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Abstract
Oil and gas production wells are often equipped with modern, permanent or temporary in-well monitoring systems, either 
electronic or fiber-optic, typically for measurement of downhole pressure and temperature. Consequently, novel methods 
of pressure and temperature transient analysis (PTTA) have emerged in the past two decades, able to interpret subtle ther-
modynamic effects. Such analysis demands high-quality data. High-level reduction in data noise is often needed in order 
to ensure sufficient reliability of the PTTA. This paper considers the case of a state-of-the-art intelligent well equipped 
with fiber-optic, high-precision, permanent downhole gauges. This is followed by screening, development, verification and 
application of data denoising methods that can overcome the limitation of the existing noise reduction methods. Firstly, the 
specific types of noise contained in the original data are analyzed by wavelet transform, and the corresponding denoising 
methods are selected on the basis of the wavelet analysis. Then, the wavelet threshold denoising method is used for the data 
with white noise and white Gaussian noise, while a data smoothing method is used for the data with impulse noise. The 
paper further proposes a comprehensive evaluation index as a useful denoising success metrics for optimal selection of the 
optimal combination of the noise reduction methods. This metrics comprises a weighted combination of the signal-to-noise 
ratio and smoothness value where the principal component analysis was used to determine the weights. Thus the workflow 
proposed here can be comprehensively defined solely by the data via its processing and analysis. Finally, the effectiveness of 
the optimal selection methods is confirmed by the robustness of the PTTA results derived from the de-noised measurements 
from the above-mentioned oil wells.

Keywords  Intelligent well · Downhole gauge · Pressure and temperature transient analysis (PTTA) · Data smoothing; 
wavelet threshold denoising · Principal component analysis (PCA)

Abbreviations
PDG	� Permanent downhole gauge
WGN	� White Gaussian noise
SNR	� Signal-to-noise ratio
PCA	� Principal component analysis
TTA​	� Temperature transient analysis
ICV	� Inflow control valve
PSNR	� Power signal-to-noise ratio
RMSE	� Root-mean-square error

List of symbols
h	� Reservoir thickness
k	� Permeability
K	� Thermal conductivity
L	� Distance from well to reservoir boundary
p	� Pressure
Q	� Volumetric flow rate (surface)
ε	� Joule–Thomson coefficient
q	� Flow rate (downhole)
S	� Saturation
T	� Temperature
v	� Velocity
η	� Thermal expansion coefficient
μ	� Dynamic viscosity
CP	� Mass heat capacity at constant pressure
∅	� Porosity
Cf 	� Reservoir rock compressibility
�	� Volumetric thermal expansivity
v	� Velocity vector
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Cpf 	� Heat capacity of formation rock
�	� Density

Subscripts
T	� Tubing
R	� Radial direction
F	� Formation

Introduction

The intelligent well system enables in-well monitoring by 
the means of PDGs and other sensors, as well as zonal flow 
control with downhole, flow control devices. The PDGs 
measure the downhole, zonal pressure and temperature. 
These measurements, if interpreted, can be of immense 
value providing detailed information about the produced 
fluid and flow rate, near-wellbore region and the far reser-
voir. This often demands the measured data to be of high 
quality to support the accurate data analysis.

Permanent downhole pressure and temperature gauges 
are broadly of two types: electronic or fiber-optic, with rela-
tively comparable metrological characteristics while nota-
bly differing by design, installation, reliability and operating 
principle. The electronic gauges are either quartz crystal, 
sapphire or strain gauges, with the quartz gauges providing 
the highest accuracy (Bellarby 2009). The fiber-optic sen-
sors have the advantage of not needing downhole electronic 
components (van Gisbergen and Vandeweijer 1999). Fiber-
optic sensors rely on the state-defined spectral change of the 
backscattered light signal in an optical fiber. This change can 
be further detected using interferometry at the surface end 
of the fiber. For example, the single-point Fabry-Perot inter-
ferometers operate based on the phase difference between 
two light waves. The multi-point fiber Bragg grating sen-
sors operate based on the frequency of light interfering with 
a periodic structure imprints. The distributed sensors are 
based on backscattering (in Rayleigh, Raman and Brillouin 
spectra) (NI 2011). While electronic gauges provide single-
point measurements, the fiber-optic gauges can provide 
multi-point or distributed measurements on a single cable. 
The fiber-optic sensors are becoming widely acceptable 
instruments of choice.

The pressure and temperature transient analysis, applied 
to the measurements from in-well PDGs, has been proven 
useful for production allocation, reservoir characterization, 
well monitoring and reservoir management. Conventional 
well-test, pressure transient analysis assumes an isother-
mal reservoir, which in most situations results in accurate 
prediction because the temperature changes are small and 
have negligible effect on the pressure. The novel, tempera-
ture transient analysis (TTA) is gaining momentum as an 
advanced well test method boosted by the availability of 

modern, high-precision temperature sensors. Such sen-
sors can be both electronic and fiber-optic. TTA has been 
successfully used for reservoir characterization (Duru and 
Horne 2010; Onur and Çinar 2016; and Muradov et al. 
2017), phase detection (Yoshioka et al. 2006), near-well-
bore analysis (Muradov et al. 2017; Ramazanov et al. 2010; 
Onur and Çinar 2016; and Mao and Zeidouni 2017) and rate 
allocation (Malakooti 2015). While these measurements and 
analysis are quite valuable, the presence of noise decreases 
the accuracy of the measurements and subsequent PTTA, 
and as such this work focuses on developing efficient meth-
ods for denoising the downhole measurements in a bid to 
ensure sufficiently accurate analysis of the resulting data.

Wavelet analysis methods are proven useful and are popu-
lar in the well test, pressure transient analysis data preproc-
essing including de-noising. This paper focuses on the devel-
opment and application of such methods and approaches to 
the temperature transient data. In particular, the threshold 
approach is given much detail. This approach considers a 
threshold coefficient of the wavelet-decomposed signal as 
the critical value for distinguishing the noise from the useful 
signals. In particular, the original signals are firstly decom-
posed and the resulting approximate coefficients and detail 
coefficients are obtained. The coefficients with values (or 
intensity) less than a certain threshold are considered to be 
due to noise and are zeroed, while the remaining coefficients 
are retained as describing the signal. Then the denoised sig-
nals are obtained from thus processed coefficients by per-
forming the inverse wavelet transform.

Donoho (1994, 1995, 1998) was one of the first to pro-
pose the wavelet threshold denoising method and the related 
data processing methods, which stimulated the application, 
optimization and wide use of this method. Much effort was 
further made into improving the noise reduction effect by 
improving the threshold algorithm. A new threshold calcu-
lation function, which can change with the decomposition 
scale and reduce the deviation between the wavelet coef-
ficients and the original, was proposed to improve the SNR 
of the denoising results (Zhao 2015).

This, adaptive threshold method was successfully applied 
to improve the effect of the wavelet threshold reduction 
(Madhu 2015; Zhang 1998; Jiang 2010; Jenkal 2016; Rak-
shit 2016; and Xiong 2015). Chang (2000) proposed an 
adaptive data-driven threshold for image denoising based 
on the wavelet soft threshold concept, which is derived from 
Bayesian framework. The coefficient discontinuity problem 
in hard threshold denoising and the permanent deviation 
problem in soft threshold denoising were further allevi-
ated by the technique proposing construction of a modified 
threshold (Huimin 2012; Chang 2010; Madhur 2016; Mad-
hur and Zhao 2007). In addition, some works improved noise 
reduction by selecting the optimal number of the decompo-
sition layers in wavelet reduction. For instance, Cai (2006) 
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used an adaptive method to select the optimal number of 
wavelet decomposition layers defined by the characteristics 
of the noisy signal. Madhur (2016) selected the optimal 
number of wavelet decomposition layers by analyzing the 
details of each layer in order to improve the performance of 
wavelet denoising.

Development and application of the noise reduction 
methods suitable for the PDG data from intelligent wells 
and alike has been ongoing for the past two decades. 
Athichanagorn (1999) proposed a “7-step method” for the 
processing of intelligent well pressure data, which included 
a mixed threshold method for noise reduction, that is, the 
soft threshold is used in the continuous data regions and 
the hard threshold is used in the vicinity of the discontinu-
ous points. Khong (2001) suggested that the threshold in 
wavelet denoising can be determined by a linear fitting 
method on the premise of satisfying the least square rule. 
The advantage of this method is that the threshold can be 
dynamically adjusted according to the pressure values in dif-
ferent time periods. Therefore, it avoids the problem caused 
by the nonflexible denoising of a long-term data with the 
same threshold. Liangbo (2002) proposed a polynomial 
method suitable for calculating the noise level from pres-
sure data. The advantage of this method is that it can be 
used for regression of both arbitrary linear and nonlinear 
relations. Olsen (2005) proposed a method to calculate the 
threshold for different wavelet functions and decomposition 
scales in order to improve the effect of PDG data denoising. 
An improved calculation method for the standard deviation 
of the noise level, which is based on the detail coefficients 
at the first level of decomposition, was proposed and used to 
estimate the threshold value of denoising. This new thresh-
old method improves the hybrid threshold method developed 
by Athichanagorn et al. (1999) and the effect of data denois-
ing (Viberti 2005).

To sum up, although many denoising methods and thresh-
old improvement algorithms based on wavelet analysis have 
been proposed, and some methods have been proven to per-
form well in some cases, there are still several problems in 
PDG data denoising. First of all, there is generally a lack 
of characteristic analysis of the type of noise for the data 
to be denoised. This means the wavelet threshold denois-
ing method is only suitable for the data with white noise or 
white Gaussian noise assumed by default. Secondly, there 
is a lack of a fast and accurate method for the optimal selec-
tion of PDG data denoising combination. For example, the 
wavelet function, threshold and decomposition scale are 
the three key parameters of wavelet threshold denoising. 
Each parameter has multiple choices, resulting in a large 
number of combinations, so it is difficult to select a suit-
able combination quickly. Finally, the final purpose of PDG 
data denoising is to make the results of the subsequent data 
analysis more accurate and effective. The previous methods 

of noise reduction used functions of square of noise data, 
namely SNR, PSNR and RMSE, as the result evaluation 
index which may not be what is needed given a comprehen-
sive evaluation index that would include smoothness has 
been ignored.

This paper proposes improved methods for PDG data 
denoising to increase the accuracy of the subsequent data 
analysis. Firstly, several PDG data sets are processed with 
a wavelet transform to identify the specific types of their 
noise and select the corresponding denoising methods. Then, 
the wavelet threshold denoising method is used for the data 
with white noise and WGN, and a data smoothing method 
is used for the data with impulse noise. Aiming at the prob-
lem of comprehensive, single, denoising success evaluation 
index, this paper presents a comprehensive evaluation index. 
The SNR and smoothness are both taken as the evaluation 
indexes of the noise reduction results, and the results can be 
comprehensively evaluated from the point of view of data 
processing and data analysis. The PCA is used to determine 
the weights of its components to form the basis for opti-
mal selection of the noise reduction methods combination. 
Finally, the optimal selection methods are applied to two 
datasets from offshore, intelligent oil wells followed by their 
validation by the TTA.

The methodology presented here is fine-tuned for and 
tested on the temperature transient datasets. The tempera-
ture transients are a complex, nonmonotonous time series 
that have more features and, potentially, information, than 
the traditional pressure transient response. The temperature 
transient exhibits multiple trends in the infinite acting radial 
flow regime of the same drawdown (or buildup) event. An 
example of this is shown in Fig. 1 which shows a typical 
transient temperature measurement for a drawdown event 
in an oil well Fig. 1a, and that for a gas well, Fig. 1b. The 
trend in the oil well is due to an initial cooling effect due to 
expansion of the oil and a subsequent Joule–Thomson warm-
ing effect, while in the gas well, both the expansion and 
Joule–Thomson effects result in cooling of the gas; hence, 
a single trend is observed in the case of gas. Such distinct 
trends observed in the transient temperature data are not 
present in the pressure data.

Another important aspect of the transient thermal 
response is the slow propagation speed of the temperature 
disturbance, which is several orders of magnitude lower than 
that of pressure. Hence, the transient temperature measure-
ment can be better used to investigate the near-wellbore 
region to determine the permeability-thickness product KH 
of the damage region and the depth of damage. Figure 2 
illustrates this behavior of the transient temperature signal, 
where different slopes indicate different KH values (for the 
damage and virgin formation) and the transition time (i.e., 
time when the slope change occurs) is an indication of the 
depth of damage. This near wellbore analysis method has 
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been successfully applied to synthetic and real data (Mura-
dov et al. 2017; Ramazanov et al. 2010; Onur and Çinar 
2016; and Mao and Zeidouni 2017).

Theory and methods

The typical data processing methods used for transient well 
test data are either the wavelet-based ones or the window-
average smoothing ones. The sections below provide a brief 
theoretical insight into these methods. MATLAB™ tool-
boxes were used for the most part of this work, with the 
appropriate functions referenced.

Noise reduction using the wavelet threshold 
approach

Assume that the pure signal s of length n is linearly contami-
nated with noise d as part of the measurement process, so the 
actual measurement signal xn can be expressed as:

Applying the wavelet transform to Eq. (1) yields:

(1)xn = sn + dn

(2)X = Wx = Ws +Wd
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Fig. 1   Plot of numerical transient wellbore temperature a for a liquid producing well b for a gas producing well
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Fig. 2   Plot of numerical transient wellbore temperature showing 
slope change due to damage skin a for an oil producing well, the red 
solid line is the slope for the damage region, while the black solid line 
is the slope for the virgin formation, Mao and Zeidouni (2017) b for 

a gas producing well, the red dashed line is the slope for the damaged 
region, while the black solid line is the slope for the virgin formation, 
Dada et al. (2017)
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where W is the wavelet transform matrix. Assuming white 
noise or white Gaussian noise (WGN), after such wavelet 
decomposition of the measurement signal xn the energy of 
the white noise is mainly represented in the wavelet coef-
ficients Wd, while the energy of the real signal is mainly 
concentrated in some large wavelet coefficients Ws. In other 
words, the wavelet coefficients with large amplitude are 
mainly defined by the pure signal, while the coefficients with 
smaller amplitude are to a great extent the noise. Therefore, 
Donoho (1995) proposed that after wavelet transform, the 
threshold value is used to keep the coefficient of the signal 
and reduce most of the noise coefficients to zero, so that the 
estimated value of the signal is obtained:

where THR () is the function of wavelet threshold process-
ing, and V denotes the threshold. Finally, the de-noised sig-
nal is obtained by reconstruction from the updated wavelet 
coefficients above the threshold. This is the principle of the 
wavelet threshold noise reduction.

There are four kinds of threshold criteria selected by the 
noise reduction model for WGN in the wavelet toolbox of 
MATLAB (Donoho 1995; Sun 2005; and Kong 2014):

(1)	 Unbiased risk estimation criterion (Rigrsure) is an 
adaptive threshold selection method based on the unbi-
ased likelihood estimation principle. It calculates the 
corresponding risk value for each threshold and selects 
the least risk as its threshold. The algorithm is as fol-
lows:

	   Step 1 Take the absolute values of the wavelet coef-
ficient vectors used to estimate the threshold (of length 
n), order them from small to large, and then square each 
element to obtain the new vectors NV.

	   Step 2 Calculate the risk value of each element using 
Eq. (4), where k is the ordinal number of NV.

	   Step 3 Select the minimum value of Risk(k) and the 
corresponding K, then obtain the threshold value Thr 
as follows:

(2)	 Fixed threshold criterion (sgtwolog) takes � =
√
2 log n 

as its fixed threshold, where n is the length of the wave-
let signal.

(3)	 Heuristic threshold criterion (heursure) is a mixture of 
the unbiased risk estimation, and the fixed threshold 
criteria with the threshold algorithm are as follows:

	   Calculate A and B:

(3)Ŝ = THR(X,V)

(4)

Risk(k) =
n − 2k +

∑k

j=1
NV(j) + (n − k)NV(n − k)

n

(5)Thr =
√
NV(K)

where n is the length of the wavelet coefficient vector 
to be estimated. If A < B, the threshold is chosen as a 
fixed threshold criterion, whereas the smallest of the 
unbiased estimation criteria and fixed threshold criteria 
is taken as the threshold.

(4)	 Minimax criterion (minimaxi) is a method utilizing sta-
tistics. The minimax estimator is the minimum mean 
square error of the signal under the worst-case condi-
tion. The formula for calculating the threshold is pro-
vided in Eq. (8).

	   The above threshold is suitable for WGN with stand-
ard deviation of 1. Otherwise the threshold is Thr ⋅ � , 
where σ is the standard deviation of noise. It is gener-
ally believed that most of the wavelet coefficients on 
the minimum scale are caused by noise, so the standard 
deviation of noise σ is calculated by Eq. (9).

where Mx is the absolute median of wavelet coefficients 
on the minimum scale of noisy signals.

Data smoothing

Another commonly used data denoising methodology is 
based on data smoothing. Data smoothing is a low-pass filter 
for the data curve to remove high-frequency components and 
retain useful low-frequency signals. Multiple smoothing is 
used to filter the data after the previous smoothing.

The common methods of data smoothing include the 
moving (window) average method, the local regression 
smoothing method and the convolution smoothing method. 
They are realized separately in MATLAB by the functions 
named Moving, Lowess, Loess and Sgloy. The moving aver-
age method (Moving) sets a window in advance and takes 
the arithmetic average of all data points in the window as the 
smoothing value of that point. This method can suppress the 
signal jitter, especially the pulse noise. The weighted aver-
age method uses polynomials to fit the data in the moving 
window by the polynomial with a least squares deviation. 
It emphasizes the role of the center point. Local regression 

(6)A =

∑n

i=1
��xi��

2
− n

n

(7)B =

√
1

n

[
log n

log 2

]3

(8)Thr =

{
0, n ≤ 32

0.3926 + 0.1829
log n

log 2
, n > 32

(9)� =
Mx

0.6745



514	 Journal of Petroleum Exploration and Production Technology (2021) 11:509–530

1 3

smoothing (Lowess and Loess) uses weighted, linear, least 
squares. The convolution smoothing method (Sgloy) is used 
to fit the quadratic polynomial.

In the above methods, the degree of the selected poly-
nomial and the moving window width are two important 
parameters. The smaller the degree of the polynomial is, the 
better the smoothing effect is, but the outlier value will be 
retained; the higher degree of polynomial is, the better the 
effect of dealing with the outlier value is, but it will bring 
excessive fitting and have the result contain more noise. If 
the window width is too small, the denoising effect is insuf-
ficient, whereas if the window width is too large, the useful 
information can be smoothed out with the resulting signal 
incomplete.

Evaluation index to assess the noise reduction 
results

It is important to come up with some metrics to evaluate 
the success of a given denoising method. In this paper, the 
signal-to-noise ratio (SNR) and the smoothness are both 
selected to be in the evaluation index.

SNR is the ratio of the signal intensity to the noise inten-
sity. It is an effective index to measure the effect of noise 
reduction. Its expression is given by Eq.  (10), where B 
denotes the data before denoising and A represents the data 
after denoising. In general, the greater the SNR, the better 
the effect of noise reduction is.

Smoothness is the ratio of the sum of squared sequential 
differences in the denoised signal to such sum in the original 
signal as shown in Eq. (11):

where the original signal is represented by f (i) , and the 
smoothed signal is f̂ (i) , while the length of the signal is n. 
The smaller the smoothness, the smoother the signal after 
processing is.

Both the SNR and the smoothness are important to con-
sider when evaluating the PDG data noise reduction effect 
in a practical application. One reason is: it is not possible 
to remove all noise, and therefore the pursuit of high SNR 
alone can eventually lead to the lack of smoothness of the 
de-noised data, which is unphysical in the case of pressure 
or temperature transients.

The idea is for the noise reduction to achieve the reason-
ably good SNR and smoothness simultaneously. Therefore, 
in this paper a new comprehensive evaluation index of noise 

(10)SNR = 10 ∗ log10

� ∑
A2

∑
(B − A)2

�

(11)r =

∑n−1

i=1
[f̂ (i + 1) − f̂ (i)]2

∑n−1

i=1
[f (i + 1) − f (i)]2

reduction, Tsrm, is proposed to evaluate the noise reduction 
results:

The normalized smoothness and SNR are represented 
by SMnormalized and SNRnormalized, respectively. a and b are 
weights, which are determined by principal component 
analysis as explained below. This comprehensive evaluation 
index is inversely proportional to smoothness and directly 
proportional to the SNR, so the bigger the evaluation index 
Tsrm, the better the noise reduction effect is.

Principal component analysis

PCA reduces a space dimension by transforming multiple 
indexes or components into a few comprehensive indexes 
(i.e., principal components). Each principal component 
should contain the information of the original variable, and 
this information should not be repeated. In other words, the 
purpose of PCA is to transform the highly correlated vari-
ables in the original data into a few independent or unrelated 
variables and to use these few variables to reflect most of the 
information in the original data.

The principal component analysis is used here to deter-
mine the weights of the comprehensive evaluation index in 
Eq. (12). The workflow steps are as follows:

Step 1 The principal component values are arranged in 
rows into matrices and standardized.
Step 2 Find the correlation coefficient matrix or covari-
ance matrix C of the standardized data.
Step 3 Calculate characteristic roots from Equation 
|�I − C| = 0.
Step 4 Calculate contribution rates of principal compo-
nents Tj and cumulative variance contribution rates CTj 
based on the covariance matrix C and characteristic roots.
Step 5 The formulas are used for calculating principal 
component loads ρi, commonality Vi and variance con-
tribution CVi as shown below in Eqs. (13), (14) and (15), 
respectively:

(12)Tsrm =
a

SMnormalized

+ b ∗ SNRnormalized

(13)�i =
√
�iei, (i = 1, 2)

(14)Vi =
∑

j

�2
ij
, (i, j = 1, 2)

(15)CVj =
∑

i

�2
ij
, (i, j = 1, 2)
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Step 6 Determine the coefficients in linear combinations 
of different principal components using Eq. (16):

Step 7 The variance contribution rate of each principal 
component is calculated. The contribution rate of the var-
iance can be regarded as the weight of different principal 
components, so it is equal to the weighted average of the 
coefficients in the linear combination of each principal 
component.
Step 8 By normalizing the coefficients of each principal 
component in the synthesis model, the weights of two 
principal components in the comprehensive evaluation 
index of noise reduction, namely smoothness and SNR, 
are obtained.

Once these weights are found, the comprehensive evalu-
ation index of each denoising combination can now be cal-
culated to find the optimal denoising combination, as will 
be illustrated below.

Temperature transient analysis

The temperature transient change at the sandface is caused 
by several mechanisms that occur in the reservoir and near-
well region. These physical effects, as presented in thermal 
model Eq. (17) (Sui et al. 2008; Junior et al. 2012), are: heat 
conduction (fourth term on the RHS), heat convection (first 
term on the RHS), Joule–Thomson effect (second and third 
terms on the RHS) and the adiabatic fluid and rock expan-
sion (second and third term on the LHS, respectively). In 
Eq. (17) ρ is the fluid density, Cp is the specific, mass heat 
capacity of the fluid, ∅ is porosity, � is the thermal expansion 
coefficient, T is the temperature, P is the pressure, Cf is the 
mass heat capacity of the formation, K is the formation ther-
mal conductivity, v is velocity. The derivation assumptions 
and physical models used in TTA can be seen in, e.g., (Onur 
et al. 2016, 2017; Muradov et al. 2017; Junior et al. 2012).

where

�
�Cp

�
t
= �

∑
j

(�jSjCpj + (1 − �)�f Cpf ).
�
�Cp

�
=
∑
j

�jSjCpj.

(�)t =
∑
j

Sj�j.

(16)cij = �ij∕
√
�i, (i, j = 1, 2)

(17)(
�Cp

)
t

�T

�t
− �(�)tT

�P

�t
− �Cf

(
P + �rCpf T

)�P
�t

= −�CP� ⋅ ∇T + (�)Tv ⋅ ∇P − v ⋅ ∇P + KT∇
2T

KT = �
∑

j

(SjKj + (1 − �)Kf )

(�) =
∑
j

�j.

The interactions of these mechanisms result in interest-
ing trends in the transient temperature signal. For instance, 
the Joule–Thomson effect and the adiabatic expansion 
effect result in different temperature change ts in liquids: 
that is while the expansion effect results in cooling of the 
liquid, the Joule–Thomson results in its warming however 
these two effects are dominant at different time periods. 
Figure 1a shows a typical drawdown transient temperature 
signal for an oil producing well with the initial cooling 
effect due to expansion occurring at early time and the 
warming up due to Joule–Thomson effect at a later time.

Sandface temperature data during production and 
buildup periods may exhibit several semi-log straight 
lines: one at early-times reflecting the effects of adiabatic 
fluid expansion, while the others at the later times reflect-
ing the Joule–Thomson effect in the skin zone near the 
wellbore and later in the nonskin zone (Onur et al. 2017). 
Most of the commonly used TTA solutions interpret the 
change in sandface temperature with respect to time. For 
instance, the slope m (i.e., the log-time derivative) of tem-
perature (T) in the late-time (l) infinitely acting radial flow 
(IARF) at the liquid production, buildup conditions are 
proportional to:

where ∆q is the instantaneous rate change preceding the 
transient response, ε is the Joule–Thomson coefficient, μis 
the dynamic viscosity, k is the permeability, h is the reser-
voir thickness.

Compare Eq. (18) with the pressure build-up (PBU) 
slope solution:

So the ratio of the temperature and pressure slopes 
can be used to estimate the thermal fluid properties: the 

Joule–Thomson coefficient for the late-time slopes (or the 
adiabatic expansion coefficient for the early-time ones) as 
described in (Muradov et al. 2017; Onur 2016).

(18)
dT

d ln (t)
= mlTBU =

�Δq�

4�kh

(19)dP

d ln (t)
= mlPBU =

Δq�

4�kh

(20)
[

dT

d ln (t)
ΔQP

/
dP

d ln (t)
ΔQT

]

radial flow

= �
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Note that we keep the rate changes in the formula above 
because in general the slopes do not have to be from the 
same transient event.

Similarly, when the pressure and temperature slopes 
come from the same transient event, their ratio of slopes 
ε’ for a given time period is a function of the flowing fluid 
properties only. Hence, multiple transients should produce 
the same ε’ provided the produced fluid does not change.

Consequently, as a must, any data cleaning method to be 
employed should aim to produce the slope of the cleaned 
data as close to the pure one as possible. We use below 
this PTA and TTA principle to show the effectiveness of 
the new data processing methods applied in this paper.

Process and results of data denoising

The developed data denoising methods are applied to pres-
sure and temperature data measured in two intelligent, oil 
production wells described in Case 1 and Case 2. The wells 
are multi-zone completed with interval control valves and 
downhole sensors to measure pressure and temperature in 
each zone. Case 1 data were measured in the deepest layer of 
one well, while the measurement in Case 2 was taken across 
the top layer of another well. They also have multiphase 
flow meters to measure oil and water phases in the well. The 
pressure and temperature data were measured using fiber 
Bragg grating sensors with a resolution of about 0.02 °C for 
the temperature measurement, while the resolution for the 
pressure measurement is about 1.5 psi. The high resolution 
of the temperature sensor makes it possible to resolve the 
transient temperature changes in the wells.

Data preparation

PDG pressure data from the two cases are shown in Fig. 3. 
The horizontal axis shows the measurement serial number, 
and the vertical axis shows the value. The red lines are the 
original pressure data. The green curves represent the detail 
coefficients at level 1 after the original pressure data were 
decomposed by wavelet. It can be seen that the dominant 
noise type in the pressure data is the impulse noise because 
the characters of the histograms of the noise show disconti-
nuity and thus consist of irregular pulse or noise peak with 
short duration and large amplitude. Impulse noise leads to 
frequent fluctuation of measured data, and this affects the 
results of transient identification and data analysis. Data 
smoothing will be used to reduce the noise of pressure data 
in the next section.

The original temperature data from the corresponding 
wells are shown in Fig. 4. The wavelet transform can decom-
pose the original signal into approximate signals and detail 
signals. Each subsequent decomposition results in the higher 

level, namely the level 2 is based on the approximate signals 
of level 1.

The red curves are the original temperature data, and the 
green ones are the detail coefficients at level 1 and level 2. 
By analyzing the characters of the histograms, we can see 
that the noise amplitudes in both levels are normally distrib-
uted, which is indicative of WGN. So the wavelet threshold 
denoising method is selected to deal with the temperature 
data.

Data smoothing and parameter selection

Since the original pressure data in Fig. 3a are disturbed by 
impulse noise and fluctuates frequently, the minor transient 
events are difficult to recognize. So it is necessary to smooth 
the original pressure data to remove the noise. The selection 
of smoothing method and window width are the keys to effi-
cient data smoothing.

Selection of smoothing method and window width

Four different smoothing methods with different window 
widths are selected to smooth the original pressure data. The 
results are shown in Fig. 5. The values of smoothness and 
SNR are shown in Table 1.

We can see that:

(a)	 The denoised data are less smooth (i.e., the value of its 
smoothness is larger) when the window width is small 
(width = 5 measurement points), as shown in Fig. 5a 
and b. In particular, there are some unidentified false 
breakpoints in the smoothing results of Lowess, such 
as the smoothing data points at ln (t) = 9.11 and 9.16 in 
Fig. 5c. A breakpoint is the starting point of a distinct 
transient event, and the region between two adjacent 
breakpoints is a single transient event (Zhang 2016). 
These false breakpoints can cause failure of recognition 
of a transient.

(b)	 The smoothness of the denoised data is improved (i.e., 
the smoothness value is lower) when the window is 
larger (width = 10, or 15); however, the data appear to 
be excessively smoothed, as shown in Fig. 5d and e by 
the deviation between the original and smoothed sets. 
When the window width is small, the SNR is higher 
and the smoothness is relatively large; while when 
the window width is large, the smoothness is smaller 
and the SNR is lower. However, our desired method 
should meet the requirements of both sufficiently small 
smoothness and large SNR.

As explained above, it is difficult to select smooth-
ing methods directly from the values of smoothness and 
SNR. Therefore, a comprehensive objective function was 
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Fig. 3   PDG pressure data of 
Case 1 and 2. a Original pres-
sure data and detail coefficients 
at level 1of Case 1; b original 
pressure data and detail coef-
ficients at level 1 of Case 2



518	 Journal of Petroleum Exploration and Production Technology (2021) 11:509–530

1 3

Fig. 4   PDG temperature data of Cases 1 and 2. a Original temperature data and detail coefficients at level 1 and level 2 of Case 1; b original 
temperature data and detail coefficients at level 1 and level 2 of Case 2
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constructed as a comprehensive evaluation index, in which 
the smoothness and SNR are taken as independent variables 
and the optimal combination is determined by calculating 
the maximum value of the objective function. The weights 
of the two independent variables in the objective function 
are determined by PCA.

Determination of the objective function weights by PCA

In order to make the analysis results more general, we 
choose four smoothing methods and carry out 12 groups of 

smoothing processes using window widths of 5, 10 and 15, 
respectively.

Step 1 calculate the smoothness and SNR of the 12 
smoothing combinations, as shown in Table 1 and Fig. 6.
Figure 6a shows that the distribution of scattered points 
of original data has a strong linear correlation trend 
(R2 = 0.8437), which is table for PCA. At the same time, 
the general trend of data points after standardization has 
not changed, and the correlation coefficient of the two 
indicators is exactly the same with that before stand-
ardization, as shown in Fig. 6b. The regression model 

Fig. 5   Results of different smoothing methods. a Moving win-
dow method with window width = 5 measurement points. b Lowess 
method with window width = 5. c Local magnification of black box 

in Fig. 4b which shows the false breakpoints in the blue boxes. d SG 
method and window width = 10. e Moving window method with win-
dow width = 15
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intercept of standardized data is approximately 0, and 
the slope is equal to the correlation coefficient.
Step 2 Calculate the correlation coefficient matrix or 
covariance matrix C for standardized data. These two 
matrixes are equal.

(21)C =

[
1 0.91855

0.91855 1

]

Step 3 The characteristic roots are calculated from the 
formula |�I − C| = 0 . The results are λ1 = 1.91855, 
λ2 = 0.08145.
Step 4 Calculate the contribution rate Tj of the principal 
component and the cumulative variance contribution CTj 
based on the covariance matrix C and the characteristic 
roots, as shown in Table 1. It shows the percentage and 
cumulative percentage of the characteristic roots sepa-
rately.

Table 1   Results of smoothing 
and PCA

Smoothing method Smoothness SNR Normalized 
smoothness

Normalized SNR Tsrm

moving_5 0.2717 48.2801  − 0.2872 0.0500 7.2694
lowess_5 0.4349 52.8938 0.8200 1.1626 4.5601
sgloy_5 0.5828 53.7788 1.8232 1.3760 3.4149
loess_5 0.5899 54.6713 1.8715 1.5912 3.3749
moving_10 0.1792 45.4733  − 0.9146  − 0.6269 10.999
lowess_10 0.2148 42.5770  − 0.6734  − 1.3253 9.1816
sgloy_10 0.3300 48.9562 0.1084 0.2130 5.9926
loess_10 0.3624 50.5601 0.3281 0.5998 5.4618
moving_15 0.1247 42.9253  − 1.2844  − 1.2413 15.7890
lowess_15 0.1695 45.7792  − 0.9802  − 0.5531 11.6245
sgloy_15 0.2267 42.4947  − 0.5921  − 1.3452 8.6980
loess_15 0.2817 48.4846  − 0.2191 0.0993 7.0120
Mean value 0.3140 48.0729 0 0 –
Variance 0.0217 17.1961 1 1 –
Standard deviation 0.1474 4.14682 1 1 –
Characteristic roots 1.9186 0.08145 – – –
Tj 95.9275 4.0725 – – –
CTj 95.9275 100 – – –
ρ1 0.9794 0.9794 – – –
ρ2 0.2018  − 0.2018 – – –
Vi 1 1 – – –
CVi 1.9185 0.0815 – – –
Weight 0.5212 0.4788 – – –

y = 25.838x + 39.959
R² = 0.8437
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Fig. 6   Scattered plots of pressure data. a Scattered plots of original data. b Scattered plots of normalized data
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Step 5 Calculate the principal component load ρi, com-
mon factor variance Vi and variance contribution CVi by 
using Eq. (13), (14) and (15). The results are shown in 
Table 1.
Step 6 Determine the coefficients in different principal 
component linear combinations. By dividing the load ρi 
in Table 1 by extraction of the corresponding characteris-
tic root, the coefficients in the linear combination of two 
principal components F1 and F2 can be obtained:

Step 7 Calculate the variance contribution rate of each 
principal component. The variance contribution rate can 
be regarded as the weight of different principal compo-
nents, so it is equal to the weighted average of the coef-
ficients in the linear combination of the principal compo-
nents. Then construct the synthetic model:

Step 8 The coefficients of each principal component in the 
synthetic model are normalized. And the weights in the 
comprehensive evaluation index Tsrm for noise reduction 
are obtained at last. The weight of smoothness a is equal 
to 0. 5212, and the weight of SNR b is equal to 0.4788.
Step 9 The calculated comprehensive evaluation indexes 
Tsrm of various smoothing methods are shown in the first 
column on the right in Table 1.

The weights in the comprehensive evaluation index of 
noise reduction are provided in Table 1, and it can be seen 
that the moving window smoothing method excels for any 
given window width, so the moving window smoothing 
method is selected to deal with the pressure data in this 
paper.

Piecewise, multiple smoothing

The pressure datasets analyzed in this paper describe steady-
state periods as well as several buildups and drawdowns. 
In this context, the smoothing should ensure the transient 
response is preserved. This is a problem when the width of 
the moving window is too large so that the transient process 
is easy to be ‘over-smoothed’ and some useful information 
lost.

That is why piecewise multiple smoothing is used to 
process these pressure data. The workflow is as follows: 
Firstly, the moving method with width = 5 is used for the 
first smoothing. The transient identification and separation 
are carried out on the basis of thus firstly smoothed data, and 

(22)F1 = 0.7071x1 + 0.7071x2

(23)F2 = 0.7071x1 − 0.7071x2

(24)F = 0.7071x1 + 0.6495x2

the pressure transients are identified and extracted. Then the 
remaining, steady-state data are smoothed for the second 
time and the third time using the window width = 15 and 
30, respectively. This method not only protects the transient 
response and prevents the loss of useful information from 
it, but is also effective in removing the noise data during the 
steady pressure periods. The results for smoothness and SNR 
are shown in Fig. 7.

It can be seen from Fig. 7 that the smoothness of the pro-
cessed data decreases and the SNR increases slightly after 
the second smoothing (width = 15). However, after the third 
smoothing (width = 30), the smoothness decreases slightly, 
while the SNR decreases. Therefore, the reasonable way to 
process this pressure data is to use the moving smoothing 
method with twice-piecewise smoothing.

In addition, aiming at the problem that the moving 
smoothing method will cause the breakpoint forward, this 
paper improves the preferred smoothing method, that is, first 
find the breakpoints through transient identification; then 
divide the transient process according to the breakpoints; 
and smooth the data in each transient separately.

Wavelet threshold denoising and parameter 
optimization

From the previous data analysis, we can see that the tem-
perature data in Fig. 4 are mixed with WGN, and so wavelet 
threshold denoising is table as efficient in removing WGN. 
Three important parameters of wavelet threshold denois-
ing, namely wavelet function, threshold and decomposition 
level, are studied below and applied to the intelligent well 
temperature dataset.

Wavelet function

The denoising level of wavelet threshold methods is strongly 
dependent on the selected wavelet function, and a better 
denoising effect can be obtained by using the wavelet func-
tion with the shape resembling that of the transient response. 
According to this principle, the wavelet coefficients in Fig. 4 
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are compared with the waveforms of wavelet functions. 
Eventually, Db3 wavelet was selected as the wavelet func-
tion for temperature data processing, illustrated in Fig. 8.

Selection of the decomposition level

The decomposition level is also important in the success 
of noise reduction. Generally, too many decomposition lay-
ers will lead to serious loss of signal information, reduction 
of SNR and increase of computational complexity. On the 
contrary, if the number of decomposition layers is too small, 
the effect of noise reduction is limited and so is the improve-
ment of SNR.

The temperature data are processed by wavelet trans-
form to get the detailed signal di and the approximate 
signal ai of each level, as shown in Fig. 9 (i = 1, 2…, 
8). It can be seen from Fig. 9 that the noise data in the 
detailed signal of level 1–3 decrease with the increase of 
the decomposition scale. The noise in the detailed signal 
is too small to distinguish until it is decomposed to level 
4. At the same time, the approximate signal of level 4 is 
consistent with the original signal. However, the approxi-
mate signal curve of level 5 and above has been distorted 
compared with the original data curve. Therefore, the 
optimal number of decomposition level for our tempera-
ture dataset is 4.

Fig. 8   Waveform of Db3 wavelet function

Fig. 9   Approximate and detailed signal of wavelet transform applied to the temperature data. a Signals and approximations; b signals and details
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Threshold

The methods of minimax and unbiased risk estimation 
criterion are conservative. When distribution of the noise 
in the high-frequency band signal is low, the two thresh-
old estimation methods work better and can extract the 
weak signal. The fixed threshold and Heuristic threshold 
criterion methods are more effective at denoising, but can 
also remove the useful high-frequency signals mistaken 
for noise.

Selection of the optimal combination of noise reduction 
methods

The wavelet analysis tools from the MATLAB platform were 
applied to reduce the noise in the temperature dataset. As 
explained above, the db3 wavelet function and the decompo-
sition level 4 were selected. The four-threshold criteria are 
adopted and processed by the soft threshold method. The 
results are shown in Fig. 10.

The results of different threshold methods have differ-
ent smoothness, as shown in Fig. 10. The results of fixed 

threshold denoising have the best smoothness and the best 
white noise removal, as shown in Fig. 10a, but its SNR is the 
lowest (see Table 2). By contrast, the denoised data obtained 
by rigorous sure threshold have the worst smoothness but the 
highest SNR, as shown in Fig. 10d and Table 2. Therefore, it 
is difficult to determine directly which denoising combina-
tion is most table for the temperature data by the smoothness 
and SNR in Table 2.

So we use PCA to analyze the four sets of noise reduc-
tion method results and determine the weights in the com-
prehensive evaluation index. Then, the denoising combina-
tion is selected according to the value of the comprehensive 
evaluation index. The parameter values of PCA and the final 
weights are shown in Table 2. The fixed threshold method 
has the highest value of comprehensive evaluation index. 
Therefore, the combination of db3 wavelet function, 4-layer 
wavelet decomposition and the fixed threshold method is the 
most table combination for the temperature data set. These 
conclusions will be further confirmed in the next section.

(a) Fixed-soft; (b) Heurisitc sure-soft

(c) Minimax-soft (d) Rigorous sure-soft
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Results and analysis

Case 1

The data for this case are the transient annulus pressure and 
temperature measurement from the third zone in a three zone 
intelligent well, where the third zone is the deepest and the 
first zone is the shallowest. Movement of the surface choke 
or any of the zonal control valves resulted in transient events, 
and any of these events can be selected for the analysis.

The processed temperature and pressure data, as shown 
in Fig. 11, can be used for TTA and PTA. According to the 
requirements of data analysis, three pressure transients and 
corresponding temperature data, highlighted in the three 

black rectangular boxes I, II, III in Fig. 11, are selected from 
the data set to carry out TTA with the input from pressure. 
Transient event I is due to the closing of the surface choke 
which results in a pressure buildup in all the open zones, 
zone 3 inclusive, while event II is due to the closing of the 
ICV (interval control valve) of the third zone resulting in a 
pressure buildup in that zone. Finally, event III is due to the 
opening of the ICV-1 which leads to a pressure drawdown 
in zone one, and a corresponding pressure buildup in zone 3. 
Pressure and temperature data in the transients are extracted 
and analyzed separately, as shown in Fig. 12, 13 and 14.

The slope ratio of the temperature and pressure curves 
in each transient is calculated following the same logic 
as described in Sect.  2.5 above or for calculating the 

Table 2   Results of wavelet 
denoising and PCA

Smoothing method Smoothness SNR Normalized 
smoothness

Normalized SNR Tsrm

Fixed 0.0346 62.8570  − 1.0592  − 1.2851 5.2524
Heuristic sure 0.0640 64.2196  − 0.4839  − 0.2045 2.8978
Minimax 0.0846 64.4412  − 0.0809  − 0.0288 2.2229
Rigorous sure 0.1717 66.3923 1.6240 1.5185 1.1621
Mean value 0.0887 64.4775 0 0 –
Variance 0.0026 1.5901 1 1 –
Standard deviation 0.0511 1.2610 1 1 –
Characteristic roots 1.9821 0.0179 – – –
Tj 99.1065 0.8936 – – –
CTj 99.1065 100 – – –
ρ1 0.9955 0.9955 – – –
ρ2 0.0945 -0.0945 – – –
Vi 1 1 – – –
CVi 1.9821 0.0179 – – –
Weight 0.5045 0.4955 – – –

Fig. 11   Denoised pressure and temperature data of Case 1
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Fig. 12   TTA of transient I: ε′ = dT/dP = 0.8/30 = 0.0267 C/psi

Fig. 13   TTA of transient II:ε′ = dT/dP = 0.48/20 = 0.024 C/psi

Fig. 14   TTA of transient III: ε′ = dT/dP = 0.13/5 = 0.026 C/psi
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Joule–Thomson coefficient as described in (Muradov 2017; 
Onur 2016). The results show that the three values are close. 
This is physical because the slopes ratio coefficient of the 
fluid for the given transient period remains the same during 
the period where the fluid composition does not change. The 
fact that the selected denoising method showed this consist-
ency confirms that it is table for the PDG data of this kind 
and for the subsequent TTA.

Case 2

The PDG data of Case 2 are from Zone 1 of an intelligent 
well with three production layers. The selected pressure 

buildup transients of Zone 1 are caused by the gradually 
opening of ICV2, while the ICV1 remained open completely 
during this period.

The same methods, illustrated above, are used to process 
the data. The results are as shown in Fig. 15. The annu-
lus pressure reveals periods when the ICVs are cycled (i.e., 
gradually opened) regularly during production. So the data 
measured during such cycling can be used for PTA and TTA. 
Five transients are extracted from this data set, and the ratio 
of temperature and pressure slopes is calculated, as shown 
in Figs. 16, 17, 18, 19, and 20.

The results show that the values are approximately equal, 
which means the slopes ratio coefficient ε’ is identified as 

Fig. 15   Denoised pressure and temperature data of Case 2

Fig. 16   TTA of transient I: ε′ = dT/dP = 0.011/0.02 = 0.55 C/bar
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constant during this period, which is physical because the 
fluid properties in this well did not change during the test-
ing. This again confirms the effectiveness of the processing 
methods proposed in this paper.

Example use of denoised data in transient 
analysis

We have deliberately omitted in-depth use of pressure and/
or temperature transient analysis methods in this paper. The 
beauty of the verification method we have chosen in this 
paper, i.e., the one based on the consistency of the estimated 
pressure/temperature slopes ratio coefficient ε′ (see Eq. 20) 
using both the correctly denoised pressure and the correctly 

denoised temperature signals, is that it completely rests on 
the fundamental temperature solution (Eq. 20) and is inde-
pendent of any further interpretation models and assump-
tions. The ε′ consistency (in multiple transient events in a 
given well) observed in this paper confirms the stability of 
the developed signal denoising methodology which was the 
very objective of this paper.

As an illustration, to put this into context and briefly show 
how this may further aid a potential pressure and tempera-
ture transient analysis (PTTA), let us consider Case 2 a bit 
further. The PTTA principles and assumptions applicable 
to the wells used in this paper will take another publication 
to properly describe. Fortunately, the ‘Case 2′ well PTTA 
on the very dataset used in this paper was already described 
and applied in (Muradov et al. 2017). We refer the readers to 

Fig. 17   TTA of transient II: ε′ = dT/dP = 0.011/0.02 = 0.55 C/bar

Fig. 18   TTA of transient III: ε′ = dT/dP = 0.023/0.04 = 0.575 C/bar
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that publication for more details. In short, our paper’s results 
translate to the (Muradov et al. 2017) work as follows:

Muradov et al. (2017) have described the field, the well 
completion, the well control and testing sequence, as well as 
the temperature transient physics and solutions table. They 
have also compared the traditional PTA results (as obtained 
by the field operator in SAPHIR™) with the ones estimated 
using late-time IARF TTA solution. The data were not prop-
erly denoised in that study.

For the dataset analyzed in both our and (Muradov et al. 
2017) papers, referred to as ‘Case 2 Zone 1′ and ‘Well A 
Zone 1′ dataset, respectively, the traditional PTA analysis 
estimated the zone’s KH (i.e., the permeability thickness 
product) to be ~ 71,000 mD ft (see Table 1 in Muradov 
et al. (2017)). This KH value has been found by the field 

operator from multiple PBUs and is considered as a reliable 
reference point. The ‘noisy’ TTA model estimated this KH 
at ~ 75,000 mD ft (see Table 2 in Muradov et al. (2017)).

The coefficient ε′ estimated from the raw, noisy data 
(i.e., directly from the ones plotted in Fig. 3b top and 
4b top) is around 0.6 °C/bar for the time periods chosen 
in this work. It is hard to estimate it any better due to 
noise. The same coefficient estimated from the denoised 
data in this work (see the titles to Figs. 17,18, 19 and 
20) is much clearer and is on average 0.566 °C/bar. This 
means the TTA-estimated, ‘noisy’ KH product in (Mura-
dov et al. 2017) should be corrected by 0.566/0.600 = 0.94 
to eliminate the effect of the pressure and temperature 
measurements’ noise. Correcting the ‘noisy’ KH as 
0.94 × 75,000 mD ft gives 70,500 mD ft, bringing this KH 

Fig.19   TTA of transient IV: ε′ = dT/dP = 0.01/0.018 = 0.556 C/bar

Fig.20   TTA of transient V: ε′ = dT/dP = 0.024/0.04 = 0.6 C/bar
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estimate closer to the reference, PTA-estimated value of 
71,000 mD ft.

This increases confidence in the TTA results, proving 
that the key parameters like KH can be well estimated 
using the temperature transient data alone (e.g., where the 
pressure signal is not measured, is unreliable or is masked 
by wellbore storage effects) provided the data have been 
processed correctly, preferably following the denoising 
approach developed in this paper.

We hope this example underlines the value of the uni-
versal, user-independent denoising framework developed 
for and tested on downhole P and T transient data in this 
paper.

Conclusion

Temperature transient analysis in wells has been paid much 
attention during the past two decades. Tens of brand new 
TTA models, solutions and applications for very diverse 
well production and fluid conditions have been published 
by many key, transient analysis champions worldwide: 
from Stanford to Heriot-Watt, from Chevron to CNOOC.

It has been widely accepted that since the temperature 
changes used in TTA are very small (e.g., for oil well they 
are typically on the scale of 0.1 °C), TTA is only possible 
when high-precision temperature sensors are installed down-
hole. Such sensors themselves have the typical resolution 
of around 0.02 °C. Given that this useful signal value is not 
very different from the sensor resolution, it is very important 
to apply the right data cleansing and denoising approach to 
the temperature data to turn the data ‘cloud’ into a reliable, 
‘analyzable’ series. It is tempting to blindly use the same 
data denoising algorithms for temperature as for pressure. 
This paper is the first to rigorously and systematically check 
and establish which particular methods would be applicable 
to pressure and which ones to temperature, how to select 
from them, how to tune the denoising algorithm based on 
the data alone (e.g., without arbitrarily set thresholds) and 
how to make sure the selected approach retains the physics 
expected by the PTTA.

First in this paper, the denoising method was chosen 
according to the characteristics of detail signals of the 
wavelet transform. For instance, wavelet threshold denois-
ing methods are used to remove white noise and WGN, 
while data smoothing is table for removing impulse noise. 
We have shown that the pressure data are dominated by 
the impulse noise, while the temperature data had mostly 
white noise in it and have proposed the optimal demising 
algorithms for each.

Next, we introduced the new comprehensive evalua-
tion index effective to select optimal combination of noise 
reduction, so that noise and useful signal can be separated 

quickly and accurately. The SNR and smoothness were 
taken as the evaluation indexes of the noise reduction 
results, and the weights of the two indexes are determined 
by PCA, which ensures the noise reduction results meet 
the requirements of data processing and data analysis at 
the same time. The PCA weights are independent of the 
user input and are determined by the data alone.

Finally, the improved processing method was applied 
to the datasets from two intelligent, oil production wells. 
This showed TTA analysis consistency for multiple tran-
sients confirming that the improved processing methods 
are effective. We have also illustrated how the denoised 
TTA-estimated KH product is more accurate compared to 
the ‘noisy’ one estimated in a previous publication.

The denoising methodology developed and verified in this 
paper is recommended for in-well PDG data to improve the 
accuracy and reliability of the data in TTA and PTA.
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