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Abstract
In this study, the impact of VG69 organophilic clay on the rheological properties of gasoil-based drilling muds (invert emul-
sions) was investigated. The flow curves of gasoil-based drilling muds as a function of the dose of VG69 organophilic clay 
were analyzed by the Casson model. The addition of VG69 organophilic clay with a quantity range between 0 and 5 g in 
gasoil-based drilling muds induces an increase in the yield stress and the viscosity at an infinite shear rate of drilling muds. 
It is also proven that the addition of VG69 organophilic clay leads to an increase in the viscoelastic and thixotropic properties 
of the drilling muds. The study of the stability of gasoil-based drilling muds by centrifugation showed that for a quantity of 
VG69 organophilic clay lower than 3 g, the stability of the drilling muds increases and for a quantity of VG69 organophilic 
clay higher than 3 g, their stability decreases. The results obtained showed that the addition of 3 g of VG69 organophilic 
clay to the gasoil-based drilling mud increased the yield stress by 230%, the viscosity at an infinite shear rate by 3.4% and 
it improved the mud stability by 70%.

Keywords  Gasoil-based drilling muds · VG69 organophilic clay · Mud stability · rheological properties · Casson model

Introduction

Drilling muds are used in particular for petroleum drilling 
and natural gas drilling, but also for simpler drilling, for 
example intended to produce drinking water. Drilling muds 
perform several functions, such as cleaning the well, keeping 
the cuttings in suspension, cooling and lubricating the tool 
and obtaining information on the nature of the formation 
drilled by raising the cuttings from the bottom to the surface 
(Agin et al. 2019; Ibrahim et al. 2017; Medhi et al. 2020; 
Salehnezhad et al. 2019; Stuckman et al. 2019). Drilling 
muds are classified into two main categories: water-based 
muds and oil-based muds (Coussot et al. 2004; Gbadamosi 
et al. 2019). Today the drilling of high pressure and high 
temperature is generally used in petroleum and natural gas 

industry (Ali et al. 2020). In order to minimize the cost of 
drilling and extend the useful life of drilling tools, drilling 
fluids and their additives are used (Aftab et al. 2017). In 
petroleum industry, the oil-based drilling muds are often 
preferred to water-based drilling muds in order to avoid 
interactions between drilling muds and rocks, especially for 
drilling under extreme temperature and pressure conditions 
or in rocks with low permeability and low porosity (Akkal 
et al. 2013). According to Li et al. (2016) oil-based drilling 
muds offer hole stability, a very fine filter cake, excellent 
lubricity and less risk of pipe blockage. The continuous oily 
phase is usually gasoil which is beneficial from the point of 
view of the protection of the producing layers, and it is also 
characterized by plasticity, thixotropy and clogging power. 
The major problem in oil-based drilling muds is their chemi-
cal and rheological instability, which is why many additives 
have been added to this type of muds to improve their stabil-
ity. The rheology modifier for gasoil-based drilling muds is 
normally controlled by organophilic clay (Ali et al. 2020). 
The addition of organophilic clay offers to oil-based drill-
ing muds a high thermal stability, an ability to swell in an 
organic medium (gasoil) and a desired rheological properties 
such as viscosity, high shear thinning behavior, yield stress 
and thixotropy (Akkal et al. 2013; Msadok et al. 2020). 
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Recently Msadok et al. (2020) used the Tunisian clay modi-
fied in order to improve the rheological properties of diesel 
oil drilling muds. It has been shown that the increase in the 
percentage of clay modified in diesel drilling muds has led 
to an improvement in their yield stresses. Mohamed et al. 
(2018) used an organoclay as a stabilizer for water-in-oil 
emulsions under high temperature and salinity conditions. It 
has been proven that the stability of the emulsion increases 
with increasing organoclay concentration. A new formu-
lation of oil-based drilling muds at high density has been 
developed by Jiang et al. (2016). It has been demonstrated 
that the increase in organoclay resulted in an improvement 
in the stability of invert emulsion oil–water and an increase 
in the yield stress and viscosity of invert emulsion. A new 
method was presented by Huang et al. (2016) to improve the 
rheological properties of oil-based drilling muds by using 
a hydrogen bonding that replace organoclay to enhance the 
interactions of water droplets through hydrogen bonding. 
The results showed that the increase in hydrogen bond-
ing concentration in oil-based drilling muds resulted in 
increased viscosity and thixotropic behavior. Likewise, 
the authors demonstrated that when hydrogen bonding is 
added to the oil-based drilling muds, their stability will be 
improved. Hermoso et al. (2015) proved that for low organ-
oclay concentration added in oil-drilling mud, the yield 
stress varies linearly with organoclay concentration and for 
a higher concentration of organoclay, the yield stress varies 
according to a power law. Geng et al. (2019) studied the 
influence of three different organoclay such as the organo-
sepiolite, organo-hectorite and organo-montmorillonite on 
rheological properties and microstructure of oil-drilling 
muds. It has been demonstrated that the organo-hectorite 
is more effective to improve the rheological properties of 
invert emulsion at high temperature than organo-sepiolite 
and organo-montmorillonite. In order to improve the rheo-
logical properties of water-based drilling muds, Ismail et al. 
(2016) added the carbon nanotube, nanoparticles and nano-
silica in water-based drilling muds. It has been shown that 
the addition of the nanosilica in water-based drilling muds 
leads to an amelioration of their plastic viscosity and their 
yield stress. Likewise, the authors demonstrated that the 
incorporation of the small concentration of carbon nanotube 
and nanosilica in water-based drilling muds improve their 
rheological properties (plastic viscosity and yield point). 
Zhou et al. (2016) modified montmorillonites by cationic 
and anionic surfactants in oil-based drilling fluids and stud-
ied thixotropic behavior at room temperature and at higher 
temperatures (200–220 °C). They proved that cationic and 
anionic organomontmorillonites have a better thixotropy 
than cationic organomontmorillonites in different oil–water 
ratio oil-based drilling fluids. Aftab et al. (2020) studied the 
effect of tween 80/ZnO-Nanoparticles on performances of 
water-based drilling fluids. It has been clearly demonstrated 

that the addition of 0.7 g of tween 80/ZnO-Nanoparticles in 
water-based drilling fluids improve their plastic viscosity by 
12% and their yield point by 71%. They also showed that the 
addition of 0.7 g of T80ZnO in water-based drilling fluids 
minimized their filtrate to 17 and 30%.

Although many researchers have investigated the rheo-
logical behavior of oil-based drilling mud, the results of this 
article are quite different since we are proposing a new for-
mulation of gasoil-based drilling mud. The main objective of 
this work is to formulate a gasoil-based drilling mud stable 
and more efficient with less composition (economical) based 
on the rheological study.

Materials and experimental methods

Gasoil and surfactants

The gasoil used in this study was obtained by the company 
Naftal. Table 1 shows the physical properties of this gasoil.

The infrared spectroscopic measurement of gasoil was 
obtained using a PerkinElmer Spectrum Two FT-IR spec-
trophotometer at room temperature. The spectrum was col-
lected over the spectral range of 4000–400 cm−1. The IR 
spectrum of gasoil is shown in Fig. 1. The wavenumbers 
at 2951.01, 2918.12 and 2849.80 cm−1 are attributed to the 
stretching vibrations of C=O and CH. The wavenumbers at 

Table 1   Physical properties of gasoil

Density at 15 °C 0.828 g/cm3

Dynamic viscosity at 20 °C 5.6 mPa s
Surface tension at 20 °C 30.5 mN/m
Flash point 88 °C
Pour point − 14 °C
Initial boiling point 152 °C
Final boiling point 320 °C
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Fig. 1   FTIR spectrum of gasoil
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1457.28 and 1375.55 cm−1 correspond to the symmetrical 
angular deformation in the plane of CH2 and the asymmetri-
cal angular deformation in the plane of CH3. The wavenum-
bers at 807.57, 721.63 and 551.44 cm−1 are attributed to the 
stretching vibrations of the carbonyl compounds correspond-
ing to the side chain esters (Ruschel et al. 2015; Bharath 
et al. 2020).

Versacoat is a non-ionic surfactant that serves as an emul-
sifier and Versawet is a cationic surfactant that serves as a 
wetting agent. These two surfactants have an important role 
in the formulation of gasoil-based drilling muds whose first 
function is to lower the interfacial tension between water and 
gasoil and the second function is to stabilize the gasoil-based 
drilling muds. The physical properties of surfactants used 
are shown in Tables 2 and 3.

Organophilic clay

The organophilic clay used in this study is VG69 organo-
philic clay (amine-treated bentonite), it is a viscosifier and 
gelling agent used in oil-based drilling muds to increase 
carrying capacity and suspension properties, providing sup-
port for weight materials and improved cuttings removal, 
VG69 also aids in filter-cake formation and filtration control. 
The main components of this organophilic clay are: SiO2 
(57.787%), Al2O3 (7.153%), Fe2O3 (8.768%), CaO (5.973%) 
and MgO (0.322%). The density of VG69 organophilic clay 
is 1.69 g/cm3. The VG69 organophilic clay is supplied by 
Bental Company.

The X-ray diffraction analysis of VG69 organophilic clay 
was performed using the Miniflex 300/600 diffractometer 
with Cu-Ka radiation. The X-ray diffractogram of VG69 
organophilic clay (Fig. 2) indicates that our VG69 is mainly 
composed of montmorillonite, with some impurities that 
consist of kaolinite, quartz and calcite.

The IR spectrum of the VG69 organophilic clay is shown 
in Fig. 3. The wavenumber at 3620.20 cm−1 corresponds 
to stretching vibrations of hydroxyl groups attached to the 
octahedral layer (Khenifi et al. 2007). The wavenumbers at 
2917.49 and 2846.22 cm−1 are attributed to the asymmet-
ric/symmetric stretching of C=H (Kherroub et al. 2014). 
The wavenumbers located at 1638.23 and 1465.88 cm−1 are 
attributed to stretching vibrations of the OH group of the 
water content (Cherifi-Naci et al. 2016). The wavenumbers 
at 1112.72, 1003.75 and 914.96 cm−1 are attributed to the 
stretching vibrations of the Si–O link (Kherroub et al. 2014). 
The sharing of the OH group of atoms Fe and Al in the octa-
hedral position can move the Al–OH vibrations to lower fre-
quencies around 882.84, 795.72 and 722.30 cm−1. The wave-
number at 619.69 cm−1 corresponds to vibrations of Mg-O 
and Mg-OH. The wavenumber at 512.55 cm−1 is attributed 
to bending vibrations of the Si–O–Al and Si–O–Mg bonds.

Samples preparation of muds

There is not one standard formulation of muds, but many 
different formulations. Indeed, the latter will often be a func-
tion of the type of formations traversed during drilling, but 

Table 2   Physical properties of Versacoat

Density at 20 °C 0.91 g/cm3

Flash point 27.8 °C
Pour point − 29.1 °C
Critical micelle concentration (CMC) 7.79.10–5 M
Surface tension at 20 °C 35.9 mN/m

Table 3   Physical properties of Versawet

Density at 20 °C 0.95 g/cm3

Flash point 91.7 °C
Pour point 5.9 °C
Critical micelle concentration (CMC) 2.97.10–3 M
Surface tension at 20 °C 42.9 mN/m
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Fig. 2   X-ray diffraction of VG69 organophilic clay
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also of the depth of this one, the type of drilling, cost and 
environmental constraints. The formulation of these fluids 
is, therefore, a complicated exercise. In this study, we pro-
pose the formulation described in Table 4, these muds are 
prepared by successively adding the products under strong 
agitation (600 rpm) carried out by a magnetic stirrer for 2 h.

Estimation of the stability of drilling muds 
by centrifugation

Centrifugation is carried out using the Hettich Ultracentri-
fuge on different samples, in order to determine the stabil-
ity of the drilling muds. The centrifugation parameters are: 
the speed of 600 rpm, the duration of 10 min and the tem-
perature of 20 °C. We have measured the volume of water 
discharged. The stability of each sample was determined by 
Eq. 1 (Abdurahman et al. 2012).

Rheological measurements

The rheological measurements were performed by using a 
torque controlled rheometer (Discovery Hybrid Rheometer 
DHR2 from TA instrument), equipped with a cone-plane 
geometry (diameter: 60 mm; angle: 2°; gap: 54 μm). It has a 
Peltier temperature control system that allows having a very 
quick response to any change in temperature range to − 40 
at 200 °C. In order to prevent changes in composition during 
measurements due to water evaporation, a solvent trap was 
placed around the measuring device.

The hysteresis loop test consisted of three stages:

•	 The shear rate was linearly increased from 0.001 s−1 to 
the maximum shear rate of 200 s−1 in 300 s;

•	 The sample was sheared at the maximum shear rate of 
200 s−1 for 120 s;

•	 The shear rate was linearly decreased for a maximum of 
200–0.001 s−1 in 300 s.

(1)

Drillingmuds stability =

(

1 −
Water separated

Water content

)

× 100

The oscillatory measurements were performed at 20 °C 
in the linear viscoelastic region, and the stress was increased 
from 0.001 to 20 Pa at a fixed frequency of 1 Hz in stress 
sweep experiments.

Results and discussion

Effect of VG69 organophilic clay on the stability 
of drilling muds

Figure 4 shows the effect of VG69 organophilic clay concen-
tration on the stability of drilling muds, we observe that for 
doses of VG69 organophilic clay lower than a critical dose, 
an increase in the stability of drilling muds, followed by a 
decrease in the stability of drilling muds from the critical 
dose of VG69 organophilic clay. The increase in the stabil-
ity of the drilling muds is due to increasing the formation 
of a three-dimensional network of flocculated particles in 
the external phase around the droplets when the quantity of 
particles is sufficient (Jeon and Hong 2014; Cai et al. 2019). 
The decrease in the stability of the drilling muds for concen-
trations greater than 3 g is probably due to the adsorption of 
clay particles caused by a strong repulsion between the par-
ticles and the gasoil-water interface (Dickinson 2010; Wang 
et al. 2020). The decrease in the stability may also be linked 

Table 4   Formulation of drilling 
muds

Product Quantity Time of agi-
tation (h)

Speed of 
agitation 
(rpm)

Gasoil (ml) 80 80 80 80 80 80 2 600
Water (ml) 20 20 20 20 20 20 2 600
Versawet (wetting agent) (ml) 2.5 2.5 2.5 2.5 2.5 2.5 2 600
Versacoat (emulsifier) (ml) 2.5 2.5 2.5 2.5 2.5 2.5 2 600
VG69 organophilic clay (g) 0 1 2 3 4 5 2 600
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Fig. 4   Drilling muds stability as function of VG69 organophilic clay 
quantity
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to saturation of clay particles by the surfactant molecules 
(Abu-Jdayil 2011; Msadok et al. 2020).

Effect of VG69 organophilic clay on the shear flow 
of gasoil‑based drilling muds

The flow curves of the gasoil-based drilling muds at different 
quantities of VG69 organophilic clay are shown in Fig. 5. 
It has been found that the rheological behavior of drilling 
muds is non-Newtonian after the yield stress. Therefore, 
the experimental data were best fitted to the Casson model 
(Bhatt et al. 2013; Ohta and Miyashita 2014):

where � is the shear stress in (Pa); �0 is the yield stress in 
(Pa); 𝛾̇ is the shear rate (s−1) and �

∞
 is the viscosity at an 

infinite shear rate (Pa s). From Fig. 5, we notice that for the 
same shear rate, an increase in the shear stress as a function 
of the increase in the quantity of the clay added in gasoil- 
based drilling muds.

Table 5 shows the increase in the yield stress and viscos-
ity at infinite shear rate as a function of VG69 organophilic 
clay quantity in drilling muds. The increase in the quan-
tity of VG69 led to an increase in the yield stress, which 
indicates that the muds structure becomes rigid, dense and 
therefore difficult to break. The increase in the yield stress 
and the viscosity at in infinite shear rate is due to the creation 
of a three-dimensional network of edge-to-edge and face-to-
face interactions via double-layer repulsion between the clay 
particles (Bhatt et al. 2013; Akkal et al. 2013; Choo and Bai 
2015). The increase in the quantity of VG69 organophilic 
clay in the drilling muds caused the organization of water 
droplets into string and clusters, resulting in an increase in 
the yield stress and viscosity at an infinite shear rate (Fakoya 
and Ahmed 2018).

(2)𝜏 = 𝜏0 + 2𝛾̇

√

𝜂
∞

𝜏0

𝛾̇
+ 𝜂

∞
𝛾̇

Effect of VG69 organophilic clay 
on the viscoelasticity of drilling muds

Figure 6 shows the variation of storage modulus (G′) and 
loss modulus (G″) as a function of shear stress for different 
concentrations of VG69 organophilic clay. From Fig. 6, it 
can be noted that for all quantities of VG69 added in the 
gasoil-based drilling muds, the storage modulus (G′) and 
loss modulus (G″) are independent of the shear stress up 
to a critical shear stress value beyond which they become 
dependent on the shear stress. For shear greater than the crit-
ical shear stress ( �

c
 ), the loss modulus G″ becomes greater 

than the storage modulus G′, indicating a preponderance of 
the viscous nature in drilling muds. The critical shear stress 
(stress yield) in which the storage and loss modulus were 
equal (G′ = G″), it has been used to characterize the effect 
of VG69 on the viscoelasticity of gasoil-based drilling (Bui 
et al. 2012; Werner et al. 2017; Moussaoui et al. 2017).

Figure 7 shows the variation of critical shear stress as a 
function of VG69 organophilic clay quantity added in gas-
oil-based drilling muds. It is clear that the increase in the 
quantity of VG69 organophilic clay resulted in an increase 
in the viscoelasticity of gasoil-based drilling muds. The 
increase in the critical shear stress with the dose of VG69 
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Table 5   Evolution of yield stress and viscosity at an infinite shear 
rate of gasoil-based drilling muds as function of VG69 organophilic 
clay quantity

VG69 (g) �
0
 (Pa) �

∞
 (Pa s) R

2

0 0.0143 0.0036 0.999
1 0.308 0.013 0.999
2 1.185 0.017 0.999
3 2.371 0.034 0.998
4 7.315 0.037 0.998
5 21.536 0.067 0.994
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organophilic clay is due to the continuous hydration reac-
tion (Li et al. 2019).

Validation of Casson model

In order to valid the use of the Casson model for the objec-
tive of fitting the experimental data of flow curves of gasoil-
based drilling muds, we made a comparison between the 
yield stress determined by the Casson model and the Vipu-
lanandan model using Eq. 3 (Vipulanandan and Mohammed 
2014; Mohammed 2018; Tchameni et al. 2019; Afolabi et al. 
2019; Afolabi and Yusuf 2020) based on the yield stress 
(critical shear stress) determined by the oscillatory measure-
ment (Yoon and Mohtar 2013; Shakeel et al. 2020).

where � is the shear stress in (Pa); �0 is the yield stress in 
(Pa); 𝛾̇ is the shear rate (s−1); A is the model parameter 
(Pa s)−1 and B is the model parameter (Pa)−1.

The comparison of the yield stress values obtained using 
the rheological models: Casson and Vipulanandan with the 
oscillatory measurement is shown in Fig. 8. A good concord-
ance was found between the yield stress obtained by Casson 
model and the oscillatory measurement for all quantities of 
VG69 organophilic clay added to drilling muds. However, 
the range between the yield stress obtained by Vipulanan-
dan model and oscillatory measurement is very significant. 
Although the fitting of the flow curves of the gasoil-based 
drilling muds at different quantities of VG69 organophilic 
clay obtained by the Vipulanandan model gave values ​​of 
the correlation coefficient R2 greater than 0.98, the Casson 
model remain the better for fitting the rheological data of 
gasoil-based drilling muds, due to the good concordance 
which was found between the yield stress obtained by this 
model and the oscillatory measurement.

(3)𝜏 = 𝜏0 +
𝛾̇

A + B𝛾̇

Effect of VG69 organophilic clay on the thixotropy 
of drilling muds

The thixotropic loops of the drilling muds as a function of 
the VG69 organophilic clay are shown in Fig. 9. It is clear 
that the downward curves are under the upward curves, 
which indicates a positive thixotropic behavior.

In order to evaluate the effect of VG69 organophilic 
clay on the thixotropy of drilling muds, we calculated the 
area between the upward and downward curves using the 
data analysis option of TA Instruments Trios v4.2.1.36612. 
Figure 10 shows an increase in the thixotropic area of gas-
oil-based drilling muds as a function of the quantity of 
VG69 organophilic clay. These results confirm the same 
work published by Msadok et al. (2020) which showed that 
the thixotropy of gasoil-based drilling muds increases with 
the concentration of organoclay. This behavior could be 
explained by the increased cohesive forces and interactions 
of the clay particles reinforcing the three-dimensional 
structure through the formation of flocs or aggregates of 
particles (Hammadi et al. 2014). At high quantity of clay, 
the Brownian motion is important and the van der Waals 
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attraction forces can cause the increase attraction of water 
droplets, leading an increase in the thixotropic properties 
of gasoil-based drilling muds (Le Pluart et al. 2004; Huang 
et al. 2016).

Conclusion

The effect of VG69 organophilic clay on the stability and 
rheological properties of gasoil-based drilling muds has 
been studied. It was found, on the one hand, that for quan-
tities of VG69 organophilic clays less than 3 g, there is 
an increase in the percentage of stability of gasoil-based 
drilling muds, and on the other hand that for quantities 
of VG69 organophilic clays greater than 3 g, there is a 
decrease in the percentage of stability of gasoil-based 
drilling muds. The increase in the quantity of VG69 
organophilic clay in the gasoil-based drilling muds has 
led to an increase in the yield stress, the viscosity at an 
infinite shear rate, the viscoelasticity and the thixotropic 
properties of drilling muds. This work could be deepened 
and completed in the experimentation (zetametric and fil-
trate tests) and by the modeling of thixotropy. The effect 
of other types of clays such as Geltone and Laponite as 
well as other additives such as zinc oxide nanoparticles 
and Poly-Salt polymer on the rheological behavior of the 
gasoil-based drilling muds in further studies could be also 
investigated.
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