well as data mining (Vapnik 2013; 
Abbas et al. 2019). In this paper, the kernel function and 

(1)nzi = 2 ×
zi − zmin

zmax − zmin

− 1,

Fig. 3   Simplified stratigraphic column of studied formations

Table 1   Minimum, maximum, and average values of selected inputs 
and output data

Parameter Minimum Maximum Average

X1 Depth (m) 1159 3603 2290.16
X2 T-max (°C) 410 464 430.51
X3 S1/TOC 0.07 1.26 0.48
X4 HI 84 786 237.74
Y Ro (%) 0.35 0.82 0.57
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solver of this method are Gaussian and L1QP, respectively. 
A simple schematic form of SVM is shown in Fig. 5.

Group method of data handling as one of the other 
applied approaches is a robust connecting algorithm between 
inputs and outputs, which is proper for settling down non-
linear situations as a self-organized system (Hwang 2006; 
Loni et al. 2018). Detail information on GMDH belongs 
to this study, and the flowchart is presented in Table 2 and 
Fig. 6, respectively.

Radial basis functions are types of artificial neural net-
works with a structure that employs RBF instead of preva-
lent activation functions (Amedi et al. 2016). The properties 
of the operated RBF network are summarized in Table 3. 

Moreover, the simplified structure of the RBF network for 
prediction vitrinite reflectance values as well as its flowchart 
is illustrated in Figs. 7 and 8, respectively.

One of the significant statistical methods is the random 
forest, which operates based on the variance concept and 
can be applied for prediction and sensitivity analysis goals. 
Moreover, the great advantage of a random forest statistical 
learning tool is its rapidity (Bosch et al. 2007; Genuer et al. 
2010; Aulia et al. 2019). The flowchart of this method is 
shown in Fig. 9.

Feedforward networks of multilayer perceptions are well-
known artificial neural networks with at least three main 
layers in their structure. In this paper, the MLP network with 

Fig. 4   Schematic of DT workflow
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2 hidden layers was selected. As is evident, the efficiency of 
these types of networks depends on the number of neurons 
in each layer. To that end, several MLP networks with dif-
ferent numbers of neurons were constructed, and then their 
performances were analyzed by mean square error. This 
procedure is illustrated in Fig. 10. As shown, the structure 
with three neurons in the first hidden layer and four neurons 
in the second hidden layer can be considered as the best 
situation. Since determining the optimum values of MLP 
parameters requires several calculations, which takes a lot of 
time, for increasing efficiency, other parameters are derived 
from the previous study (Sabah et al. 2019a). Also, the MLP 
flowchart is presented in Fig. 11. The characteristics of the 
used MLP network with two hidden layers are presented in 
Table 4.

The smart hybrid system of ANFIS is the conflation of 
fuzzy logic and artificial neural network, and this feature 
makes ANFIS an effective tool and powerful strategy with 
high accuracy and less time for goals of systems recogni-
tion, time series prediction, function approximation, simula-
tion of nonlinear systems, etc. (Jang 1993; Mir et al. 2018). 
Additional information on ANFIS parameters is listed in 
Table 5. It must be noted that ANFIS parameters have been 
determined through previous research (Sabah et al. 2019a) 
and trial and error approach. Furthermore, the algorithm 
and the flowchart’s architecture are shown in Figs. 12 and 
13, respectively.

In addition to the aforementioned methods and to improve 
the precision of VR prediction, GOA, BAT, GA, and PSO 
algorithms were used for training MLP neural networks 
and coupled with ANFIS. Their flowcharts are illustrated 
in Figs. 14, 15, 16, and 17, respectively. As the name of 
the grasshopper optimization algorithm implies, this algo-
rithm is derived from the cumulative life of grasshopper 
in nature. The location of grasshoppers among their swarm 
can represent a solution for the current issue. Saremi et al. 
(2017) were the first one who proposed its algorithm rela-
tionships, which simulate grasshopper motions. Optimum 
GOA parameters had been determined by both previous 

Fig. 5   Schematic of SVM workflow

Table 2   Values of GMDH parameters

GMDH Parameters Value

Maximum number of neurons in a layer 5
Maximum number of layers 5
Selection pressure 0.6
Train ratio 0.7
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research (Ghaffarkhah et al. 2020) and the trial and error 
approach. BAT is another algorithm that is inspired by 
nature. Yang (2010) proposed this optimization algorithm 
based on bats features for finding bait or way by sending 
audio pulses. It must be emphasized that this algorithm is 
quite capable of solving complicated problems (Yang 2010, 
2012; Yang and Hossein Gandomi 2012). A particle swarm 
optimization algorithm as an appropriate tool for searching 

in a multidimensional space is extremely applied as an opti-
mizer (Atashnezhad et al. 2014). Also, the genetic algorithm 
is a proper technique for stochastic searching that can find 
the optimum value of the function by its various processes 
(Joshi et al. 2006). The control parameters of these four 
algorithms are completely presented in Table 6.

Results and discussion

As mentioned before, four input values (depth, Tmax, S1/TOC, 
and HI) were used for constructing models to predict vitrinite 
reflectance values. Pair plot of inputs and output, which pro-
vides an appropriate insight into the relationship between all 
implemented inputs and output values, is illustrated in Fig. 18. 
This plot reveals that there is a positive correlation between 
vitrinite reflectance and applied inputs. Moreover, it can be 
comprehended that VR values are strongly dependent on depth 
and Tmax.

Fig. 6   Schematic of GMDH workflow

Table 3   Properties of RBF network

Network type Radial 
basis 
network

Training function code newrb
Max neuron number 10
Performance function MSE
Spread 1
Goal 0
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Fig. 7   Schematic form of RBF network structure

Fig. 8   Schematic of RBF workflow
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Fig. 9   Schematic of RF workflow

Fig. 10   Values of MSE for 
various numbers of neurons in 
hidden layers of MLP network
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Fig. 11   Schematic of MLP workflow

Table 4   Architecture parameters of MLP network

Network type Multilayer perceptron

Training function Levenberg–Mar-
quardt backpropa-
gation

Number of layers 3
Nodes in 1st hidden layer 3
Transfer function of 1st hidden layer TANSIG
Nodes in 2nd hidden layer 4
Transfer function of 2nd hidden layer TANSIG
Neurons in output layer 1
Transfer function of output layer PURELIN
Performance objective function MSE

Table 5   Values of ANFIS 
parameters

ANFIS Parameters Value

Number of MFs 5
Radius of influence 0.5
Squash factor 0.5
Accept ratio 0.15
And method Prod
Or method Probor
Implication Min
Aggregation Max
Defuzzification Wtaver

Fig. 12   Simplified structure of the ANFIS algorithm
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As a general procedure, constructed models by different 
aforementioned methods must be compared. To that end, 
statistical parameters are considered as appropriate tools 
for appraising the performance of defined models. In this 
paper, four parameters of average absolute relative devia-
tion (AARD), coefficient of determination (R2), root mean 
square error (RMSE), and standard deviation (SD) have been 
employed for a complete comparison of 15 distinct developed 
models and selection of the most precise methods for vitrinite 
reflectance prediction. Equations of these statistical parameters 
are expressed as follows:

(2)AARD =
1

N

N∑

i=1

||||
|

Oiexp
− Oipred

Oiexp

||||
|
× 100

Four above indicators are calculated for all implemented 
models, and graphical results for three categories of train 
data, test data, and total data are illustrated in Figs. 19, 20, 

(3)R
2 = 1 −

∑N

i=1

�
Oiexp

− Oipred

�2

∑N

i=1

�
Oipred

− Oexp

�2

(4)RMSE =

√√√
√ 1

N

N∑

i=1

(
Oiexp

− Oipred

)2

(5)SD =

√√√√
√ 1

N − 1

N∑

i=1

(
Oiexp

− Oipred

Oiexp

)2

.

Fig. 13   Schematic of ANFIS workflow

Fig. 14   Schematic of GOA workflow
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21, and 22. Figure 19 shows the AARD values of all applied 
models. As seen, the lowest amount of AARD belongs to 
the DT model in train and total sets of data, whereas the 
MLP possesses the lowest AARD in test data. In test data, 
after MLP, the lowest value belongs to the DT model. The 
next figure illustrates the R2 values of the three sets of 
data. As shown, the highest amount of R2 is for the deci-
sion tree model in all 3 groups of the train, test, and total 
data (Fig. 20). The variation of RMSE values is shown in 
Fig. 21. The DT model has the lowest amounts of RMSE. 
Also, Fig. 22 shows the DT model has the lowest SD values. 
For better understanding, all these aforementioned data are 
summarized in Table 7. As can be seen, almost all models 

are acting correctly, and the prediction of vitrinite reflec-
tance has been made with high accuracy. However, with a 
little more precision, it can be realized that among all meth-
ods, the decision tree has the best performance, and hence, 
diagrams of this method merely are presented in the follow-
ing. The constructed tree for vitrinite reflectance prediction 
associated with statistical information is shown in Fig. 23. 
DTs split predictors and form subgroups of separate obser-
vations. This process is binary recursive partitioning that 
divides parent nodes into child nodes (binary splitting). This 
process is continued to reach terminal nodes that do not have 
any splitting (Singh 2017). Figure 23 shows the best tree for 
predicting vitrinite reflectance after running the decision tree 
model. As illustrated, this tree consists of nodes and leaves. 

Fig. 15   Schematic of BAT workflow
Fig. 16   Schematic of GA workflow
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This tree takes the inputs and gives vitrinite reflectance val-
ues in leaves. The first input is Tmax. If the Tmax value is less 
than 432.5 °C, the tree chooses the left side to continue the 
route, and if Tmax is more than this amount, the right path 
will be selected. In the next steps, depth, Tmax, and S1/TOC 
are determinant factors to continue. Final results of predicted 
vitrinite reflectance values are presented in the leaves of the 
tree.

Furthermore, the relative deviation plot of the decision tree 
method is depicted in Fig. 24. This figure indicates that there 
is a small deviation between experimental data of vitrinite 
reflectance and predicted values by the DT method. Obviously, 
this slight difference suggests the accuracy of this method. To 
provide a complete sense of the precision of the decision tree 

model for vitrinite reflectance prediction, the plot of experi-
mental and predicted data is presented in Fig. 25. As it is obvi-
ous, DT has been able to predict Ro values with high accuracy, 
and measured and predicted data are close to each other. The 
correlation of experimental and predicted data for both train 
and test data is illustrated in Fig. 26. This figure depicts the 
DT method as very precise in training data and the test dataset.

In the next step, the achievement of this paper should be 
compared with previous experimental equations. As men-
tioned, four equations had been presented for vitrinite reflec-
tance prediction based on Tmax data. These formulas are as 
follows:

(6)
Ro = (1∕30)Tmax − 13.5 (Galimov and Rabbani 2001)

(7)Ro = (0.0180)Tmax − 7.16 (Jarvie et al.2001)

(8)Ro = (0.0085)Tmax − 2.7914 (Wust et al.2013)

(9)Ro = (0.0149)Tmax − 5.8593 (Wust et al.2013).

Fig. 17   Schematic of PSO workflow

Table 6   Parameters of GOA, BAT, GA, and PSO

Value

GOA
  GOA property
     Population size 50
     Max iteration 100
BAT
  BAT property
     Swarm size 50
     Max generation 100
     Loudness 0.5
     Pulse rate 0.5
GA
  GA property
     Population size 150
     Max generation 100
     Selection mode Tournament
     Recommendation percent 40
     Crossover percent 50
     Mutation percent 10
PSO
  PSO property
     Swarm size 150
     Max iteration 100
     Cognition coefficient 2
     Social coefficient 2
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To better understand the performance of methods based 
on experimental equations and artificial intelligence meth-
ods, the vitrinite reflectance values have been calculated 
by Eqs. 6–9 based on this paper’s presented Tmax data. 
The statistical parameters (AARD, R2, RMSE, SD) are 

computed for these experimental equations and summa-
rized in Table 8. For better understanding, the statisti-
cal parameters of the decision tree are also listed in this 
table. As seen, the DT method with the lowest amounts of 
AARD, RMSE, SD, and the highest value of R2 is the most 
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Fig. 18   The plot of the relationship between inputs and output values

Fig. 19   Comparison of devel-
oped models on the basis of the 
AARD statistical parameter
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precise method for vitrinite reflectance prediction. The 
results of Table 8 show the poor performance of experi-
mental equations. These results indicate the high accuracy 
of machine learning approaches compared to experimental 
methods. The variations of predicted vitrinite reflectance 
quantities by empirical equations and the decision tree 

approach (as the most precise machine learning method) 
with depth are illustrated in Fig. 27. Empirical equations 
perform weakly for vitrinite reflectance prediction. 

Fig. 20   Comparison of devel-
oped models on the basis of the 
R2 statistical parameter
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Fig. 21   Comparison of devel-
oped models on the basis of the 
RMSE statistical parameter
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Conclusions

Vitrinite reflectance values have been predicted by using 
machine learning approaches for the first time in this 
paper. For this purpose, several Rock-Eval parameters 
were used to construct machine learning models. For 
this purpose, in addition to depth, Tmax, S1/TOC, and 

HI values were selected for vitrinite reflectance predic-
tion. Decision tree (DT), support vector machine (SVM), 
group method of data handling (GMDH), radial basis 
function (RBF), random forest (RF), multilayer percep-
tron (MLP), MLP + GOA, MLP + BAT, MLP + PSO 
and MLP + GA, adaptive neuro-fuzzy inference system 
(ANFIS), ANFIS + GOA, ANFIS + BAT, ANFIS + PSO, 

Fig. 22   Comparison of devel-
oped models on the basis of the 
SD statistical parameter
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Table 7   Statistical parameters values for all constructed models

Training Test Overall

RMSE AARD (%) R2 SD RMSE AARD (%) R2 SD RMSE AARD (%) R2 SD

DT 0.0249 3.44 0.929 0.04 0.0165 2.10 0.929 0.03 0.0267 3.68 0.932 0.05
SVM 0.0312 3.64 0.913 0.06 0.0229 3.26 0.927 0.04 0.0297 3.72 0.916 0.05
GMDH 0.030 4.41 0.911 0.05 0.0310 4.13 0.909 0.05 0.030 4.35 0.911 0.05
RBF 0.031 4.38 0.906 0.05 0.0315 4.16 0.901 0.06 0.031 4.34 0.906 0.05
RF 0.037 5.85 0.889 0.07 0.0177 2.38 0.902 0.03 0.034 5.14 0.889 0.06
MLP 0.029 4.10 0.923 0.05 0.0215 1.75 0.920 0.04 0.030 4.31 0.910 0.05
MLP + GOA 0.029 4.23 0.923 0.05 0.0247 3.63 0.917 0.04 0.028 4.11 0.923 0.05
MLP + BAT 0.027 3.90 0.919 0.05 0.0340 5.07 0.924 0.07 0.028 4.14 0.920 0.05
MLP + PSO 0.032 4.87 0.905 0.06 0.0247 3.23 0.915 0.04 0.031 4.54 0.907 0.06
MLP + GA 0.031 4.53 0.899 0.06 0.0354 5.28 0.899 0.07 0.032 4.68 0.900 0.06
ANFIS 0.028 4.10 0.919 0.05 0.0298 4.26 0.927 0.06 0.028 4.13 0.921 0.05
ANFIS + GOA 0.028 4.05 0.914 0.05 0.0313 4.25 0.928 0.06 0.029 4.09 0.919 0.05
ANFIS + BAT 0.028 4.21 0.915 0.05 0.0298 3.98 0.917 0.05 0.028 4.17 0.920 0.05
ANFIS + PSO 0.031 4.53 0.904 0.05 0.0327 4.63 0.905 0.05 0.031 4.55 0.906 0.05
ANFIS + GA 0.034 5.06 0.887 0.07 0.0330 6.00 0.889 0.07 0.034 4.25 0.890 0.07
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and ANFIS + GA are 15 implemented methods for vitrinite 
reflectance prediction. After normalizing data, constructed 
models were compared via four statistical parameters of 
average absolute relative deviation (AARD), coefficient 

of determination (R2), root mean square error (RMSE), 
and standard deviation (SD). Results of the comparison 
indicate that all methods are precise, and their outputs are 

Fig. 23   An implemented tree for vitrinite reflectance prediction. Statistical information and vitrinite reflectance values are shown in blue rectan-
gles and orange ellipsoids, respectively
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Fig. 24   Relative deviation plot of the decision tree model
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acceptable, whereas the decision tree can be considered as 
the most accurate method, which possesses the lowest rela-
tive deviation between measured and predicted vitrinite 
reflectance values. A comparison between the decision tree 
and previously proposed equations for vitrinite reflectance 
prediction indicates that the machine learning approach 
performs more accurately than empirical equations.
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Fig. 26   Predicted values of Ro by DT versus experimental values for 
both train and test datasets

Table 8   The calculated statistical parameters for DT method and 
empirical equations of 6–9

DT Equation 6 Equation 7 Equation 8 Equation 9

AARD 3.683 50.014 13.307 53.535 12.482
R2 0.933 − 10.757 − 0.102 − 7.420 0.199
RMSE 0.027 0.353 0.108 0.298 0.092
SD 0.052 0.585 0.196 0.587 0.170

Fig. 27   The variation of vitrin-
ite reflectance quantities with 
depth for decision tree and 4 
empirical equations. Note that 
1st eqn and 2nd eqn are Eqs. 8 
and 9, respectively
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