
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2021) 11:673–684 
https://doi.org/10.1007/s13202-020-01013-0

ORIGINAL PAPER-EXPLORATION GEOPHYSICS

Petrophysical seismic inversion based on lithofacies classification 
to enhance reservoir properties estimation: a machine learning 
approach

Amir Abbas Babasafari1   · Shiba Rezaei1 · Ahmed Mohamed Ahmed Salim1 · Sayed Hesammoddin Kazemeini2 · 
Deva Prasad Ghosh1

Received: 23 May 2020 / Accepted: 22 September 2020 / Published online: 19 October 2020 
© The Author(s) 2020

Abstract
For estimation of petrophysical properties in industry, we are looking for a methodology which results in more accurate 
outcome and also can be validated by means of some quality control steps. To achieve that, an application of petrophysical 
seismic inversion for reservoir properties estimation is proposed. The main objective of this approach is to reduce uncertainty 
in reservoir characterization by incorporating well log and seismic data in an optimal manner. We use nonlinear optimization 
algorithms in the inversion workflow to estimate reservoir properties away from the wells. The method is applied at well 
location by fitting nonlinear experimental relations on the petroelastic cross-plot, e.g., porosity versus acoustic impedance 
for each lithofacies class separately. Once a significant match between the measured and the predicted reservoir property is 
attained in the inversion workflow, the petrophysical seismic inversion based on lithofacies classification is applied to the 
inverted elastic property, i.e., acoustic impedance or Vp/Vs ratio derived from seismic elastic inversion to predict the reservoir 
properties between the wells. Comparison with the neural network method demonstrated this application of petrophysical 
seismic inversion to be competitive and reliable.

Keywords  Petrophysical inversion · Nonlinear optimization · 	 Reducing uncertainty · Lithofacies class

Introduction

Different approaches for petrophysical properties prediction 
from elastic properties are routinely employed in oil and gas 
reservoirs (Doyen 2007; Bosch et al. 2010; Grana and Della 
Rossa 2010; Figueiredo et al. 2018). Empirical equations, 
geostatistical methods, multi-attribute regression and neural 
network, petrophysical seismic inversion and co-simulation 
after stochastic inversion are the predominant procedures 
(Doyen 1988; Bortoli et al. 1993; Russell et al. 2011; Lang 
and Grana 2018). Each methodology for reservoir properties 
prediction possesses deficiency in terms of demonstrating 
proper relations between elastic and petrophysical properties 

per each lithofacies class. For instance, fitting an experimen-
tal polynomial equation to acoustic impedance (AI) versus 
porosity (Phi) cross-plot, will not always result in a proper 
match between the measured and the predicted porosity due 
to low correlation in some lithofacies classes, e.g., shale and 
coal. To overcome this issue in the industry methods such 
as geostatistical methods and neural networks are employed 
(Doyen 2007; Grana 2020).

Machine learning (ML) is an application of artificial 
intelligence using data which enables system to learn with-
out explicit programming (Alpaydin 2010; Zimek and Schu-
bert 2017). In the proposed workflow, seismic inversion and 
petroelastic modeling are incorporated to estimate reservoir 
properties in a machine learning approach.

The seismic forward modeling is the process of trans-
ferring subsurface geological properties into the seismic 
response (Lang and Grana 2018). Seismic data inversion is 
a technique through which an elastic property such as acous-
tic impedance is estimated from seismic response (Tarantola 
2005; Sen 2006; Sayers and Chopra 2009; Sen and Stoffa 
2013). This approach can be extended to petrophysical 
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properties prediction derived from elastic properties which 
is called petrophysical seismic inversion (Doyen 2007; 
Bosch et  al. 2010; Grana and Della Rossa 2010). This 
method is known by other terms such as petroelastic inver-
sion or inversion of inversion (Mukerji et al. 2001; Coléou 
et al. 2005; Bornard et al. 2005). The process starts with an 
initial fine-scale model and updated iteratively. Petrophysi-
cal seismic inversion has been developed by applying ana-
lytical Bayesian techniques and using different rock physics 
models (Bosch et al. 2010; Grana et al. 2012, 2016, 2018; 
Figueiredo et al. 2018; Lang and Grana 2018; Grana 2020).

Petroelastic modeling (PEM) is used to convert petro-
physical properties to the elastic ones (Avseth et al. 2005; 
Mavko et al. 2009; Dvorkin et al. 2014). Therefore, at the 
first step, we need to find a reliable petroelastic model at a 
well location in order to establish a nonlinear experimen-
tal relation for solving an inverse problem algorithm. In 
this study, PEM is optimized via calibrating the predicted 
elastic logs with the measured logs by selecting the most 
suitable pore space stiffness value. This technique aids to 
reduce uncertainty and validate the results (Babasafari et al. 
2020). Next, the seismic elastic inversion is performed. In 
this paper, we present a practical approach in petrophysical 
seismic inversion using a stable nonlinear optimization algo-
rithm in which a lithofacies volume is interactively involved.

Petrophysical seismic inversion

Since getting petrophysical properties from seismic data 
directly is impractical, elastic properties as a key link 
between seismic and petrophysics should be predicted first. 
There is an approach (Bornard et al. 2005) for petrophysical 
seismic inversion in which the elastic model is generated 
from the petrophysical model through petroelastic mode-
ling and then seismic forward modeling used to create syn-
thetic seismic data from the elastic model. Recorded and 
synthetic seismic data are compared via solving an inverse 
problem algorithm, and the petrophysical model is updated 
iteratively.

Coléou et al. (2005) proposed a detailed technique which 
is started from an initial fine-scale geomodel defined from 
a 3D stratigraphic grid. Afterward, a petroelastic model 
(PEM) is employed to calculate elastic properties at each cell 
of the geomodel from porosity, volume of clay and water sat-
uration volumes. Using the Zoeppritz equation at each trace 
location, the angle-dependent reflectivity series is calculated 
from the elastic properties. 3D angle-dependent synthetic 
reflectivity series are produced after wavelet convolution. 
The degree of match between the synthetic and the recorded 
angle stacks is optimized through introducing perturbations 
of the properties of the geomodel using a simulated anneal-
ing algorithm. After convergence of errors, the final geo-
model honors the observed seismic amplitudes and also is 

consistent with the user-defined PEM (Coléou et al. 2005). It 
is worth noting that even minor changes in the initial model 
such as the small-scale distribution of rock type or change 
in PEM result in different solutions. The final models due 
to the nonuniqueness problem in seismic inversion results 
then represent alternative solutions that are in compliance 
with the seismic data.

This approach utilizes a robust petroelastic relation as a 
constraint in an inversion workflow that is finalized on the 
basis of minimizing the residual error between recorded and 
synthetic angle-dependent reflectivity series. It is therefore 
known to be an accurate and reliable technique in reservoir 
properties prediction.

In the proposed methodology in this research, a workflow 
is amended as follows; first, the elastic model is derived 
from an initial petrophysical model via petroelastic modeling 
which is known as modeled elastic property. As a parallel 
process, seismic elastic inversion is implemented to convert 
seismic data into elastic data which is known as inverted 
elastic property. Elastic properties in this study are acoustic 
impedance and Vp

Vs

 ratio, and desired petrophysical models 
are porosity and clay volume. For instance, in porosity esti-
mation, the modeled acoustic impedance originated from 
petroelastic model and inverted acoustic impedance derived 
from elastic inversion are then compared for matching via 
solving an inverse problem algorithm and the porosity model 
is updated iteratively. Once the residual error between the 
inverted and the modeled acoustic impedance reaches the 
defined criteria for minimizing misfit function, the porosity 
model is finalized. In this research two different nonlinear 
optimization algorithms are employed and compared: the 
Newton–Raphson and the Secant methods. Figure 1 illus-
trates the workflow of petrophysical seismic inversion for 
porosity estimation.

Reservoir properties estimation

The petrophysical seismic inversion workflow for porosity 
estimation is carried out in two main stages:

First nonlinear petroelastic experimental relations, i.e., 
porosity versus acoustic impedance, are fitted at well loca-
tion per each identified lithofacies class separately. Petro-
physical seismic inversion is performed using two different 
optimization algorithms (Newton–Raphson and Secant). 
Afterward, the results of predicted porosity are compared 
with those from measured porosity through cross-plot and 
statistical analysis.

Once a good match between measured and predicted 
porosity is attained, the petrophysical seismic inversion is 
applied to the inverted acoustic impedance produced from 
seismic elastic inversion to predict porosity between the 
wells. For this purpose, a lithofacies volume is 
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interactively employed (Ghosh et al. 2018). In the end, 
results are validated through the use of a blind well and 
compared with those from the probabilistic neural network 
algorithm. A similar process is applied to Vp

Vs

 data to predict 
the volume of clay.

The advantages of the proposed application of petro-
physical seismic inversion compared to the Coleou’s 
approach are as follows:

(a)	 Instead of comparing recorded and synthetic seismic 
data via solving an inverse problem algorithm in the 
matching process, the modeled and inverted elas-
tic properties are utilized and compared. This helps 
to mitigate the uncertainty of using seismic forward 
modeling in Coleou’s method in which noise, multiples 
and migration artifacts should be taken into consid-
eration in order to relate the residual errors more to 
the petrophysical properties estimation and not to the 
processing issues. The simulated annealing algorithm 
was employed to solve the inverse problem in Coleou’s 
approach that is replaced with the Newton–Raphson 
and Secant algorithms in the present case.

(b)	 Since the petroelastic relations vary from facies to 
facies, lithofacies classification is interactively utilized 
to assign an identified lithofacies class to each cell of 
the geomodel. To this end, first elastic seismic inver-
sion is conducted. The outputs are incorporated in the 
workflow: acoustic impedance, Vp

Vs

 ratio and lithofacies 
class volumes. Next, according to the lithofacies clas-
sification, the petrophysical seismic inversion is per-

formed on the basis of the corresponding petroelastic 
experimental equation.

In this inversion workflow, each petrophysical property is 
predicted using the more appropriate elastic property in 
terms of getting a higher correlation coefficient in petroelas-
tic cross-plot, e.g., porosity versus acoustic impedance. 
Although each petrophysical property is independently esti-
mated, this research tries to demonstrate that the basic res-
ervoir parameters such as porosity and volume of clay can 
be attributed to the corresponding elastic parameters, i.e., 
acoustic impedance and Vp

Vs

 ratio, respectively.
The application of petrophysical seismic inversion in 

this study is not a stochastic approach. It is a deterministic 
technique. However, it proposes a reliable tool for cross-
validating of results and reducing uncertainties in reservoir 
characterization which is the residual error between inverted 
and modeled elastic property.

Optimization algorithms

Two different nonlinear optimization algorithms are selected 
and used to minimize the misfit function of the petroelastic 
inverse problem: Newton–Raphson and Secant.

Newton–Raphson is an approximation method which is 
based on the Taylor series and requires an initial value, and 
also a derivative of the nonlinear equation should be known. 
This iterative procedure can be generalized by writing fol-
lowing equation Eq. (1), where i represents the iteration 
number:

Fig. 1   Proposed workflow for 
petrophysical seismic inversion
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Figure 2 shows the procedure of finding a solution using 
the Newton–Raphson method. The equation f(x) represents 
a straight line tangent to the curve y = f(x). This line inter-
sects the x-axis at the point x1. At x1 a new straight line 
tangent to the curve y = f(x) can be constructed in which 
a new intersection with the x-axis gives the new approxi-
mation to the root of f(x) = 0, namely x = x2. Proceeding 
with the consecutive iterations, tangent line intersection 
approaches the actual root of y = f(x) (Urroz 2004). The 
Secant method requires two initial values, and the deriva-
tive term is not included.

Results and discussion

Data from a field located in the Malay basin are used for 
this study. This research focuses on reservoir layer E that is 
mainly composed of clastic sediments. 3D pre-stack seis-
mic data and four wells including elastic and petrophysi-
cal logs are used. Lithofacies classes are created utilizing 
petrophysical logs and available lithological data (Grana 
and Della Rossa 2010; Babasafari et al. 2020).

Lithofacies information at the well location is obtained 
from petrophysical logs (porosity, water saturation and 
mineral grain volumes). Four lithofacies classes are clas-
sified including shale, wet sand, gas sand and coal. Elastic 
seismic inversion was conducted, obtaining 3D inverted 

(1)xi+1 = xi −
f (xi)

f �(xi)
volumes of acoustic impedance, Vp

Vs

 ratio and lithofacies 
class.

First, the results of reservoir properties prediction are 
illustrated at well location and then the final results are dis-
played on 2D cross sections. The results consist of porosity 
and clay volume prediction based on lithofacies classifica-
tion by utilizing nonlinear optimization algorithm.

The results of predicted porosity are compared with the 
measured porosity through cross-plot and statistical analy-
sis. Figures 3 and 4 display quality controlling steps. Fig-
ure 3a shows overlapped zones between different lithofa-
cies classes, and Fig. 3b–e is used as quality control (QC) 
for the results. Figure 3b illustrates the overlay comparison 
cross-plot of measured and predicted porosity to assess the 
prediction accuracy at well location. Figure 3c–e displays 
statistical analysis of measured and predicted porosity. Fig-
ure 4a illustrates the elastic logs, raw logs and petrophysical 
interpretation logs. In Fig. 4b the QC is conducted in the 
depth domain by superimposing measured porosity on the 
predicted porosity derived from the acoustic impedance log 
using petrophysical seismic inversion within selected inter-
val. However, in Fig. 6c the QC is performed in two-way 
time (TWT) domain by superimposing measured porosity on 
the predicted porosity derived from inverted acoustic imped-
ance that might be influenced by the well to seismic tie in 
the inversion process.

Figure  5 shows the seismic elastic properties, i.e., 
acoustic impedance and Vp

Vs

 ratio in 2D cross sections as the 
input of petrophysical seismic inversion. Figure 6 repre-
sents lithofacies classification and predicted porosity. In 
the cross section one constrained well is located in com-
mon depth point (CDP) no. 215 and blind well in CDP no. 
31. According to Fig.  6c the correlation coefficient 
between predicted and measured porosity logs is 71%. In 
Fig. 7 the residual error between the modeled and the 
inverted acoustic impedance is displayed. Apart from the 
yellow color and the dark blue zones in Fig. 7b that are 
attributed to shale lithology, the rest including the reser-
voir interval demonstrate a residual error value close to 
zero. High values of residual error in the mentioned loca-
tions (yellow and dark blue color zones) are due to the 
divergence of the residual error miscalculation (overfit-
ting) where inverted acoustic impedance value does not fit 
the selected nonlinear equation (porosity vs. acoustic 
impedance) for shale lithology. This can represent uncer-
tain zones for the mentioned method. Meanwhile, the 
accumulation of errors is quantified in Fig. 7c where the 
Newton–Raphson and Secant methods are compared. It is 
not a stochastic approach; therefore, the uncertainty is not 
specifically quantified based on an objective criterion of a 
couple of realizations and only the average error is evalu-
ated. Since the Newton–Raphson method reaches the Fig. 2   Approximation for the Newton–Raphson method (Urroz 2004)
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minimum criteria of misfit function via a lower number of 
iterations than the Secant method, it was selected to be 
applied for the final petrophysical seismic inversion 
(Fig. 7c). The result of the blind well in this method was 
compared with the probabilistic neural network method 

and validated with higher correlation coefficient and lower 
root-mean-square error (RMSE) values in Table 1. The 
correlation coefficient between measured porosity log and 
predicted one at blind well using two different methods, 
petrophysical seismic inversion and probabilistic neural 

Fig. 3   a Cross-plot of acoustic impedance (m/s * gr/cc) versus poros-
ity (%) at well location color coded by lithofacies classes. b Overlay 
comparison cross-plot of acoustic impedance versus porosity, meas-

ured porosity in black and predicted porosity in red color. c Predicted 
porosity versus measured porosity. d and e Distribution histogram of 
measured and predicted porosity, respectively
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network that are 48.27% and 33.78%, respectively, is illus-
trated in Table 1. The matching quality is not acceptable 
for both methods at blind well. However, this is the only 
available well for cross-validation and the seismic noise 
effect might not be neglected. In the next step of petro-
physical seismic inversion process, a nonlinear petroelastic 
experimental relation, i.e., clay volume vs. Vp

Vs

 ratio, is fitted 
at well location per each identified lithofacies class sepa-
rately (Fig. 8). Finally petrophysical seismic inversion is 
applied to the inverted Vp

Vs

 ratio extracted from seismic elas-
tic inversion to predict volume of clay between the wells 
(Fig. 9). In the same process, the results of predicted clay 
volume are compared with the measured clay volume 
through cross-plot and statistical analysis. Figure 8 dis-
plays the quality control steps at well location. Figure 9 
demonstrates predicted clay volume in 2D cross section.

This method of petrophysical seismic inversion needs 
some requirements as follows:

•	 The experimental relationship between elastic and 
petrophysical properties derived from well logs should 
be defined at well location.

•	 Lithofacies volume needs to be involved.

Compared to the other approaches, the proposed appli-
cation of petrophysical seismic inversion has its own 
advantages as indicated below:

•	 Statistical analysis is used to attain a similar probability 
distribution function (PDF) trend of measured objec-
tive (reservoir property) for the predicted reservoir 
property.

Fig. 4   a Elastic logs, raw logs and petrophysical interpretation logs. b Measured porosity superimposed on predicted porosity derived from 
petrophysical seismic inversion color coded by identified lithofacies classes within selected interval of well
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•	 Unlike neural network method, the residual error between 
inverted and modeled elastic property away from the 
wells validates the result as a remarkable tool for quality 
control of optimization algorithm.

•	 This application of petrophysical seismic inversion ben-
efits from seismic elastic inverted results; however, unlike 
the co-simulation of petrophysical properties in geostatis-
tical inversion, there is no variography effect in outcome.

Fig. 5   Inverted results; a 
acoustic impedance; and b Vp

Vs

 
ratio in 2D cross sections
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The main disadvantage of the proposed workflow is that 
the application of this approach is not a multivariate joint 
inversion of petrophysical properties in which a set of non-
linear equations are incorporated and reservoir properties 
are simultaneously estimated.

Conclusion

This research demonstrated how the proposed application of 
petrophysical seismic inversion can be employed to achieve 
useful petrophysical properties which are then utilized in 

Fig. 6   a Cross section of lithofacies classification. b Cross section of 
predicted porosity using petrophysical seismic inversion method and 
c well log porosity superimposed on predicted porosity using petro-

physical seismic inversion method extracted from model representing 
by white arrow in cross section (a) and (b)
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reservoir modeling. The method reduces uncertainty in reser-
voir characterization. The residual error between inverted and 
modeled elastic property is a reliable tool for cross-validating 
of results and reducing uncertainties. Unlike the co-simula-
tion of petrophysical properties in geostatistical inversion, the 
variography effect is not observed in the outcome. Estimation 
of the reservoir properties (porosity and clay volume), using 
this approach, shows above 70% correlation with measured 
logs. The calculated RMSE values at a blind well are 0.017 

Fig. 7   Residual error between modeled and inverted acoustic impedance a cross-section of first residual error b cross section of final residual 
error and c average residual error for different iteration numbers using two methods of Newton–Raphson and Secant at well location

Table 1   Correlation coefficient and RMSE between measured poros-
ity log and predicted one using two methods: petrophysical seismic 
inversion and probabilistic neural network

Blind well Petrophysical seismic 
inversion method

Probabilistic 
neural network 
method

Correlation coef-
ficient (%)

48.27 33.78

RMSE 0.017 0.027
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and 0.027 for petrophysical seismic inversion and probabil-
istic neural network techniques, respectively. The outcome of 
the proposed technique compared to the results obtained from 
available advance methods in the industry, e.g., probabilis-
tic neural network, is proven to be competitive and reliable. 
However, this method is not a multivariate joint inversion 

of petrophysical properties. The petrophysical seismic inver-
sion can be extended to multivariate joint inversion workflow 
and simultaneous prediction of multiple reservoir properties 
(porosity and clay volume) through using required equations 
in petroelastic modeling.

Fig. 8   a Cross-plot of Vp

Vs

 versus clay volume at well location color 
coded by lithofacies classes. b Overlay comparison cross-plot of Vp

Vs

 
versus clay volume, measured clay volume in black and predicted 

clay volume in red color. c Predicted clay volume versus measured 
clay volume. d and e Distribution histogram of measured and pre-
dicted clay volume, respectively
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