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Abstract
The main objective of this paper is to understand the impact of the fractal characteristics of fractured reservoirs on their 
pressure behavior, flow rate decline, and productivity index. The paper proposes a new methodology for developing several 
analytical models for describing the wellbore pressure distribution and the flow rate decline trend. The proposed models 
consider including the fractal characteristics such as the mass fractal dimension, conductivity index of anomalous diffusion 
flow mechanism, fractal-network parameters, fractional-derivative order, and matrix/fracture-interaction index as well as 
dual-porosity media characteristics such as the storativity and interporosity flow coefficient in the analytical models of the 
pressure, rate, and productivity index. The study has found that: (1) Some of the fractal characteristics have a significant 
impact on reservoir performance, while others may not have a significant impact. (2) Fractal reservoirs exhibit better per-
formance than the standard geometry reservoirs of single and dual-porosity media.

Keywords Unconventional resources · Fractured reservoirs · Fractal structures · Reservoir modeling and simulation · 
Reservoir performance

List of symbols
A  Drainage area, acres
Bo  Oil formation volume factor
ct  Total compressibility,  psi−1

JDP  Productivity index of constant wellbore pres-
sure, dimensionless

JDq  Productivity index of constant sandface flow 
rate, dimensionless

h  Formation thickness, ft
hf  Fracture height, ft
k  Permeability, md
kf  Permeability of fractures, md
km  Permeability of the matrix, md
NPD  Dimensionless cumulative production
n  Number of hydraulic fractures
Pwf  Bottom hole flowing pressure, psi
PD  Dimensionless pressure
PDu  Dimensionless pressure in unstimulated reser-

voir volume
PDs  Dimensionless pressure in stimulated reservoir 

volume

PDf  Dimensionless pressure in fractures
ΔPwf  Wellbore pressure drop, psi
PwD  Wellbore pressure drop, dimensionless
tD × P�

wD
  Pressure derivative, dimensionless

qD  Sandface flow rate, dimensionless
q  Flow rate, Stb/Day for oil reservoirs
Qsc  Gas flow rate, MScf/Day for gas reservoirs
s  Laplace operator
t  Time, h
tD  Time, dimensionless
tDA  Dimensionless time based on drainage area
μ  Viscosity, cp
x  X—coordinate for a point in the porous media
y  Y—coordinate for a point in the porous media
xe  Reservoir boundary, ft
xf  Hydraulic fracture half–length, ft
wf  Hydraulic fracture width, ft
ye  Reservoir boundary, ft
∅  Porosity
ω  Storativity
λ  Interporosity flow coefficient
�m  Matrix hydraulic diffusivity constant
Γ  Gamma function
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Subscripts
e  Early production time—short time 

approximation
l  Late production time—long time 

approximation
f  Fractures
m  Matrix
s  Stimulated reservoir volume
u  Unstimulated reservoir volume

Introduction

Conventional and unconventional fractured reservoirs have 
been the focus of the petroleum industry and have received 
a considerable attention over the past few decades as they 
contribute by more than 60% of the total world oil and gas 
supply. Naturally fractured reservoirs (NFR) such as most 
of the carbonate reservoirs represent the conventional type 
of fractured reservoirs where the two-scale porous media 
(fracture/matrix) exist, while triple porous media exist in the 
unconventional fractured reservoirs where hydraulic frac-
tures propagate in the matrix that has already a network of 
embedded natural fractures. The two types are well known 
by the complex structures, the heterogeneity, and the irregu-
lar flow paths or the nonuniform flow distribution controlled 
by the distribution of fractures. Moreover, reservoir fluids 
may undergo different flow patterns such as Darcy, non-
Darcy flow, and diffusion flow, especially in the unconven-
tional reservoirs with either classic or anomalous diffusion 
mechanisms.

There are two approaches for describing the geometry of 
these reservoirs. The first is the Euclidean geometry wherein 
the fracture networks are assumed to be connected and 
equivalent to a homogenous porous media, while the porous 
media in the second approach is characterized by multiple 
property scales and the non-Euclidean geometry (Chang and 
Yortsos 1990). The main concepts in the first approach are 
the existence of the dual-porosity and permeability media, 
the matrix and the fracture networks are Euclidean objects 
within which the fractures are uniformly distributed in the 
matrix, and the matrix is not interconnected i.e.,the reser-
voir fluids flow throughout the perfectly connected fracture 
networks toward the hydraulic fractures or the wellbores. 
However, a lot of evidence from the outcrops, well logs, 
and production behavior observations have indicated that 
some of the reservoirs may not follow the above-mentioned 
concepts (Camacho-Velazquez et al. 2008). Accordingly, the 
second approach wherein the non-Euclidean geometry may 
be more appropriate for describing these reservoirs. In this 
geometry, the fractal theory that considers a nonuniform dis-
tribution of fractures and the presence of fractures at differ-
ent scales is more applicable. This theory states that fractal 

characteristics of non-Euclidean geometry such as fracture 
intensity and conductivity as well as the interaction between 
the matrix, and these fractures may have a significant impact 
on reservoir performance. It is also defined, according to 
Flamenco-Lopez and Comacho-Velazquez (2001), as a 
method to describe the network of fractures in a rock that 
connects the heterogeneities in small scales to those in bog 
scales. While Emanuel et al. (1989) explained that the fractal 
theory represents the reservoir heterogeneity between wells 
as a random variation superimposed on the smooth inter-
polation of well-logging values. The concept of describing 
reservoir heterogeneity and characterizing the spatial cor-
relation structures of the porosity and permeability using the 
fractal theory was adopted also by Perez and Chopra (1997) 
who confirmed that the well logs of vertical and horizontal 
wells may help in this task.

Not all the oil and gas reservoirs could have the non-
Euclidean geometry where the fractal theory could be 
applicable and fractal characteristics may have a significant 
impact on reservoir performance. Most of the carbonate 
reservoirs, typically classified as naturally fractured res-
ervoirs, are most suitably described by the fractal theory 
than the Warren and Root’s dual-porosity model approach. 
The formation heterogeneity, irregular fluid flow paths, 
and the presence of fracture clusters in some regions of the 
porous media of these reservoirs, and the emptiness of other 
regions from these clusters as well as the spatial changes in 
the matrix bock sizes and the fractures dimensions are all 
indicate the spatial variability of the petrophysical properties 
in the carbonate reservoirs. Because of the complexity of 
the unconventional reservoir structures where three porous 
elements are always existed; the matrix, natural fractures, 
and hydraulic fractures as well as the induced fractures by 
the fracturing process, they are considered a good candidate 
for the applications of the fractal theory. The petrophysical 
properties in these reservoirs undergo a significant spatial 
change with the distance from the hydraulic fracture face 
to the point where the no-flow boundaries are present (Al-
Rbeawi 2018). Not only the petrophysical properties that 
could have the spatial changes in the unconventional res-
ervoirs, the size of the matrix block, natural fractures, and 
induced fractures may change from nanopores scale to micro 
and macroscale (Ozcan 2014; Ozcan et al. 2014). The matrix 
block and fracture size as well as the matrix permeability 
distributions in the unconventional reservoirs may follow 
the power-law model (Camacho Velazquez et al. 2008) or 
the exponential distribution (Fuentes-Cruz and Valko 2015), 
while Al-Rbeawi 2018 stated that the bivariate lognormal 
distribution could be most fit the distributions of the matrix 
block size and the matrix permeability in these reservoirs 
as it is shown in Fig. 1. The power-law behavior of fracture 
size distribution, matrix permeability, and the fractal char-
acteristics of the porous media in the structurally complex 
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reservoirs have also investigated by Laubach and Gale 
(2006), and Ortega et al. (2006). Both groups have empha-
sized that the distribution of attributes such as length, height, 
and aperture of fractures can be frequently expressed by the 
power-law model, and hence, the scaling analysis could be 
used to infer other fracture attributes such as fracture strike, 
number of fracture sets, and fracture intensity.

The spatial changes in the matrix and fracture sizes and 
the matrix permeability set an environment for the diffu-
sive flow mechanisms rather than the viscous or slip flow 
(Javadpour et al. 2007). Wu et al. (2014) stated that the 
fluid flow in the unconventional reservoirs, characterized 
by the discontinuity and heterogeneity that could exist in 
different locations, may undergo different influential pro-
cesses such as adsorption/desorption process, non-Darcy 
flow, rock/fluid interaction, rock deformation within nano-
pores or microfractures, and multiscaled heterogeneity. 
Accordingly, the complex structure reservoirs might be 
dominated by the anomalous diffusion flow mechanisms 
wherein the fractional diffusivity equation with a power 
of derivative that is not equal to one is used in the flow 
equations (Raghavan 2011; Chen and Raghavan 2015; 
Albinali and Ozkan 2016; Raghavan and Chen 2017). 

Classic diffusivity equation (the order of fractional deriva-
tive equals to 1.0) is used typically to describe pressure 
distribution in the porous media where classic diffusion 
exists, while anomalous diffusion (Ozcan 2014; Ozcan 
et al. 2014) refers to the diffusion flow phenomenon in 
heterogeneous reservoirs where disordered and complex 
structure characterizes porous media of these reservoirs.

Due to the difficulties accompanied the process of resem-
bling the fractal theory and the flow equations in the hetero-
geneous reservoirs, neither the pressure transient nor rate 
transient models have considered chronically the fractal 
dimensions. The first serious attempt for this type of resem-
bling was conducted by Chang and Yortsos 1990 and a new 
model was presented. The proposed model describes the 
pressure distribution in naturally fractured reservoirs that 
have different scales with poor fracture connectivity, and 
disorderly spatial distribution. The general formulation of 
this model was derived for a single-phase flow in a system 
consisting of a fractal object (fracture network) embedded in 
a Euclidean object (matrix). At the same time, Beier (1990) 
used a set of field data taken from Grayburg/San Andres 
formations in Southeastern New Mexico to indicate that 
applying the conventional models of homogenous reservoirs 

Fig. 1  Log-Normal distribution and probability distribution function (PDF) of the matrix block size and permeability in hydraulically fractured 
reservoirs (Al-Rbeawi 2018)
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may not match the pressure records, while the models that 
consider the heterogeneity of the reservoir with the fractal 
structure give more realistic results that could match the 
records. Four years before, Hewett (1986) used a Euclidean 
reservoir with a permeability/porosity spatial distribution 
that obeys the fractal statistics (fractional Brownian motion). 
Different models for the pressure distribution in the fractal 
reservoir were introduced by Beier (1994) for a vertical well 
with a vertical hydraulic fracture. He considered the perme-
ability distribution in the porous media obeys the bimodal 
distribution as it has either zero or constant value at any 
location in the reservoir. The proposed model by Chang and 
Yortsos was used by Acuna et al. (1995) as an alternative 
approach for the classical interpretation in well test analysis 
of naturally fractured reservoirs where the double-porosity 
model is in doubt. It is also adopted by Abbaszadeh (1995) 
for Euclidean porous media with embedded fractal objects 
and permeability/porosity variation that obeys the power-law 
function of the radial distance from a well. The characteri-
zation of this type of reservoir with the fractal geometry, 
according to Flamenco-Lopez and Camacho-Velazquez 
(2003), may need the analysis of pressure data representing 
transient and pseudo-steady state flow, otherwise, the fractal 
parameters should be determined by the porosity well logs or 
another type of information resources. Raghavan and Chen 
(2013a, b), and Al-Rbeawi and Owayed (2019) presented 
several models for the reservoir performance considering 
the anomalous diffusion flow in the fractal reservoirs that 
are depleted by hydraulic fractures. These models include 
the temporal and spatial anomalous diffusion flow coeffi-
cients i.e., the diffusivity equation has two fractional pres-
sure derivatives with an order that is not equal to (1.0), but 
equals to the above-mentioned anomalous diffusion flow 
coefficients.

Unlike pressure transient analysis, resembling fractal 
theory with rate transient models is very rarely conducted 
and presented in the literature even though the rate tran-
sient analysis might be more favorable for characterizing 
the unconventional reservoirs because of the low and extra-
low permeability that could cause some uncertainties in 
analyzing the pressure behavior of these reservoirs. Cama-
cho-Velasquez et al. (2008) presented analytical solutions 
during transient and boundary-dominated flow regime that 
show the possibilities to characterize the naturally fractured 
reservoir with fractal network using the production decline 
data. These solutions are applicable for the radial flow in the 
finite and infinite reservoirs with and without matrix par-
ticipation. Recently, Raghavan and Chen (2017) presented 
several models for the rate decline considering the power-
law behavior under the subdiffusion flow mechanism in the 
fractured reservoirs.

This paper proposes several models for the pressure 
distribution, flow rate decline behavior, and cumulative 

production trend for a rectangular reservoir depleted by 
multiple hydraulic fractures. These models consider the 
fractal characteristics of the fractured reservoirs where frac-
tal object represented by the fractures networks of multiple 
property scales i.e., hydraulic fractures, induced fractures 
by hydraulic fracturing stimulation, and naturally induced 
fractures are embedded in the Euclidean object represented 
by the matrix. All fractures networks are treated as non-
Euclidean objects. The reservoir of interest is assumed con-
sisting of stimulated volume (SRV) represents the drainage 
area between hydraulic fractures, and unstimulated volume 
represents the drainage area away from the fracture tips. 
The novel point introduced in this paper is represented by 
the fact that each SRV and the hydraulic fracture assigned 
to it have the same fractal characteristics. Furthermore, the 
SRV porous media is considered having a square-shaped 
configuration with a length and width equal to the hydraulic 
fracture half-length, and therefore, it could be treated as a 
single wellbore with a radius equals to the hydraulic fracture 
half-length. Two expected outcomes of the above-mentioned 
two points are validated by the results of the proposed mod-
els in this paper. The first is developing a pseudo-radial flow 
regime for the reservoirs with big unstimulated reservoir 
volume, while the second is observing the boundary-domi-
nated flow regimes after a very short production time for the 
reservoirs with stimulated reservoir volume only.

Mathematical formulation of fluid flow 
in fractal reservoirs

Considering a rectangular reservoir with a length 
(
2xe

)
 and 

width 
(
2ye

)
 is depleted by a number of hydraulic fractures 

(n) of width 
(
2wf

)
 and fracture half-length 

(
xf
)
 as it is shown 

in Fig. 2. These fractures are assumed to fully penetrate the 
formation in the vertical direction 

(
hf = h

)
 , symmetrically 

propagate in the porous media, and have the same spacing 
between them as it is demonstrated in Fig. 3. The reser-
voir of interest has two drainage areas. The first is the area 
between hydraulic fractures and stimulated by these frac-
tures. It is called stimulated reservoir volume and charac-
terized by a complex structure consisting of the hydraulic 
fracture, induced fractures by the stimulation process, and 
naturally induced fractures. Accordingly, this volume is best 
described by the fractal theory, while the second is the area 
away from the hydraulic fracture tips toward the reservoir 
boundary. It is called unstimulated reservoir volume and 
consists of the natural fractures embedded in the matrix; 
therefore, it is considered also fractal porous media as it is 
characterized by dual-porosity media or naturally fractured 
porous media.
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The following assumptions are utilized for the mathemati-
cal formulation proposed in this study:

1. The fractal object is defined by each hydraulic fracture 
and its SRV. The fractal objects are similar.

2. Single-phase flow either oil or gas.
3. The SRV has a square a square-shaped area i.e., 

(
y = xf

)
.

4. The no-flow boundary between hydraulic fractures is 
located at the mid-point of the spacing between these 
fractures.

5. Hydraulic fracture width and conductivity do not change 
along the fracture half-length.

While reservoir inner and outer boundary conditions are:

(1)
�PDu

�xD

||||xD=xeD
= 0.0

(2)PDu
||xD=1.0 = PDs

||xD=1.0

where 
(
PDf

)
 is the dimensionless pressure drop inside 

hydraulic fractures.
The definitions of the dimensionless parameters used in 

the mathematical models presented in this paper are given 
in “Appendix”.

In this study, two fractal porous media are assumed in 
the drainage area. The first is the fractal porous media of the 
stimulated reservoir volume and determined by the hydraulic 
fracture length and the no-flow boundary as shown in Fig. 3. 
For this fractal object, the fractal characteristics are similar 
for the hydraulic fractures and the fractures embedded in 
the matrix of the stimulated reservoir volume. While the 
second is the fractal porous media of the unstimulated res-
ervoir volume and determined by the area between fracture 
tips and reservoir boundaries where the fractal characterstics 
are controlled by the naturally induced fractures embedded 
in the matrix.

Furthermore, the stimulated reservoir volume assigned 
to each hydraulic is considered as a square-shaped drainage 
area, and reservoir fluid flows radially from the unstimu-
lated reservoir volume to the stimulated volume as shown 
in Fig. 4.

The pressure distribution of the fractal system represented 
in Fig. 4 can be generated using the generalization of the 

(3)
�PDs

�yD

||||yD=yeD
= 0.0

(4)P̄Ds
||yD=wD∕2

= P̄Df
||yD=wD∕2

(5)
�PDf

�xD

||||xD=1.0
= 0.0

(6)
�PDf

�xD

||||xD=0.0
= 1.0

Fig. 2  A rectangular fractal reservoir depleted by multiple hydraulic fractures

Fig. 3  Fractal pours media of the stimulated reservoir volume
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Warren and Root (1963) model and the concept of the fractal 
theory as follows (Chang and Yortsos 1990):

Since three flow regimes might be developed during the 
early and intermediate production time before pseudo-steady 
state flow regime, the Euclidean dimension (D) in this study 
may have different values according to the flow geometry dur-
ing these flow regimes. For example, the Euclidean dimen-
sion (D = 2.0) is best fit to the cylindrical flow geometry that 
would be used during pseudo-radial flow regime wherein res-
ervoir fluid flows radially from the unstimulated porous media 
toward stimulated part in the reservoirs with large drainage 
areas. While (D = 1.0) is more applicable at early production 
time when the reservoir fluid flows linearly inside a rectangu-
lar cross-sectional area toward the wellbore during hydraulic 
fracture linear flow regime. Later, at intermediate production 
time, the bi-linear flow regime becomes the dominant flow 
wherein the Euclidean dimension is close to (D = 1.5) (Chang 
and Yortsos 1990).

The mass fractal dimension (d) in Eq. (1) represents the 
density of the fractures, naturally and hydraulically induced, 
in the matrix, while the parameter (�) refers to the conductiv-
ity index of these fractures and responsible for the anoma-
lous diffusion flow mechanisms in the porous media. Normal 
diffusion flow is typically associated with the fluid flow in 
homogenous reservoirs where the random Brownian motion 
of diffusive particles is obeying Gaussian probability density in 
which the variance is proportional to the first power of time. In 
this type of diffusion flow, the conductivity index is approach-
ing (� = 0.0) , while for anomalous diffusion flow, it could be 
(� = 1.0) . O’Shaughnessy and Procaccia (1985) stated that 
the fracture conductivity index is related to the mass fractal 
dimension and suggested the following relationship:

(7)

�
�PDf

�tD
+ (1 − �)x

(D−d)

D

�PDm

�tD
=

1

x
(d−1)

D

�

�xD

(
x
(d−�−1)

D

�PDf

�xD

)

They also stated that the mass fractal dimension is corre-
lated with the Euclidean dimension by the following model:

The pressure distribution in the matrix can be written as 
follows (Chang and Yortsos 1990):

In the above-mentioned models:

while (�) in Eq. (7) is the storativity. For the law permeabil-
ity matrix block wherein the matrix does not participate in 
the rate response, the storativity could reach (� = 1.0) . The 
storativity is given by:

where 
(
�r

)
 in Eq. (12) is the matrix/fracture storativity ratio 

and given by:

The generalized interporosity flow coefficient in Eq. (10) 
is developed using the same concept used in Warren and 
Root (1963) model. It is given by:

where

while the parameter (m) in Eq. (14) represents an equivalent 
property to the permeability and given by:

(8)� =
ln(d + 3)

ln(2)
− 2

(9)d =
ln(D + 1)

ln(2)

(10)
�PDm

�tD
=

�

x
(D−d)

D

(
PDf − PDm

)

(11)xD =
x

xf

(12)� =
1

1 + �rx
(d−D)

eD

(13)�r =
�mctm

�fctf

(14)� =
x
(�+2−D−d)

f
b��mctf

A�m�

(15)b =

(
4�2 − 1

)
16

(16)� =
1 − �

� + 2

(17)� = d − � − 1

(18)m =

(
kf

�f

)
x�
e

Fig. 4  The configuration of stimulated and unstimulated reservoir 
volumes
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while (A) in Eq. (14) is the drainage area assigned to each 
hydraulic fracture:

The constant (�) in Eq. (14) represents a parameter for the 
distance from the hydraulic fracture face to the no-flow bound-
ary. It is an equivalent to the characteristic length used in War-
ren and Root (1963) model. In fractal reservoirs, this constant 
is a function of the fractal exponent 

(
D′′

)
 . For the Euclidean 

matrix where the fractal exponent 
(
D�� = 0.0

)
 , the constant 

(�) equals the spacing between hydraulic fractures i.e., (y) . It 
is calculated by:

The hydraulic diffusivity coefficient used in Eq. (14) is 
given by:

Pressure behavior of fractal 
reservoirs‑constant flow rate

The solution of Eq. (7) for the wellbore pressure drop in 
Laplace domain and dimensionless parameters considering 
closed rectangular reservoirs where i the matrix blocks par-
ticipate in the production can be obtained for the early time 
production as.

where

while the solution for late time production is given by:

where

(19)A = xeye∕n

(20)� = y(1−D
��)

(21)�m =
km

�m�ctm

(22)

P̄wD =
Kv−1

�
Ae

�
Iv
�
Be

�
+ Kv

�
Be

�
Iv−1

�
Ae

�

s
√
fs(s)

�
−Kv−1

�
Ae

�
Iv−1

�
Be

�
+ Kv−1

�
Be

�
Iv−1

�
Ae

��

(23)Ae = Bex
(�+2)∕2

eD

(24)Be =
2
√
fs(s)

(� + 2)

(25)fe(s) = �s + (1 − �)�

(26)

P̄wD =
K𝜑−1

�
Al

�
I𝜑
�
Bl

�
+ K𝜑

�
Bl

�
I𝜑−1

�
Al

�

s
√
fl(s)

�
−K𝜑−1

�
Al

�
I𝜑−1

�
Bl

�
+ K𝜑−1

�
Bl

�
I𝜑−1

�
Al

��

(27)Al = Blx
(�+2+D−d)∕2

eD

and (K) and (I) in Eqs. (22) and (26) are the modified Bessel 
functions.

The wellbore pressure drop and pressure derivative 
behaviors of a fractal reservoir of a square-shaped drainage 
area 

(
xeD = yeD = 2.0

)
 with Euclidean dimension (D = 1.5) , 

and the conductivity index (� = 0.0) for different mass frac-
tal dimensions (d) are shown in Fig. 5. Two different impacts 
for the mass fractal dimension can be recognized in Fig. 5. 
At early production time, the pressure drop increases with 
the increase of (d) , while it decreases with the increase of 
(d) at late production time. This would be explained by the 
fact that at early and intermediate production time, the pro-
duction mostly comes from the stimulated reservoir volume 
where the fractal porous media are the common geometry. 
Therefore, the mass fractal dimension (d) may have more 
impact on the pressure drop than the Euclidean dimension 
(D) because of the complex structure in the stimulated res-
ervoir volume characterized by the severe heterogeneity 
and the high disorder in the property distribution, while the 
unstimulated reservoir volume contributes most of the pro-
duction during the late time wherein pseudo-steady state 
flow regime becomes the dominant flow. In this volume, 
the impact of the mass fractal dimension is not significant, 
and the flow is more controlled by the Euclidean dimension.

It is also inferred from Fig. 5 that the increase of the mass 
fractal dimension could cause a change in the dominant flow 
regime at early production time. The hydraulic fracture lin-
ear flow regime of a slope (1∕2) typically seen at very early 
production time might be terminated faster and bi-linear 
flow regime of a slope (1∕4) might be developed instead of 
it when the mass fractal dimension increases.

The impact of the Euclidean dimension (D) on the well-
bore pressure drop and pressure derivative is represented in 
Fig. 6. It is worth saying that this impact is not significant 
and different than the behavior of the Euclidean system of 
dual-porosity reservoirs (D = 2.0) that could be obtained by 
applying the Warren and Root (1963) model. The higher the 
Euclidean dimension is; the lower wellbore pressure drop is 
observed. The impact of the Euclidean dimension is similar 
for all reservoir configurations and all other conditions rather 
than those used in preparing Fig. 6 wherein the mass fractal 
dimension (d = 2.0) and the conductivity index is (� = 0.0).

Neither the conductivity index (�) nor the fractal-network 
parameter (m) have a significant impact on the pressure 

(28)Bl =
2
√
fl(s)

(� + 2 + D − d)

(29)fl(s) = s(1 − �)

(30)� =
1 − �

� + 2 + D − d
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behavior of fractal reservoirs as it is depicted in Figs. 7 and 
8. However, the drainage area size and the hydraulic frac-
ture half-length have a significant impact on the wellbore 
pressure drop and the pressure derivative behavior as it is 
demonstrated by Figs. 9 and 10, respectively. Increasing the 
drainage area for the same hydraulic fracture characteristics 
(length and width) means increasing the spacing between 

these fractures and increasing the volume of the stimu-
lated and unstimulated parts of the reservoirs. Accordingly, 
pseudo-radial flow might be developed for the big drainage 
areas wherein reservoir fluid flows radially from the unstim-
ulated reservoir volume toward the stimulated volume. The 
pressure and pressure derivative curves in Fig. 9 confirm 
the fact that reaching pseudo-steady state flow may need a 

1.0E-02

1.0E-01

1.0E+00

1.0E+01
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& 

Fig. 5  Wellbore pressure and pressure derivative of different mass fractal dimensions
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Series9

& 

Fig. 6  Wellbore pressure and pressure derivative of different Euclidean dimensions



491Journal of Petroleum Exploration and Production Technology (2021) 11:483–507 

1 3

longer time in the big drainage areas compared to the small 
ones.

The mathematical models proposed in this study for the 
pressure distribution in the fractal reservoirs are verified by 
the results of changing the hydraulic fracture half-length 
shown in Fig. 10. Using very short hydraulic fracture-length (
xf = 1.0 ft

)
 gives similar results to the vertical wellbores 

with 
(
rw = 1.0 ft

)
 where pseudo-radial flow regime followed 

by pseudo-steady state flow regime are observed only as it is 
indicated by the dark blue color curves in Fig. 10. Increas-
ing the fracture half-length causes a significant decrease in 
the time interval when pseudo-radial flow regime dominates 
fluid flow in the porous media and increases the possibilities 
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Fig. 7  Wellbore pressure and pressure derivative of different conductivity indices
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Fig. 8  Wellbore pressure and pressure derivative of different fractal-network parameters



492 Journal of Petroleum Exploration and Production Technology (2021) 11:483–507

1 3

for developing bi-linear flow regimes and hydraulic fracture 
linear flow regimes as it is indicated by the red, green, and 
light blue color curves in Fig. 10. While using a hydrau-
lic fracture half-length equals the distance to the reservoir 
boundary 

(
xf = 1000.0 ft

)
 , only stimulated reservoir volume 

exists in the reservoir, causes developing the bi-linear flow 

regime for a very short time followed by long-time pseudo-
steady state flow regimes as it is shown in Fig. 10.

Figures 9 and 10 indicate that the fractal and regular 
reservoirs with single and dual-porosity media may have 
the same response (in the shape but not in the magni-
tude) for the wellbore pressure and pressure derivative 
regardless of the drainage area size and hydraulic fracture 
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Fig. 9  Wellbore pressure and pressure derivative of different drainage areas
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Fig. 10  Wellbore pressure and pressure derivative of different hydraulic fracture half-lengths
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half-length. This fact means that the fractal characteris-
tics may not cause different impacts for the drainage area 
size and hydraulic fracture half-length on the wellbore 
pressure drop and pressure derivative than those known 
for regular reservoirs. The same conclusion is reached 
for the impact of the two main parameters in the Warren 
and Root (1963) model i.e., the storativity (�) and inter-
porosity flow coefficient (�) on the pressure and pressure 
derivative behavior of the fractal and regular reservoirs. 
Figure 11 shows the impact of the storativity for fractal 
reservoirs with (D = 1.5) , (d = 2.0) , and (� = 0.5) . The 
wellbore pressure drop reaches the minimum value when 
the storativity equals to (� = 1.0) . Physically this would be 
explained by the fact the main contribution of the produc-
tion is given by the fractures rather than the matrix. While 
decreasing the storativity indicates more participation for 
the matrix in the production, and thereby, more pressure 
drop is required.

Flow rate and cumulative production 
behaviors of fractal reservoirs‑ Constant 
wellbore pressure

Sandface flow rate behavior assuming constant wellbore 
pressure can be predicted using Duhamel’s formula (van 
Everdingen 1949) in which:

therefore, the solution for the early production time pre-
sented by Eq. (22) can be used for estimating the flow rate 
in dimensionless form and Laplace domain as follows:

while the solution for the late production time is obtained 
from Eq. (26):

Similarly, the cumulative production, in dimensionless 
form and Laplace domain, is calculated by Helmy and Wat-
tenbarger (1998):

therefore, for the early production time, it is:

and for the late production time, it is:
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Fig. 11  Wellbore pressure and pressure derivative of different storativity
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The observable trends for the flow rate and cumulative 
production, shown Fig. 12, show two different behaviors 
with time for different mass fractal dimensions. The first 
exhibits declining behavior in the flow rate and cumula-
tive production during transient state flow, while increasing 
flow rate and cumulative production are seen during pseudo-
steady state flow when the reservoirs are characterized by 
high mass fractal dimension. This would be an indication 
of the negative impact of the fractal characteristics during 
transient early production time while these characteristics 
may have a positive impact at late production time.

Euclidean matrix with single fracture (D = 1.0) gives the 
minimum flow rate and minimum cumulative production 
compared to the matrix where naturally and hydraulically 
induced fractures are embedded and complex structures are 
formed in the porous media, especially the stimulated reser-
voir volume between hydraulic fractures (D > 1.0) . Unlike 
the changes caused by the mass fractal dimension, there is 
always a very slight increase in the flow rate and cumulative 
production with the increase of the Euclidean dimension. 
This increase, shown in Fig. 13, is seen more during the 
pseudo-steady state flow at late production time than the 
transit state flow at early and intermediate production time.

Similar to the regular reservoirs with Euclidean porous 
media, the flow rate and cumulative production increase 
significantly as the drainage area size increases during late 
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production time when pseudo-steady state flow has become 
the dominant flow regime in the porous media. However, 
during transient early and intermediate production time, the 
fractal characteristics cause a very slight decrease in the flow 
rate and cumulative production even though the big size of 
the drainage area. Figure 14 depicts the flow rate and cumu-
lative production of different drainage area size for a fractal 
reservoir characterized by (D = 1.5, d = 2.0, � = 0.0).

For the high values of the conductivity index to (� ≥ 0.5) , 
there is no impact for the fractal characteristics on the flow 
rate and cumulative production during transient state flow 
and only late production pseudo-steady state flow is affected 
by the fractal characteristics, as it is demonstrated by Fig. 15, 
wherein a very slight increase in the flow rate and cumula-
tive production is seen compared to the small values of the 
conductivity index (� ≤ 0.5).

Productivity index of fractal reservoirs

Productivity index of constant sandface flow rate is calcu-
lated by:

where 
(
PwD

)
 is the pressure obtained by converting Eqs. (22) 

or (26) to the real-time pressures while:

(37)JDq =
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Fig. 12  Flow rate and cumulative production behaviors for different mass fractal dimensions
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while productivity index of constant wellbore pressure is 
calculated by:

(38)PD =
2�tD

xeDyeD

where 
(
qD

)
 is dimensionless flow rate calculated by convert-

ing Eqs. (32) or (33) to the real-time flow rate and 
(
NPD

)
 is 

the cumulative production calculated from Eqs. (35) or (36).
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Fig. 13  Flow rate and cumulative production behaviors for different Euclidean dimensions
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Fig. 14  Flow rate and cumulative production behaviors for different drainage areas (� = 0.0)
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The behaviors of the productivity index for constant sand-
face flow rate 

(
JDq

)
 and constant wellbore pressure 

(
JDP

)
 

of fractal reservoirs with different mass fractal dimensions 
are shown in Fig. 16. Both indices exhibit a very slight 
decrease with the increase of the mass fractal dimension 
during the early transient state flow, while they demonstrate 

an increasing trend with the mass fractal dimension during 
the late pseudo-steady state flow. Figure 17 shows the two 
indices for fractal reservoirs with different Euclidean dimen-
sions. Unlike the impact of the mass fractal dimension, there 
is only slightly increasing behavior for these two indices 
when the Euclidean dimension increases in the transient and 
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Fig. 15  Flow rate and cumulative production behaviors for different drainage areas (� = 0.6)
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Fig. 16  Productivity index behaviors for different mass fractal dimensions
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pseudo-steady state flow. Similar to the regular reservoirs, 
the productivity index of constant flow rate is always greater 
than the index of constant wellbore pressure in the fractal 
reservoirs. The results of the two productivity indices of 
fractal reservoirs, shown in Figs. 16 and 17, confirm the 
conclusions that have reached by Hagoort 2008 for regular 
reservoirs where the two indices may not be equal and they 

may have a difference that could reach 20% depending on 
the reservoir configuration.

The impact of the conductivity index (�) on the two pro-
ductivity indices of fractal reservoirs is presented in Fig. 18. 
The comparison of the results shown in Figs. 17 and 18 indi-
cates that the productivity indices for the conductivity index 
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Fig. 17  Productivity index behaviors for different Euclidean dimensions (� = 0.0)
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Fig. 18  Productivity index behaviors for different Euclidean dimensions (� = 0.5)
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(� = 0.5) is more than these indices when the conductivity 
index is (� = 0.0) . This would be explained physically by 
the fact that the anomalous diffusion flow mechanisms, rep-
resented by the conductivity index, may give less pressure 
drop in the porous media than the pressure drop created by 
normal diffusion flow mechanisms or by Darcy or non-Darcy 
flow (Al-Rbeawi and Owayed 2019) during transient and 
pseudo-steady state flow.

Flow regimes of fractal reservoirs

Four flow regimes might be observed during the entire pro-
duction life of the fractal reservoirs. In a time-sequence man-
ner, these are: hydraulic fracture, bi-linear, pseudo-radial, and 
pseudo-steady state flow regime. Pseudo-radial flow regime 
is seen only in the reservoirs characterized by very big drain-
age areas, while pseudo-steady state flow regime might not be 
reached in unconventional reservoirs or it could need for a very 
long production time because of the ultralow permeability.

The hydraulic fracture linear flow regime represents reser-
voir fluid flow linearly inside hydraulic fractures toward the 
wellbore. This flow develops at very early production time 
and controlled by hydraulic fracture characteristics. There is 
no significant impact for the matrix characteristics on this flow 
regime. It is characterized by the slope of (1∕2) on the pressure 
derivative curves. Analytically, the mathematical models for 
this flow regime can be obtained by considering that the res-
ervoir matrix does not contribute to the flow during early pro-
duction time i.e., the production comes from the fluid inside 

hydraulic fractures only, therefore (� = 1.0) . It is also reason-
able considering that the conductivity index of the fractures 
that is responsible for anomalous diffusion flow during the 
early production time is (� = 0.0) . Accordingly:

At the early production time (t → 0.0) , therefore, 
(s → ∞) . Accordingly, the wellbore pressure drop assuming 
constant sandface flow rate can be obtained in dimensionless 
form in Laplace domain from Eq. (22):

and in real-time:

while the dimensionless pressure derivative is given by:

The two mathematical models of wellbore pressure drop 
and derivative given by Eqs. (44) and (45) indicate that the 
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Fig. 19  Pressure and pressure derivative of hydraulic fracture linear flow regime
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hydraulic fracture linear flow regime is not affected by the 
characteristic of the fractal reservoirs. This fact is confirmed 
by the plot of pressure and pressure derivative shown in 
Fig. 19 for different fractal dimensions (d) . However, the 
impact of the fractal dimensions at early production time 
causes changing the slope of this flow regime from (1∕2) 
to (1∕4) i.e., hydraulic fracture linear flow regime could be 
changed to a bi-linear flow regime when the mass fractal 
dimension increases.

Similarly, the flow rate and cumulative production dur-
ing hydraulic fracture linear flow regime assuming constant 
wellbore pressure can be obtained from Eqs. (32) and (35), 
respectively in dimensionless form and in Laplace domain 
as follows:

and in real-time:

(46)q̄D =
1√
s

(47)N̄PD =
1√
s3

(48)qD =
1

� (1∕2)
√
tD

The results of the flow rate and cumulative production 
shown in Fig. 20 demonstrate the same indication obtained 
by the pressure behavior depicted in Fig. 19 wherein no 
impact for the fractal characteristics is seen on reservoir 
performance. Analytically, as it is represented in the two 
models of Eqs. (48) and (49) and graphically as it is shown 
in Fig. 19, it can be easily inferred that the slope of the flow 
rate decline curve is (−1∕2) and the slope of the cumulative 
production curve is (1∕2) during hydraulic fracture linear 
flow regime. Mathematically, the cumulative production and 
wellbore pressure drop have the same model in dimension-
less form during hydraulic fracture linear flow regime as it 
is indicated from Eqs. (44) and (49); however, there is no 
physical reason for this similarity.

The second flow regime is the bi-linear flow regime that 
represents the flow linearly from the fractures embedded 
in the matrix toward the hydraulic fractures and the flow 
linearly from these hydraulic fractures toward the wellbore. 
This flow regime develops during the intermediate produc-
tion time and is controlled by the characteristic of the stimu-
lated reservoir volume (SRV) as well as the characteristics 
of hydraulic fractures. The fractal characteristics of the res-
ervoirs may have a significant impact on this flow regime. It 
is characterized by a slope of (1∕4) on the pressure derivative 
curves as it is shown in Fig. 21. The bi-linear flow regime 
is very well developed for the reservoirs with high fractal 
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Fig. 20  Flow rate and cumulative production of hydraulic fracture linear flow regime
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dimension (d) and low matrix permeability i.e., (� → 1.0) . 
The time elapsed by this flow regime is determined by the 
size of the stimulated reservoir volume.

Unlike the hydraulic fracture linear flow regime, the 
matrix may contribute to the production during the bi-linear 
flow regime, therefore (� ≠ 1.0) . Accordingly, the analytical 
model for the dimensionless wellbore pressure drop in real-
time, assuming constant pressure, during this flow regime 
is obtained from Eq. (26) as follows:

while the dimensionless flow rate and cumulative produc-
tion, assuming constant wellbore pressure, is given, respec-
tively, by:

and
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Fig. 21  Wellbore pressure and derivative of bi-linear flow regime

Figure 22 shows the flow rate and cumulative production 
behavior of fractal reservoirs during bi-linear flow regime. 
There is a significant impact for the fractal dimension on 
the flow rate and cumulative production where both of them 
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increase with the increase of the fractal dimension (d) . Physi-
cally, increasing the fractal dimension means increasing the 
density of fractures in the porous media, and thereby, most 
production comes from the reservoir fluid in these fractures.

The pseudo-radial flow regime might be observed after 
bi-linear flow regime and before pseudo-steady state flow. 
This flow regime is very well established in the reservoirs 

with big drainage area or when hydraulic fractures may not 
have long hydraulic fractures as it is shown in Fig. 23. In 
the two cases, there is enough space for reservoir fluids to 
flow radially in the horizontal plane toward the hydraulic 
fractures. The pseudo-radial flow regime represents the flow 
from unstimulated reservoir volume toward the volume. For 
Euclidian reservoirs or when the fractal dimension is close 
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Fig. 22  Flow rate and cumulative production of bi-linear flow regime
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Fig. 23  Pressure and pressure derivative of the pseudo-radial flow regime for different hydraulic fracture-length



502 Journal of Petroleum Exploration and Production Technology (2021) 11:483–507

1 3

to (d ≅ 2.0) , it is characterized by a constant dimensionless 
pressure derivative:

and

(56)
(
tDxP

�

wD

)
= 0.5 However, for fractal reservoirs where the fractal dimen-

sion is (d ≠ 2.0) , the wellbore pressure drop can be cal-
culated using Eq. (50), while the flow rate and cumula-
tive production are calculated using Eqs. (51), and (52), 
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Fig. 24  Pressure and pressure derivative during pseudo-radial flow regime for different fractal dimensions
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Fig. 25  Flow rate and cumulative production during the pseudo-radial flow regime for different fractal dimensions
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respectively. Figure 24 depicts the pressure and pres-
sure derivative of fractal reservoirs with different fractal 
dimensions during the pseudo-radial flow regime, while 
Fig. 25 shows the flow rate and cumulative production 
of pseudo-radial flow regimes. Unlike hydraulic fracture 
linear flow and bi-linear flow regime, the maximum flow 

rate and cumulative production are obtained for the fractal 
reservoir with fractal dimension (d ≥ 2.0).

The last seen flow regime is the pseudo-steady state 
f low regime. It develops when the production pulse 
reaches the boundary of the reservoir at a very late pro-
duction time. It is characterized by a unit slope line for 
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Fig. 26  Pressure and pressure derivative behaviors during pseudo-steady state flow regime for different fractal dimensions
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Fig. 27  Flow rate and cumulative production behaviors during pseudo-steady state flow regime for different fractal dimensions
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the pressure and pressure derivative curves and both of 
them perfectly overleaped as it is shown in Fig.26. The 
analytical wellbore pressure drop during this flow regime 
can be calculated using Eq. (50), while the flow rate and 
cumulative production can be calculated using Eqs. (51) 
and (52), respectively. Figure 27 demonstrates the flow 
rate and cumulative production of fractal reservoirs during 
the pseudo-steady state flow regime considering different 
fractal dimensions. It is very well indicated that bigger 
fractal dimension leads to more decrease in wellbore pres-
sure drop for constant flow rate production or maximum 
flow rate and maximum cumulative production for con-
stant wellbore pressure.

The analytical models for pseudo-steady state flow 
regime in fractal reservoirs, given by Eq.  (50), can be 
approximated to:

where

(58)PwD =
�

2d
xeDyeDtDA

(59)tDA =
tD

xeDyeD

Application

The proposed models in this study are examined twice. They 
are verified by the comparison with the previous works and 
validated by applying field data. In the verification process, the 
pressure drops for a rectangular reservoir using the solutions of 
the short and long production time given by Eqs. (22) and (26) 
are compared with the pressure drops obtained by Flamenco-
Lopez and Camacho-Velazquez 2003. In the verification pro-
cess, a hypothetical formation is considered with a rectangu-
lar drainage area of different configurations. This reservoir is 

Fig. 28  The type curve matching of the results obtained by the proposed models and the results obtained by Flamenco-Lopez and Camacho-
Velazquez (2003)

Fig. 29  Bottom hole flowing pressure and flow rate of the field exam-
ple (Fuentes-Cruz and Valko 2015)
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assumed hydraulically depleted by multiple fractures. Several 
Euclidean dimension (D) , mass fractal dimension (d) , and the 
conductivity index (�) . Because the reservoir configurations 
used by Flamenco-Lopez and Camacho-Velazquez (2003) are 
not given, type-curve matching process has been applied for 
several reservoir configurations and fractal parameters. An 
excellent matching, shown Fig. 28, has been observed for the 
following reservoir configuration and fractal parameters:

The proposed models in this study for the wellbore pres-
sure drop, flow rate, and cumulative production are validated 
also by a set of field data taken from Fuentes-Cruz and Valko 
(2015). The set of data belongs to a gas well producing in 
the Barnett shale, USA wherein the bottom hole flowing 
pressure and gas production rate are shown in Fig. 29. The 
formation and fluid data are given in Table 1.

Several attempts are conducted to match the field data 
shown in Fig. 29. The excellent matching is obtained for 
a fractal reservoir with fractal dimension (d ≅ 1.5) , while 
Euclidean dimension is used (D = 2.0) and the conductivity 
index, reflecting the anomalous diffusion flow, is (� = 0.2) . 
The reservoir in this case is assumed consisting of stimulated 
volume only i.e., there is no unstimulated reservoir volume (
xeD = 1.0, yeD = 1.0

)
 . The wellbore pressure represented 

by the red dots is calculated assuming constant flow rate of 

xeD = 2.2 yeD = 1.85

D = 2.0 d = 1.7 � = 0.08

Table 1  Data of the Barnett shale well used in the application, 
Fuentes-Cruz and Valko (2015)

Initial reservoir pressure, Pi 3693 psi
Reservoir temperature, T 652.8°R
Formation thickness, h 356 ft
Half-distance between hydraulic fractures, ye 370 ft
Viscosity, � 0.0168 cp
Matrix porosity, ∅ 0.069
Matrix compressibility, ct 0.0009 psi−1

Matrix permeability, k 1 × 10−8 md
Hydraulic fracture half-length, xF 400 ft
Number of hydraulic fractures 8

Fig. 30  Comparison between the results obtained by the proposed 
models and the field data

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

Fig. 31  The flow regimes of the field example shown by the wellbore pressure derivative
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(
Qsc = 4.0MMScf∕D

)
 , while the flow rate represented by 

the blue dots is calculated assuming constant bottom hole 
flowing pressure of 

(
Pwf = 1000.0psi

)
 . Excellent matching 

is seen between the calculated flow rate by the proposed 
models in this study and the actual data, while good match-
ing is seen between the calculated wellbore pressure and the 
actual recorded pressure. Figure 30 shows the comparison 
between the calculated wellbore pressure and flow rate using 
the proposed models in this study and the field data.

Wellbore pressure derivative is calculated using the 
results of the calculated wellbore pressure by the proposed 
models for the case of constant flow rate as it is shown in 
Fig. 31. Three flow regimes can be easily recognized. The 
first is the hydraulic fracture linear flow regime. This flow 
regime develops at the early production time and finishes 
after 2 days. The second is the bi-linear flow regime that 
develops for almost 2 years followed by the pseudo-steady 
state flow regime. The reason for observing the pseudo-
steady state flow regime after short production time even 
though the extra-low permeability is the existence of stimu-
lated reservoir volume only and the big flow rate used in the 
production 

(
Qsc = 4.0MMScf∕D

)
.

Conclusions

1. The fractal dimension (d) may have a significant impact 
on the wellbore pressure behavior, flow rate, cumulative 
production, and productivity index of fractal reservoirs. 
However, the conductivity index (�) , and the fractal-
network parameter (m) may not have significant impacts.

2. The wellbore pressure drop at the early production time 
increases as the fractal dimension increases, and how-
ever, at the late production time, the wellbore pressure 
drop shows increasing trend with the increasing of the 
fractal dimension.

3. Drainage area size and hydraulic fracture length have the 
same impact on reservoirs performance regardless of the 
geometry type of these reservoirs whether it is Euclidean 
or fractal porous media.

4. Bi-linear flow regime and pseudo-steady state flow 
regime are most affected by the fractal dimensions com-
pared to the hydraulic fracture linear flow regime.

5. Fractal reservoirs exhibit a better stabilized pseudo-
steady state productivity index than the Euclidean res-
ervoirs.
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